UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MOHAMED BASHIR ALI BASHIR (I.C/Passport No: B0638914)

Registration/Matric No: KGH 080026

Name of Degree: Master of Mechanical Engineering

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Energy Analysis for Food Industries in Malaysia

Field of Study: Energy

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date November 08,2010

Subscribed and solemnly declared before,

Witness's Signature

Date

Name: Designation:

ABSTRACT

The industrial sector is the largest consumer of energy in Malaysia. Malaysian food industries consume a significant amount of energy, about 14% of total manufacturing energy consumption. Therefore, the recent increase in energy cost has created has an essential consequence for developing alternative energy efficient technologies. In this case, energy efficiency means reduction of environmental degradation, increase of sustainability and cost savings. This dissertation focuses on the energy savings, economic benefits and emission reductions. These objective could be achieved by installation of variable speed drives, high efficiency motors, waste heat recovery unit of the boiler, new efficiency lamp (T5) for lighting and repairing, purpose of critical equipment in Malaysian food industries. It has been estimated that the total amount of 1,428, 2,129 and 2,466 MWh energy savings can be achieved annually by utilizing high efficiency motors for 50%, 75% and 100% motor loads respectively. It was also found that for different motor loads, an estimated US\$91,385, US\$136,252 and US\$157,832 could be saved in anticipated energy costs and subsequently 843, 1,257 and 1,456 tons of CO_2 emission reductions could be obtained at 50%, 75% and 100% motor loads respectively. It was also found that, the average of payback period associated with energy savings are about 2.01, 1.61 and 1.40 years for 50%, 75% and 100% motor loads respectively. Similarly, sizeable amount of energy can be saved using VSDs, waste heat recovery, new efficiency lamps (T5) and repairing leakages, resulting to curb energy costs. Furthermore, a considerable reduction in the amount of emissions can be obtained together with the associated energy savings for different energy savings strategies. In addition, the payback period for different energy savings strategies has been firmly established.

ACKNOWLEDGMENTS

First of all, I would like to thank Allah, the Almighty, for giving me the strength and courage to endlessly acquire knowledge.

I would like to express my great appreciation and deep thanks to my supervisor Assoc. Prof. Dr. Saidur Rhman, for his kind assistance, support and important advice during this research and dissertation work.

I would also like to express my special thanks and gratitude to my parents for their support and encouragement during my study.

Last but not the least, I would like to extend my appreciation to those who have been involved directly or indirectly in completing this dissertation.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	ix
LIST OF TABLES	xii
NOMENCLATURES	xiv

CHAPTERS

Page

CHA	PTER ONE: INTRODUCTION	.1
1.1	Energy efficiency	.1
1.2	Worldwide energy consumption in food industry	.3
1.3	Objectives of the study	4
1.4	Scope of the study	5

1.5 Organization of dissertation	.6
CHAPTER TWO: LITERATURE REVIEW	8
2.1 Introduction	.8
2.2 Energy demand trend in Malaysia	8
2.3 Motor1	11
2.3.1 High efficiency motors	3
2.3.1.1 Energy savings through high efficiency motors	5
2.3.1.2 Benefits of high efficiency motors	7
2.3.2 Variable speed drives	8
2.3.2.1 Variable speed drives systems	9
2.3.2.2 Energy savings through VSDs	0
2.3.2.3 Benefits of variable speed drives	22
2.4 Boiler	23
2.4.1 Heat recovery systems (economizer)	24
2.4.2 Energy savings through heat recovery systems (economizer)2	25
2.4.3 Benefits of heat recovery systems (economizer)	26
2.5 Lighting	27
2.5.1 Types of electrical lighting	29
2.5.1.1 Incandescent lamp	29
2.5.1.2 Linear fluorescent lamp	30
2.5.1.3 Compact fluorescent lamp	30
2.5.1.4 High intensity discharge lamp	31
2.5.2 Energy savings through replacing T12 and T8 lamps with T5 lamp	32
2.5.3 Benefits of replacing T12 and T8 lamps with T5 lamp	33 v

2.6 Ai	r compressor systems	33
2.6.1	Leakage of air compressor systems	35
2.6.2	Leak detection	37
2.6.3	Fixing the leakage	37
2.6.4	Energy savings through repairing leakage of air compressor systems	38
2.6.5	Benefits of fixing leaks of air compressor systems	39

