STUDIES OF ANTIOXIDANT ACTIVITY OF BIOACTIVE COMPOUNDS DERIVED FROM ARDISIA CRISPA

HASSAN MAHMOOD KZAR JINDAL

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2010

STUDIES OF ANTIOXIDANT ACTIVITY OF BIOACTIVE COMPOUNDS DERIVED FROM ARDISIA CRISPA

HASSAN MAHMOOD KZAR JINDAL

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2010

ABSTRACT

In recent times, researches have focused on medicinal plants in order to extract natural and low cost antioxidants that can help protect the human body against oxidative stress, and replace the synthetic additives that might be carcinogenic. In present study, the crude extracts of leaves and fruits from *Ardisia crispa* were investigated for their chemical constituents and antioxidant activity.

Preliminary phytochemical screening of the crude extracts via TLC analysis revealed the presence of several secondary compounds mainly, terpenoids and phenolic compounds in addition to alkaloids and saponins. HPLC analysis showed the possibility of presence of gallic acid in the fruits and leaves of *Ardisia crispa*.

Antioxidant activities of crude extracts were evaluated with three different methods DPPH radical scavenging activity, ferric reducing power assay, and metal chelating assay. DPPH assay results revealed that the crude extracts from *Ardisia crispa* exhibited high scavenging activity; the highest capacity was shown by fruits and leaves methanol extracts, 90.16 \pm 0.0% and 82.24 \pm 0.02% respectively at concentration of 5mg/ml. The IC₅₀ values for them were 0.9mg/ml and 1.5mg/ml respectively. Ferric reducing power assay results confirmed the results obtained by DPPH radical scavenging assay. Fruits and leaves methanol extracts exhibited the highest reducing power toward ferric ion. The metal chelating activity of crude extracts was very low in this study comparing to EDTA standard. All crude extracts showed chelating capacity lower than 50%. Fruit water extract presented the highest chelating activity with 41.94 \pm 0.0% at 1mg/ml.

Total phenolic content results revealed that there is a positive correlation between the antioxidant activity and total phenolic content of a sample. Fruits and leaves methanol extracts presented the highest phenolic contents 3.14 ± 0.0 mg GAE/ml and 2.57 ± 0.0 mg GAE/ml respectively. The presence of phenolic compounds might be attributed to the antioxidant capacity of crude extracts. The highest flavonoid content was revealed by fruits and leaves chloroform extracts, their total flavonoids contents were 2.73 ± 0.01 mg QE/ml and 2.06 ± 0.0 mg QE/ml respectively. In the present study, there is no correlation between total flavonoid content and antioxidant activity of crude extracts. Antioxidant activities results along with total phenols and flavonoids content indicate that this plant may be utilised as a source of health promoting antioxidants.

Brine shrimp lethality assay results showed that the majority of crude extracts had low toxic effects on brine shrimp larvae. The highest effect was exhibited by fruits hexane extract with mortality of 50% at 1000 μ g/ml and LC₅₀ value of 381.93 μ g/ml, all other crude extracts showed toxic effects lower than 50% mortality. Further analyses are needed to confirm that *Ardisia crispa* has no toxic effects.

ACKNOWLEDGEMENT

In the name of God, the most compassionate, the most merciful.

This work would have never come to fruition without the invaluable contribution of a number of people. First of all, I would like to note my gratitude to my supervisor Dr. Jamaludin Bin Mohammad for his supervision, advice, and encouragement during the painful period. Many thanks to my friends and lab mates, Farah Liyana Bt Jamaludin, Muhamad Fahrin, and Nadzrul Aida for their advice and assistance.

My gratitude to the staff of Biotechnology programme, Faculty of Science, University of Malaya, who collectively taught me what it's mean to be a scientist.

Love and truthful thanks to my friends and colleagues at UM, especially Mohammed Elbagir Nori and Dr. Hassan Izadeen for their advices and support throughout the hard times. I'm very grateful for you.

My wonderful family, I'm truly blessed to have such a wonderful family like you. My father Dr. Mahmood Kzar, thanks for everything you did to us, I wish I could be a great father like you. My mother, I can never repay your kindness and love. My brother Mohammed, and my sister Aseel thanks for your love and respect.

Last but not least, thanks also to the financial support provided by the University of Malaya Post Graduate Research Fund - P0074/2009B.

Hassan Mahmood

TABLE OF CONTENTS

Abstract	ii
Acknowledgement	iv
Table of contents	V
List of figures	viii
List of tables	ix
List of symbols and abbreviations	xi

CHAPTER ONE: INTRODUCTION

1.1	Free radicals	2
1.2	Oxidative stress	8
	1.2.1 Lipid peroxidation	8
	1.2.2 DNA oxidation	9
	1.2.3 Protein oxidation	10
1.3	Antioxidants	11
1.4	Plant secondary metabolites as natural antioxidants	13
	1.4.1 Phenolic compounds	14
	1.4.2 Alkaloids	15
	1.4.3 Terpenoids	16
1.5	Medicinal plants - Ardisia crispa	16
	A. Description of Ardisia crispa	17
	B. Medicinal uses of Ardisia crispa	18
	C. Chemical constituents of Ardisia crispa	18
1.6	Research objectives	19

