ELECTROCATALYSIS STUDIES RELATED TO [FeFe]-HYDROGENASE

WOI PEI MENG

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

ELECTROCATALYSIS STUDIES RELATED TO [FeFe]-HYDROGENASE

WOI PEI MENG

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Woi Pei Meng (IC/Passport No: A16290426) Registration/Matric No: SHC 070065 Name of Degree: Doctor of Philosophy Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): Electrocatalysis Studies related to [FeFe]-Hydrogenase Field of study: Catalysis

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of far dealing ad for permitted purposes and any excerpt or extract form, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date 18 July 2011

Subscribed and solemnly declared before,

Witness's Signature

Date 18 July 2011

Name: Yatimah Alias Designation:

Abstract

This research is concerned with building structures related to the active site of [FeFe] hydrogenase, the H-cluster (a) within surface confined electropolymers (b) in proteins by chemical modification of ferredoxin centres and (c) as catalytic moieties on light harvesting nanoparticles.

The study begins by laying out the synthesis of materials used in the studies detailed in this thesis. Components including the cubane cluster, the {2Fe-2S} sub-site centre and the synthesis of functionalised ligands for modification of electrode surfaces and proteins, as well as synthesis of key monomers which can be electropolymerised for electrode surface modification. An improved synthetic route to a key diiron sub-site target molecule is described.

Some first steps towards constructing structure related to [FeFe]-hydrogenases on electrode surface are reported. The incorporation of a sub-site unit into an ionic polymer scaffold clearly contributes to the stability of the protonated sub-site, where the presence of the sub-site hydride form is confirmed through infrared spectroscopy. Construction of the active site H-cluster on a modified electrode is described. Electrochemical and spectroscopic characterisations show that a redox active cubane assembly, covalently bound within a cysteinyl-alkylammonium functionalised polypyrrole, can be modified with a diiron dithiolate carbonyl unit to give an artificial hydrogenase H-cluster framework, confined within the polymer matrix.

An attempt to construct an H-cluster based on a mutant ferredoxin protein from hyperthermophile *Pyroccocus furiosus* led to the conclusion that mutant system containing is very robust. It is not easily to unfold it with guanidine hydrochloride, but at low pH, it seems possible that chemistry at one of the iron can be carried out. This is potential very interesting.

Preliminary work on constructing a photoelectrochemical platform for hydrogen production is described. This based on the modification of indium phosphide nanocrystals and the incorporation of an $Fe_2(\mu-S_2)(CO)_6$, a procatalyst with a framework nominally related to the catalytic diiron sub-site of hydrogenase. Immobilisation of the components on a gold substrate provides a photocathode which can produce dihydrogen.

Finally, a summary of the key findings of this work and an outline of possibilities for future work are provided.

Abstrak

Kajian ini tertumpu kepada pemahaman tapak aktif [FeFe]-hidrogenesis iaitu H-kluster yang menjalankan penurunan berbalik proton kepada hidrogen. H-kluster mengandungi {4Fe-4S} kubika yang disambung kepada dwiferum yang turut terikat kepada kumpulan dwisufurlat, CO dan CN⁻ melalui ikatan sistina. Interpretasi kimia ini telah membawa kepada ciptaan mangkin elektro yang membolehkan penjanaan hidrogen evolusi yang penting kepada tenaga transduksi.

Kajian ini bermula dengan penjelasan ke atas sintesis bahan yang berkaitan dengan Hkluster seperti {4Fe-4S} kluster kubika, sub-tapak {2Fe-2S} dan sintesis ligan berfungsi untuk modifikasi permukaan elektrod dan protein, serta monomer yang boleh dielektropolimerasasi dalam konteks modifikasi permukaan elektrod. Pengubahsuaian keatas sintesis tri-podal yang bertanggungjawab untuk pembentukkan molekul sasaran, dwiferum sub-tapak telah berjaya ditingkatkan hasil bahan sebanyak 41%.