3.1 Int	roduction	40
3.2 Hi	gh efficiency motors	40
3.2.1	Targeted manufacturing factories and audit data collection	40
3.2.2	Energy consumption of motors	40
3.2.3	Estimate energy savings using HEMs	41
3.2.4	Cost benefit analysis when using HEMs	41
3.2.5	Emission reduction when using HEMs	41
3.2.6	Payback period when using HEMs	42
3.3 Va	riable speed drives	42
3.3.1	Targeted manufacturing factories and audit data collection	42
3.3.2	Energy savings when using VSDs	42
3.3.3	Cost benefit analysis when using VSDs	42
3.3.4	Emissions reduction when using VSDs	43
3.3.5	Payback period when using VSDs	43
3.4 He	eat recovery system using economizer	43
3.4.1	Targeted manufacturing factories and audit data collection	43

3.4.2	Energy savings when using heat recovery systems (economizer)	44
3.4.3	Cost benefit analysis when using heat recovery systems (economizer)	44
3.4.4	Emissions reduction when using heat recovery systems (economizer)	44
3.4.5	Payback period when installing economizer systems	45
3.5 En	ergy conservation for lighting system	45
3.5.1	Targeted manufacturing factories and audit data collection	45
3.5.2	Energy savings when replacing T12 and T8 lamps with T5 lamps	45
3.5.3	Cost benefit analysis	46
3.5.4	Emissions reduction	46
3.6 En	ergy conservation when repairing leakage of air compressor systems	47
3.6.1	Targeted manufacturing factories and Audit data collection	47
3.6.2	Energy savings by repairing leakage	47
3.6.3	Cost benefit analysis	47
3.6.4	Emissions reduction	47

4.1 Int	roduction	49
4.2 Re	sults of high efficiency motors	49
4.2.1	Energy savings when using high efficiency motors	50
4.2.2	Cost benefit analysis when using HEMs	52
4.2.3	Emission reduction when using HEMs	53
4.2.4	Payback period when using HEMs	54
4.3 Re	sults of variable speed drives	56

4.3.1	Energy savings when using variable speed drives	56
4.3.2	Cost benefit analysis when using VSDs	57
4.3.3	Emission reduction when using VSDs	57
4.3.4	Payback period when using VSDs	58
4.4 He	eat recovery results	60
4.4.1	Energy saving when using economizer6	50
4.4.2	Cost benefit analysis when using economizer	51
4.4.3	Emission reduction when using economizer	62
4.4.4	Payback period when using economizer	63
4.5 Li	ghting results	64
4.5.1	Energy savings of lighting	55
4.5.2	Cost benefits analysis of lighting	66
4.5.3	Emission reduction of lighting	67
4.6 Re	esults of air compressor systems	58
4.6.1	Energy savings of air compressor systems	68
4.6.2	Cost benefits analysis when repairing leaks of air compressor systems	69
4.6.3	Emissions reduction when repairing leaks of air compressor systems	70

CHAPTER FIVE: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK.72

5.1 Conclusions	72
5.2 Suggestions for future work	73
REFERENCES	75
APPENDICES	79 viii

LIST OF FIGURES

Figure	Title	Page
Figure 2.1:	Energy demand in Malaysia	9
Figure 2.2:	Final energy demands	10
Figure 2.3:	Final energy uses in Malaysia	10
Figure 2.4:	End use energy breakdowns in Malaysian industrial sector	12
Figure 2.5:	Components of a variable speed drives	20
Figure 2.6:	Relationship between motor power reduction and rated speed	21
Figure 2.7:	A typical block diagram of economizer system	25
Figure 2.8:	Lighting cost comparison	27
Figure 2.9:	Incandescent lamp	29
Figure 2.10:	Different sizes of linear fluorescent lamps	30
Figure 2.11:	Compact fluorescent lamp	31
Figure 2.12:	High intensity discharge lamp	32
Figure 2.13:	Cost components in a typical compressed air system	34
Figure 2.14:	Compressed air system block diagrams	35
Figure 2.15:	Power losses as a function of leak through varied hole diameter	r at 600
kPa pressure		36