CHAPTER TWO: MATERIALS AND METHODS

2.1	Preparation of plant sample	20
2.2	Preparation of crude extracts	20
2.3	Separation of bioactive compounds from Ardisia crispa	21
	A. Thin Layer Chromatography (TLC)	21
	B. High Performance Liquid Chromatography (HPLC)	23
2.4	Antioxidant activity of crude extracts	24
	A. DPPH radical scavenging activity assay	24
	B. Ferric reducing antioxidant power assay (FRAP)	27
	C. Metal chelating activity assay	30
2.5	Determination total flavonoid content	33
2.6	Determination total phenolic content	34
2.7	Brine Shrimp Lethality Assay (BSLA)	35

CHAPTER THREE: RESULTS

3.1	Separation of bioactive compounds from Ardisia crispa	36
	A. Thin Layer Chromatography (TLC)	36
	B. High Performance Liquid Chromatography (HPLC)	44
3.2	Screening for antioxidant activity of Ardisia crispa	47
	A. DPPH radical scavenging assay	47
	B. Ferric reducing power assay	52
	C. Metal chelating assay	54
3.3	Determination of total phenolic content	56
3.4	Determination of total flavonoid content	57
3.5	Determination of toxicity of crude extracts using (BSLA) assay	58

CHAPTER FOUR: DISCUSSION

4.1	Identification of bioactive compounds in Ardisia crispa	60
	4.1.1 Thin Layer Chromatography (TLC)	60
	4.1.2 High Performance Liquid Chromatography	61
4.2	Antioxidant activity of crude extracts from Ardisia crispa	62
	4.2.1 DPPH radical scavenging activity	63
	4.2.2 Ferric Reducing power assay	64
	4.2.3 Metal chelating assay	65
4.3	Total phenolic and total flavonoid contents	66
4.4	Toxicity of Ardisia crispa using brine shrimp lethality assay (BSLA)	68

CHAPTER FIVE: CONCLUSION	69
REFERENCES	70
APPENDICES	80

LIST OF FIGURES

Tab	le Title	Page
1.1	Sources of intercellular reactive oxygen species and reactive nitrogen species	7
1.2	Leaves and fruits of Ardisia crispa	17
3.1	HPLC chromatogram of gallic acid standard	44
3.2	HPLC chromatogram of fruits methanol extracts from Ardisia crispa	45
3.3	HPLC chromatogram of leaves methanol extracts from Ardisia crispa	45
3.4	HPLC chromatogram of leaves water extracts from Ardisia crispa	46
3.5	HPLC chromatogram of fruits water extracts from Ardisia crispa	46
3.6	The inhibition activity of ascorbic acid on the DPPH free radical	50
3.7	The inhibition effect of different crude extracts on DPPH free radical	51
3.8	The reducing power activity of crude extract and BHA as a standard	53
3.9	The metal chelating activity of crude extract and EDTA as a standard	55

LIST OF TABLES

Figu	Figure Title	
2.1	HPLC solvent gradient elution program	23
2.2a	Preparation of reaction mixture of ascorbic acid, DPPH, and methanol for	25
	DPPH assay	
2.2b	Preparation of reaction mixtures of crude extracts, DPPH, and methanol for	26
	DPPH assay	
2.3a	Preparation of reaction mixture of EDTA, deionized water, FeCl ₂ , and	31
	ferrozine for metal chelating assay	
2.3b	Preparation of reaction mixture of crude extracts, deionized water, FeCl ₂ ,	32
	and ferrozine for metal chelating assay	
3.1	Thin Layer Chromatography of leaves hexane extract of Ardisia crispa	36
3.2	Thin Layer Chromatography of leaves chloroform extract of Ardisia crispa	37
3.3	Thin Layer Chromatography of leaves methanol extract of Ardisia crispa	38
3.4	Thin Layer Chromatography of leaves water extract of Ardisia crispa	39
3.5	Thin Layer Chromatography of fruits hexane extract of Ardisia crispa	40
3.6	Thin Layer Chromatography of fruits chloroform extract of Ardisia crispa	41
3.7	Thin Layer Chromatography of fruits methanol extract of Ardisia crispa	42
3.8	Thin Layer Chromatography of fruits water extract of Ardisia crispa	43
3.9a	Inhibition activity (%) of DPPH radical by leaves and fruits extracts at	49
	concentration of 5mg/ml.	
3.9b	The IC ₅₀ values of leaves and fruits extracts	49
3.10	Chelating activity (%) of leaves and fruits extracts at concentration of	54
	1mg/ml	
3.11	Total phenolic content of crude extracts from leaves and fruits of Ardisia	56

crispa

- 3.12 Total flavonoid content of crude extracts from leaves and fruits of *Ardisia* 57 *crispa*
- 3.13 The toxic effects of crude extracts from *Ardisia crispa* on brine shrimp 59 larvae

LIST OF SYMBOLS AND ABBREVIATIONS

%	Percent
°C	Degree Celsius
ROS	Reactive Oxygen Species
RNS	Reactive Nitrogen Species
DNA	Deoxyribonucleic Acid
α	Alpha
BHA	Butylated Hydroxyanisole
BHT	Butylated Hydroxytoluene
cm	centimetre
m	meter
UM	University Malaya
hr	Hour
TLC	Thin Layer Chromatography
HPLC	High Performance Liquid Chromatography
Mm	millimeter
UV	Ultra Violet
g	Gram
ml	milliliter
nm	nanometer
DPPH	diphenyl-2-picrylhydrazyl
mg	milligram
μg	Microgram
μl	Microliter

FRAP	Ferric Reducing Antioxidant Power
М	Molar
EDTA	Ethylenediaminetetraacetic Acid
ddH ₂ O	Double – distilled water
BSLA	Brine Shrimp Lethality Assay
&	And
NMR	Nuclear magnetic resonance