Beberapa langkah pertama dalam pembinaan struktur berhubung dengan [FeFe]hidrogenesis diatas tapak elektrod telah dibincangkan. Pengkoperasian sub-tapak kedalam polimer ionik telah menyumbang kepada stabiliti protonasi sub-tapak dimana kewujudan hydrit sub-tapak telah dikenalpasti menerusi spektroskopi infra merah. Pembinaan tapak aktif, H-kluster diatas permukaan elektrod juga telah dibincang. Pencirian elektrokimia dan spektroskopi menunjukan kejayaan pemasangan kubika redok aktif {Fe₄S₄}²⁺ yang terikat secara kovalen dengan *polypyrrole* berfungsi sistina*alkylammonium* yang boleh diubahsuai dengan dwiferum dwisulfulat. Ini telah menghasilkan rekaan H-kluster yang terbina dalam rangkaian matrik polimer.

Percubaan untuk pembinaan H-kluster berdasarkan *ferredoxin* yang diambil dari *Pyroccocus furiosus* mendapati bahawa sistem mengandungi {4Fe-4S} adalah sangat tegap. Ini menyebabkan ia tidak senang diuraikan dengan *guanidine hydrochloride*. Akan tetapi pada pH rendah, ada kemungkinan tindak balas kimia keatas salah satu atom ferum boleh dilaksanakan.

Kajian awal keatas binaan platform fotoelektrokimia untuk penghasilan hidrogen yang berasaskan modifikasi *indium phosphide* dan pengkoperasian promangkin, $Fe_2(\mu$ -S₂)(CO)₆ yang berkait dengan mangkin dwiferum hidrogenesis telah berjaya menghasilkan gas hidrogen yang dianggarkan sebanyak 60%.

Akhirnya, kesimpulan terhadap penemuan dalam kajian ini bersama dengan kemungkinan kajian di masa hadapan telah diberi.

Acknowledgements

Firstly, I would like to thank my supervisor, Pr. Yatimah Alias, for her guidance, trust and the large degree of freedom she gave to me during my Ph.D. research.

I also would like to thank my co-supervisor, Pr. Chris Pickett, for his enthusiastic and friendly supervision during my research attachment in Energy Materials Laboratory, University of East Anglia for the past ten months.

My sincere acknowledgement to Dr. Saad Ibrahim for his guidance and lab skills in electrochemistry and organometallic synthesis, and I am greatly indebted to him for the work we have carried out and the successes we have achieved.

Many thanks to colleagues and friends met in Norwich and Laboratory D220, Dr. Joseph Wright, Dr. Peiyi Li, Wang Qi, Rina, Kelton, Mrs. Marhaini and Sarah for their friendship and supports, and Cedric Tard and Matthieu Razavet who established the main basis of this exciting project during their Ph.D.

Heartfelt thanks are extended to the Ministry of Higher Education, Malaysia and University of Malaya for the beneficial scholarship.

Lastly, love and hugs to my family and those unnamed "soldiers" for keeping my motivation up until the finish line of my Ph.D. study.

Nothing shocks me. I'm a scientist.

Harrison Ford, as Indiana Jones

Table of Contents

Original Literary Work Declaration	ii
Abstract	iii
Abstrak	V
Acknowledgements	vii
List of Figures	viii
List of Tables	xii
Abbreviations	xiii

Chapter 1 Introduction

1.1	Preface	1
1.2	Biomimetism of enzymes-Hydrogenase	3
1.3	Artificial hydrogenases based on active site analogues	5
1.4	Outline of thesis	7
1.5	Objectives	8

Chapter 2 Iron-sulphur centres in biology and related chemistry: An overview of the hydrogenases

2.1	Iron p	roteins: Properties and biology	9
	2.1.1	Rubredoxins (Rb)	11
	2.1.2	Ferredoxins (Fd)	12
		2.1.2.1 {2Fe-2S} centres (Two-Iron ferredoxin)	12
		2.1.2.2 {3Fe-4S} centres (Three-Iron ferredoxin)	13
		2.1.2.3 {4Fe-4S} centres (Four-Iron ferredoxin)	14
2.2	Hydro	ogenases	15
	2.2.1	[Fe]-hydrogenase	18
	2.2.2	[NiFe]-hydrogenase	20
	2.2.3	[FeFe]-hydrogenase	21
		2.2.3.1 The active site: H-cluster	22
		2.2.3.2 The nature of the sub-site	25
		2.2.3.3 Proposed catalytic mechanism	27
	2.2.4	Synthetic models related to the [FeFe]-hydrogenase	30
		2.2.4.1 Synthetic analogues of iron-sulphur cluster	30
		2.2.4.2 Synthetic models of the diiron sub-site	33