Figure 2.16:	Cost of waste energy due to leak	37
Figure 2.17:	Different options of compressed-air energy savings	
Figure 4.1:	Energy consumption in Malaysian industrial sector	49
Figure 4.2:	Annual energy savings when installing HEMs	51
Figure 4.3:	Bill savings when using HEMs	52
Figure 4.4:	Emissions reduction when installing HEMs	53
Figure 4.5:	Payback period when using HEMs	54
Figure 4.6:	Energy savings when using VSDs	56
Figure 4.7:	Bill savings when using VSDs	57
Figure 4.8:	Emissions reduction when installing VSDs	58
Figure 4.9:	Payback period when using VSDs	59
Figure 4.10:	Energy saving when economizer is used	60
Figure 4.11:	Bill savings when economizer is used	61
Figure 4.12:	Emissions reduction with installation economizer	62
Figure 4.13:	Payback period when economizer is used	63
Figure 4.14:	Energy savings by replacing lighting with T5	65
Figure 4.15:	Bill savings by replacing lighting with T5	66
Figure 4.16:	Emissions reduction by replacing Lighting with T-5 lamps	67

- Figure 4.17: Energy savings when repairing leaks of air compressor systems.......69
- Figure 4.18: Bill savings when repairing leaks of air compressor systems......70
- Figure 4.19: Emissions reduction by repairing leaks of air compressor system......71

LIST OF TABLES

Table	Title	Page
Table 2.1	Locations and number of factories in all Malaysian industrial sectors	11
Table 2.2	Results of industrial Malaysian energy audit	13
Table 2.3	Typical losses at different motor power 1800RPM	14
Table 2.4	Efficiency for standard and high efficiency motors at different loads	16
Table 2.5	potential of energy saving from VSD	21
Table 2.6	Results of the Malaysian food industrial energy audit	24
Table 2.7	Results of the Malaysian food industrial energy audit	28
Table 2.8	The comparison between T5, T8 and T12 lamps	33
Table 4.1	Results of food industrial Malaysian energy audit	50
Table 4.2	Emission factors form fossil fuel for a unit electricity generation	53
Table 4.3	Percentage of electricity generation based on fuel types	53
Table 4.4	Incremental costs of HEMs	55
Table 4.5	Incremental costs of VSDs	59
Table 4.6	Results of the lighting's of food industrial energy audit	64
Table 4.7	Results of air compressor system's food industrial energy audit	68

Table F.1	Diesel properties, prices of electricity, percentage of recoverable heat and
efficiency of economizer	
Table F.2	Annual energy savings when installing HEMs
Table F.3	Bill savings when using HEMs100
Table F.4	Emissions reduction when installing HEMs101
Table F.5	Payback period when installing HEMs101
Table F.6	Energy savings when using VSDs102
Table F.7	Bill savings when using VSDs103
Table F.8	Annual emission reduction when using VSDs at different speed reduction.104
Table F.9	payback period at different speed reduction when using (VSDs)104
Table F.10	Energy savings when installing economizer systems105
Table F.11	Bill savings when installing economizer systems105
Table F.12	Emissions reduction when installing economizer106
Table F.13	Energy savings when replacing lighting with T5106
Table F.14	Bill savings when replacing lighting with T5107
Table F.15	Emissions reduction when replacing Lighting with T5108
Table F.16	Energy savings when repairing leaks of air compressor systems108
Table F.17	Bill savings when repairing leaks of air compressor systems109
Table F.18	Emissions reduction when repairing leakage110

NOMENCLATURES

- ABS Annual bill savings (US\$)
- ADC Annual diesel consumption (liter)
- AEC Annual energy consumption (kWh)
- AER Annual emission reduction in (kg)
- AES Annual energy savings (kWh)
- C Average energy cost (US\$/kWh)
- E_{ee} Efficiency rate of energy efficiency motor (%)
- EF Emission factor (kg/kWh)
- EHC Energy heat content of fuel (kJ/kg)
- E_{std} Standard motor efficiency rating (%)
- F Percentage of fuel (%)
- FP Fuel price (US\$)
- H_{avg_usage} annual average usage hours (hours)
- HEMs High efficiency motors
- Hr Annual operating hours
- IC Incremental cost (US\$)

- LF Load factor (percentage of full load) (%)
- n Number of motors
- P Power (HP)
- PBP Payback period (years)

S_{SR} Percentage energy savings associated certain percentage of speed reduction (%)

- VSDs Variable speed drives
- ρ Density (kg/m³)
- $\% ES_{leak}$ Percentage of energy saving associated with repairing leakage (%)
- %_{PRH} Percentage of recoverable heat (%)
- $%_{T-5}$ Percentage of energy saving by using T-5 lamp (%)
- $\eta_{ECN\%}$ Economizer efficiency (%)
- η_{th} Thermal efficiency (%)