Chapter 3 Synthesis of Materials

2 1	Environmental mother de	10
3.1	Experimental methods	48
3.2	$[Fe_4S_4(SPh)_4][(NBu_4)_2]$: Iron-sulphur cluster	51
3.3	Ligand synthesis: The tripodal CH ₃ C(CH ₂ SH) ₃	51
3.4	[Fe ₂ (CO) ₆ (CH ₃ C(CH ₂ S) ₂ CH ₂ SCOCH ₃)]: An activated diiron sub-site	54
3.5	$[Fe_2(CO)_5CH_3C(CH_2S)_2CH_2S]$: A water soluble anionic diiron sub-site	57
3.6	$[Fe_2(CO)_4(CN)_2(CH_3C(CH_2S)_2CH_2SCOCH_3)][(Et_4N)_2]$: A water-	60

	soluble dicyanide complex			
3.7	$[Fe_2(\mu-S_2)(CO)_6]$: An unsaturated diiron complex	61		
3.8	$[Fe_2(S_2C_3H_6)(CN)_2(CO)_4][(Et_4N)_2]$: A dianion for immobilisation in	62		
	ionic exchange polymer			
3.9	Confining sub-site and H-cluster system in electropolymers: Synthesis	63		
	of functionalised pyrrole monomers			
	3.9.1 3-(pyrrol-1-yl)propyltriethylammonium tetrafluroborate	63		
	3.9.2 N,N'-bis[N-3-(pyrrol-1-yl)propanoyl]-L-cystinyl-bis-N",N"	64		
	trimethylammoniumethylamide tetrafluroborate			
3.10	General conclusion	67		
3.11	Experimental	67		

Chapter 4 Electropolymer Materials Possessing Assemblies related to the Active Site of [FeFe]-hydrogenase

Introd	luction	on	Hydrog	en Fu	el Pi	roduces	Cells	and	Artificial	
Hydro	ogenase	Syste	m							82
4.1	Fuel p	roduce	rs cells: F	Role in h	ydrog	en econor	ny			82
4.2	Electro	ocataly	sts: Repla	acing pla	atinum					83
4.3	Bioins	pired a	and bioind	organic e	electro	catalysts				84
4.4	Modifi	ication	of electro	ode surf	aces					86
4.5	Poly(p	yrrole	s) and oth	er condu	ucting	polymers				86
4.6	The po	oly(pyr	role) fran	nework						87
4.7	Backg	round	work on a	a proton	ation o	f sub-site	analogi	le		90
4.8	Result	s and I	Discussion	n						92
	4.8.1	Form	ation	of	an	ionic	excha	nge	polymer:	
		Electr	opolyme	risation		of			3-(pyrrol-1-	
		yl)pro	pyltrieth	ylammo	nium t	etraflurob	orate			92
	4.8.2	Stabi	lisation of	f a proto	nated s	sub-site: [Ггарріп§	g a dio	cyanide sub-	93
		site w	ithin an e	electropo	olymer	matrix by	y ion ex	chang	je	
4.9	Assem	bling	of an H-c	luster an	alogue	e on an ele	ectrode	surfac	ce	97
	4.9.1	Resu	lts and D	iscussio	n					98
		4.9.1.	1 Constru	icting i	norgar	nic polyf	erredox	in or	n electrode:	98
			Electro	polymer	isation	n of	N,N'-ł	ois[N-	3-(pyrrol-1-	
			yl)prop	anoyl]-I	cysti	nyl-bis-N	",N"-			
			trimeth	ylammo	niume	thylamide	$e[BF_4]$	salt (2	1)	
		4.9.1.	2 Incorpo	oration {	Fe_4S_4	cluster i	n the po	lymer	•	100
	_	4.9.1.	3 Modifi	cation w	ith the	sub-site	compley	K _		104
4.10	Compa	arison	studies b	etween	solid s	state and	solution	elect	rochemistry	
	of H-c	luster								110
4.11	Genera	al conc	lusion							115
4.12	Experi	menta	l							116

Chapter 5 Voltammetric studies of *Pyrococcus furiosus* {4Fe4S} ferredoxin: Towards new assembly related to H-cluster

5.1	Introd	118	
	5.1.1	Pyrococcus furiosus ferredoxin (Pf Fd)	119

167

	5.1.2	History of protein film voltammetry method	121
5.2	Result	s and Discussion	123
	5.2.1	Electrochemical behaviour of mutant Pyrococcus furiosus	123
	ferredo	oxin, <i>Pf</i> Fd D14C	
	5.2.2	Reaction of Pyrococcus furiosus ferredoxin mutant with	
		synthetic ionic sub-site [Fe ₂ (CO) ₅ CH ₃ C(CH ₂ S) ₂ CH ₂ S][Na] (9)	125
	5.2.3	Reaction of Pyrococcus furiosus ferredoxin mutant with	
		thiophenol	127
	5.2.4	The effect of the unfolding reagent on the electrochemistry of	
		Pyrococcus furiosus ferredoxin mutant	128
	5.2.5	Magnetic circular dichroism studies of Pyrococcus furiosus	
		ferredoxin mutant with unfolding agent	129
	5.2.6	Behaviour of Pyrococcus furiosus ferredoxin mutant to pH	
		variation: An electrochemistry study	130
	5.2.7	Alternative reaction route based on Desulfuricans africanus	
		ferredoxin	137
5.3	Final r	emarks	139
5.4	Experi	mental	140
	5.4.1	Bulk voltammetry and protein film voltammetry	140
	5.4.2	Magnetic circular dichroism spectroscopy	141

Chapter 6 Visible light driven water splitting: A nano-photocathode for hydrogen production

6.1	Background on light driven dihydrogen production	143
6.2	Photocatalysis model systems	145
6.3	Indium phosphide nano-crystals as photosensitiser	147
6.4	Results and Discussion	148
	6.4.1 Photolysis of $Fe_2(\mu-S_2)(CO)_6$	148
	6.4.2 Protonation studies on $Fe_2(\mu-S_2)(CO)_6$	151
	6.4.3 Photoluminescence studies of InP with $Fe_2(\mu-S_2)(CO)_6$	154
	6.4.4 Photolysis studies on mixture of InP with $Fe_2(\mu-S_2)(CO)_6$	155
	6.4.5 Investigation on nano-photocathode	156
	6.4.5.1 Fourier transforms infrared spectroscopy	157
	6.4.5.2 Photocurrent measurement	159
	6.4.5.3 Electrolysis	160
6.5	General conclusion	162
6.6	Experimental	163
	6.6.1 General	163
	6.6.2 Synthesis of indium phosphide nano-crystals	163
	6.6.3 Electrode modification	164
	6.6.4 Electrolysis	164
6.7	Dihydrogen yield calculation	165

Chapter 7	Conclusions and Future Works	
-----------	------------------------------	--

Chapter 8 Appendix

	Notes on characterisation techniques used	170
8.1	Fourier transforms infrared spectroscopy	170
8.2	Electrochemistry	171
8.3	Cyclic voltammetry (CV)	172
8.4	Electrolysis	176
Chapter 9 References		177
List of	f publications	203
Confe	Conferences/seminars/workshops attended	

List of Figures

2.1	Rubredoxin	11
2.2	{2Fe-2S} ferredoxin.	12
2.3	{3Fe-4S} ferredoxin.	13
2.4	{4Fe-4S} ferredoxin.	14
2.5	Schematic representation of hydrogenase showing the S-bridged bimetallic catalytic centre, the proton and hydrogen channels together with the electron transfer chain. Arrow on the metal, Me_2 indicates the coordination site	17
2.6	Schematic representations of the active site of Hmd. Unk, unknown ligand; this site appears to bind cyanide.	19
2.7	Crystal structure on active site of [NiFe]-hydrogenase isolated from <i>Desulfovibrio gigas</i> .	21
2.8	Composite structure of "H-cluster" constructed from crystal structure of [FeFe]-hydrogenase active site from Ddh, Cp1 and FTIR data of <i>Desulfovibrio vulgaris</i> . The apical group on the sub-site ligand, X may	24
2.9	possibly be CH ₂ , NH or O. Proposed active site of [FeFe]-hydrogenase, as isolated from (a)Cp1	24
• • •		26
2.10	Schematic representation of the $Fe_2S_2(CO)_6$ complex. The dashed line represents the bent metal-metal bond.	34
2.11	Schematic representation of active site of [FeFe]-hydrogenase ($X = CIL = NIL = O$)	40
2.12	ORTEP view on the structure of the cation in $[Fe_2(S_2C_3H_6)(CO)_3(PMe_3)(dppv)]BF_4$ (left) and $[Fe_2(S_2C_3H_6)(CO)_3(Pi-Pr_3)(dppv)]BF_4$ (right) with thermal ellipsoids set at the 35%	10
	probability level	41
2.13	Synthetic analogue of H-cluster model	42
2.14	A view of the structure of $[Fe_2(CO)_4(CH_3C(CH_2S)_3]_2$. The two external Fe atoms are formally Fe(I) and the two internal Fe atoms are formally Fe(II).	44
3.1	FTIR spectra of complex $[Fe_2(CO)_5CH_3C(CH_2S)_2CH_2S][Na]$ (9)	58
3.2	FTIR spectra of complex [Fe ₂ (CO) ₅ CH ₃ C(CH ₂ S) ₂ CH ₂ S][PPh ₄] (10)	50
2 2	Di functionalised pyrrole derivative monomer (16)	63
3.3 3.4	Tri functional pyrrole cystine monomer (21)	64
3.4 4 1	Film growth of noise (16) (10 mM, 0.2 M [NDy][DE] in acatomizing	04
4.1	Film growth of poly (16) (10 mM, 0.2 M [NBu ₄][BF ₄] in account file, 50 mV.s ⁻¹) on Pt disc electrode by repetitive scanning (20 cycles).	92
4.2	FIR spectrum of $[Fe_2(S_2C_3H_6)(CO)_4(CN)_2]$ (14) bounded within poly (16).	93
4.3	FTIR spectra recorded for $[Fe_2(S_2C_3H_6)(CO)_4(CN)_2]^{2^2}(14)$ in acetonitrile solution.	94
4.4	FTIR spectrum indicates changes of IR bands for complex $[Fe_2(S_2C_3H_6)(CO)_4(CN)_2]^2$ (14) during protonation.	95
4.5	Spectra for products of protonation of $[Fe_2(S_2C_3H_6)(CO)_4(CN)_2]^2$ (14) by HBF ₄ ·Et ₂ O in acetonitrile solution (bottom, $[(14)]_0 = 0.50$ mM,	96

	$[HBF_4 \cdot Et_2O]_0 = 1.13 \text{ mM}$) and by HCl vapour in the polymer (top).	
4.6	Film growth of poly (21) (8 mM, 0.2 M [NBu ₄][BF ₄] in acetonitrile, 50	00
	$mV.s^{-1}$) on Pt disc electrode by repetitive scanning (20 cycles).	99
4.7	FTIR spectra of poly (21).	99
4.8	Cyclic voltammogram of ${Fe_4S_4}^{2+/1+}$ couple confined in poly (21,	
	cysteinyl form) film on Pt disc electrode (0.2 M [NBu4][BF4] in	
	acetonitrile, 5 mV. s^{-1}).	102
4.9	(a) Cyclic voltammogram of ${Fe_4S_4}^{2+/1+}$ couple confined in poly (21,	
	cysteinyl form) film on Pt disc electrode at scan rates varied from 10 to	
	50 mV.s ⁻¹ (0.2 M [NBu ₄][BF ₄] in acetonitrile); (b) Relationship	
	between peak current and potential of different scan rates.	103
4.10	Cyclic voltammogram of ${Fe_4S_4}^{2+/1+}$ couple confined in poly (21,	
	cysteinyl form) film on Pt disc electrode at fifth (solid line) and 55 th	
	(dashed line) scans (0.2 M [NBu ₄][BF ₄] in acetonitrile, 5 mV.s ⁻¹).	104
4.11	Cyclic voltammogram of Fe ₂ (CO) ₆ (CH ₃ C(CH ₂ S) ₂ CH ₂ SCOCH ₃) (8)(2	
	mM, 0.2 M [NBu ₄][BF ₄] in acetonitrile, 50 mV. s^{-1}).	105
4.12	FTIR spectra of modified electrode after exposing to the diiron	
	thioacetyl sub-site (8) for 18 hours.	108
4.13	FTIR spectra of $Fe_2(CO)_6(CH_3C(CH_2S)_2CH_2SCOCH_3)$ (8) in	
	acetonitrile.	108
4.14	Cyclic voltammogram of $[Fe_4S_4(SPh)_4][NBu_4]_2$ (1) (0.2 M	
	[NBu ₄][BF ₄] in acetonitrile, 5 mV.s ⁻¹), both scans recorded separately.	111
4.15	Comparison of cyclic voltammogram of cluster behaviour (1) recorded	
	in solid state (I) and solution electrochemistry (II).	112
4.16	Cyclic voltammogram of $[Fe_4S_4(SPh)_4][NBu_4]_2$ (1) reacts with one	
	equivalent of $Fe_2(CO)_6(CH_3C(CH_2S)_2CH_2SCOCH_3)$ (8) at different	
	duration (0.2 M-[NBu ₄][BF ₄] in acetonitrile, 5 mV.s ⁻¹), () 5 min; ()	
	3 hours.	113
4.17	Cyclic voltammogram of $[Fe_4S_4(SPh)_4][NBu_4]_2$ (1) reacts with one	
	equivalent of $[Fe_2(CO)_4(CN)_2(CH_3C(CH_2S)_2CH_2SCOCH_3]^2$ (11) at	
	different duration (0.2 M-[NBu ₄][BF ₄] in acetonitrile, 5 mV.s ⁻¹), () 1	
	hour: () 24 hours	115
51	An idealised configuration for protein-film voltammetry. The protein	
5.1	molecules are arranged as a perfect monolayer each behaving	
	independently. They interact non-covalently with functionalities on the	
	electrode surface to produce orientations allowing facile interfacial	
	electron exchange and interaction with agents in the contacting	
	electrolyte	122
52	Film voltammogram of {4Fe-4S} ferredoxin extracts from <i>Pyracaccus</i>	
5.2	furiosus (100 μ M) pH 7.0 in 20 mM mixed buffer-0.1 M NaCl with	
	$200 \ \mu$ M of polymyxin as co-adsorbate. Temperature 4 °C scan rate 5	
	$mV s^{-1}$	124
53	Bulk solution voltammogram of $\{4\text{Fe}_4\text{S}\}$ ferredoxin extracts from	
5.5	Pyrococcus furiosus (100 µM) pH 7.0 in 20 mM mixed buffer-0.1 M	
	NaCl with 200 μ M of polymyxin as co-adsorbate. Temperature 4 °C	
	scan rate 5 mV s ⁻¹	125
54	Bulk solution voltammetry of {4Fe-4S} ferredoxin extracts from	
J.T	Pyrococcus furiosus (100 µM) reacts with	
	$[Fe_2(CO)_s(CH_2C)_2CH_2SN_2]$ (0) nH 7 0 20 mM mixed buffer_	
	0.1 M NaCl with 200 μ M of polymyxin as co-adsorbate	
	Temperature 4 °C scan rate 5 mV s ⁻¹	126
	remperature i C, sean rate 5 m v.s.	

5.5	Bulk solution voltammetry of $\{4\text{Fe-4S}\}\$ ferredoxin extracts from <i>Pyrococcus furiosus</i> (100 μ M)reacts with PhSH, pH 7.0 in 20 mM mixed buffer-0.1 M NaCl with 200 μ M of polymyxin as co-	
5.6	adsorbate. Temperature 4 °C, scan rate 5 mV.s ⁻¹ . Bulk solution voltammetry of $[4\text{Fe} 4\text{S}]$ ferredoxin extracts from	127
5.0	Burk solution voltainmenty of $\{47e-43\}$ ferfedoxin extracts from <i>Pyrococcus furiosus</i> (100 μ M) in presence with 6 M GdnHCl, pH 7.0,	
	20 mM mixed buffer-0.1 M NaCl with 200 μ M of polymyxin as co- adsorbate. Temperature 4 °C, scan rate 5 mV.s ⁻¹ .	129
5.7	MCD spectra for native $\{4\text{Fe-4S}\}$ <i>Pf</i> Fd D14C (210 μ M) and $\{4\text{Fe-4S}\}$ <i>Pf</i> Ed in 6 M guanidine hydrochloride	130
5.8	Bulk solution voltammetry of {4Fe-4S} ferredoxin extracts from	
	<i>Pyrococcus furiosus</i> (100 μ M) at different pH values adjusting with HCl (2 M) in 20 mM mixed buffer-0.1 M NaCl with 200 μ M of	
5.0	polymyxin as co-adsorbate. Temperature 4 °C, scan rate 5 mV.s ⁻¹ .	131
5.9	<i>Pyrococcus furiosus</i> (100 μ M) by HCl (2 M) in 20 mM mixed buffer-	
	0.1 M NaCl with 200 μ M of polymyxin as co-adsorbate. Temperature 4 °C, scan rate 5 mV,s ⁻¹ .	132
5.10	Bulk solution voltammetry of {4Fe-4S} ferredoxin extracts from	
	mM mixed buffer-0.1 M NaCl with polymyxin as co-adsorbate.	
5 11	Temperature 4 °C, scan rate 5 mV.s ⁻¹ . Bulk solution voltammetry of $\{4\text{Fe-4S}\}\$ ferredoxin extracts from	133
0.111	<i>Pyrococcus furiosus</i> (100 μ M) adjusted to pH 2 with HCl (2 M), re-	
	M NaCl with 200 μ M of polymyxin as co-adsorbate. Temperature 4	
5 12	$^{\circ}$ C, scan rate 5 mV.s ⁻¹ . Bulk solution voltammetry of {4Fe-4S} ferredoxin extracts from	134
0.12	Pyrococcus furiosus (100 μ M) adjusted to pH 2 with HCl (2 M),	
	0.1 M NaCl with 200 μ M of polymyxin as co-adsorbate.	
5 13	Temperature 4 °C, scan rate 5 mV.s ⁻¹ . Protein film voltammogram for conversion of $DaFd(III)$ to $DaFd$	135
5.15	(IV), pH 7.0 in 20 mM mixed buffer-0.1 M NaCl with 200 μ M of	
	Ferrous ammonium sulphate (300 μ M) is used as iron source.	138
5.14	Protein film voltammogram of Da Fd (IV) (100 μ M) react with [Fe ₂ (CO) ₅ (CH ₂ C(CH ₂ S) ₂ CH ₂ S][Na] (9) nH 7.0 in 20 mM mixed	
	buffer-0.1 M NaCl with 200 μ M of polymyxin as co-adsorbate.	120
6.1	FTIR spectra of $Fe_2(\mu-S_2)(CO)_6$ (12) in toluene, continuously exposed	139
62	to light emitting diode at 395 nm. Cyclic voltammogram of $Fe_2(u-S_2)(CO)_2(12)$ (3 mM 0.2 M	150
6.2	[NBu ₄][BF ₄] in acetonitrile, 50 mV.s ⁻¹).	151
6.3	Cyclic voltammogram of $Fe_2(\mu-S_2)(CO)_6(12)$ (3 mM, 0.2 M [NBu ₄][BF ₄] in acetonitrile, 50 mV.s ⁻¹) in the absence (-) and in the	
	presence of TsOH: () 1 equivalent; () 2 equivalents; () 8 equivalents	153
6.4	Luminescence quenching of InP quantum dots by $Fe_2(\mu$ -	
	S_2 (CO) ₆ (12) in toluene. The process follows roughly a first-order rate law with rate constant k. Inset: UV/vis. absorption and	
	photoluminescence spectrum of InP quantum dots in cyclohexane.	154

6.5	FTIR spectrum of InP with $Fe_2(\mu-S_2)(CO)_6$ (12) in toluene, continuously exposed to light emitting diode at 395 nm.	155
6.6	Schematic cross-section of InP nano-crystal modified gold electrode with adsorbed/intercalated $Fe_2(\mu-S_2)(CO)_6$ (12) sub-site analogue.	157
6.7	FTIR spectra of the carbonyl stretching region of the $Fe_2(\mu-S_2)(CO)_6$ (12) sub-site in solution (red) and bound to the InP nano-particle film (black) The "inversion" of the spectrum is indicative for CO bound to	
	conducting nano-particles.	158
6.8	Photocurrent measured at a bias potential of -400 mV vs. Ag/AgCl in $0.1 \text{ M Na}[BF_4]$ under illumination with a 395 nm light emitting diode.	
	Electrode area was 0.40 cm^2 .	159
6.9	Photocurrent response at different bias potentials, electrode area 0.40 cm ² .	160
6.10	Schematic representation of the closed electrochemical cell used (R = reference electrode, W = working electrode and S = secondary electrode).	161
8.1	The assignments (most prominent showed) of the CO stretching frequencies of the ETIR spectra for $[Fe_2(u-S_2R)(CO)_c]$ complexes The	
	FTIR spectrum of $[Fe_2(\mu-pdt)(CO)_6]$ is shown as an example.	171
8.2	Cyclic voltammogram for a reversible electron transfer reaction (ferrocene in this case).	173

List of Tables

2.1	Some proteins containing iron.	10
2.2	Classification of hydrogenases.	16
2.3	Catalytic activities (measured as molecules of dihydrogen per second per hydrogenase molecule at 30 °C) of purified [NiFe]- and [FeFe]-hydrogenases.	17

Abbreviations

AIREs	abnormal infrared effects
Asp	aspartic acid
atm	atmospheric pressure
b, br	broad
С	coulomb
CB	conduction band
CD	circular dichroism
cm	centimetre
CNMe	methyl cyanide
Cp1	Clostridium pasteurianum
ĊV	cyclic voltammetry
Cys	cysteine
d	doublet
D	deuterium
Da	Desulfuricans africanus
DCM	dichloromethane
Ddh	Desulfovibrio desulfuricans
deg	degree
DFT	density functional theory
DMF	dimethylformamide
Dppe	1,2-bis(diphenylphosphino)ethane
DTT	DL-dithiothreitol
δ	chemical shift
e	electron
ENDOR	electron nuclear double resonance
EPR	Electron paramagnetic resonance
eq.	equilibrium, equivalent
ES-MS	Electron Spray Mass Spectroscopy
Et	ethyl, CH ₂ CH ₃
Et ₂ O	diethyl ether
EtOAc	ethylacetate
EtS	thiol-ethyl
$E_{ m p}$	peak potential of a redox process
$E_{\rm p}^{\rm ox}$	potential of the oxidation peak
E _p ^{red}	potential of the reduction peak
$\Delta E_{\rm p}$	$E_{\rm p}^{\rm ox}$ - $E_{\rm p}^{\rm red}$
$E_{1/2}$	$(E_{\rm p}^{\rm ox} + E_{\rm p}^{\rm red})/2$
E ^o	Standard electrode potential
Fd	ferredoxin
Fd _{ox}	oxidised ferredoxin
Fd _{red}	reduced ferredoxin
FRET	Förster Resonance Energy Transfer

FTIR	Fourier transform infrared spectroscopy
FWHM	full width at half maximum
GdnHCl	guanidine hydrochloride
h	hour(s)
Н	proton
HDA	hexadecylamine
HEPES	4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid
HiPIP	high potential iron protein
НОМО	highest occupied molecular orbital
Hmd	H ₂ -forming methylenetetrahydromethanopterin dehydrogenase
HP	high potential
HPox	oxidised high potential
HP _{red}	reduced high potential
HYSCORE	hyperfine sublevel correlation spectroscopy
Hz	hertz
$I_{\rm p}^{\rm ox}$	maximum currents in oxidation
$I_{\rm p}^{\rm red}$	maximum currents in reduction
${J}$	coupling constant
k	kilo
kDa	kilo Dalton
L	litre
LED	light emitting devices
LMCT	ligand-to-metal charge-transfer transition
LiAlH ₄	lithium aluminium hydride
LUMO	lowest unoccupied molecular orbital
λ	wavelength
m	multiplet, milli
М	mega, molar
max	maximum
MeCN	acetonitrile
Mes	2-[N-Morpholino]ethanesulfonic acid
min	minute, minimum
m/z.	mass per charge
μ	micro
n	nano
NHC	N-heterocyclic carbene
NMR	Nuclear magnetic resonance
ODE	methyl myristate
ORTEP	oak ridge thermal ellipsoid plot program
Ω	ohm
υ	frequency
pdt	propanedithiolate
<i>Pf</i> Fd	Pyrococcus furiosus ferredoxin
PFV	protein film voltammetry
PGE	pyrolytic graphite edge

Ph	Phenyl
PMe ₃	Trimethylphosphine
P(OMe ₃)	Trimethylphosphane
ppm	part per million
Pr	Propyl
Pt	Platinum
q	quartet, quaternary
RT	room temperature
S	singlet, sharp
S	spin quantum number
SCE	saturated calomel electrode
SHE	standard hydrogen electrode
S-R	thiol-alkyl
SRCD	synchrotron radiation circular chroism
t	triplet
Taps	N-[Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic acid
t-BuOK	potassium tert-butoxide
TCD	thermal conductivity detector
TFA	trifluoroacetic acid
THF	tetrahydrofuran
Tris	tris(hydroxymethyl)methylamine
TsCl	tosyl chloride
UV	ultra-violet
V	volt
VB	valence band
Vis	visible
VS	versus