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Abstract 

This research is concerned with building structures related to the active site of [FeFe] 

hydrogenase, the H-cluster (a) within surface confined electropolymers (b) in proteins 

by chemical modification of ferredoxin centres and (c) as catalytic moieties on light 

harvesting nanoparticles. 

 

The study begins by laying out the synthesis of materials used in the studies detailed in 

this thesis. Components including the cubane cluster, the {2Fe-2S} sub-site centre and 

the synthesis of functionalised ligands for modification of electrode surfaces and 

proteins, as well as synthesis of key monomers which can be electropolymerised for 

electrode surface modification. An improved synthetic route to a key diiron sub-site 

target molecule is described. 

 

Some first steps towards constructing structure related to [FeFe]-hydrogenases on 

electrode surface are reported. The incorporation of a sub-site unit into an ionic 

polymer scaffold clearly contributes to the stability of the protonated sub-site, where 

the presence of the sub-site hydride form is confirmed through infrared spectroscopy. 

Construction of the active site H-cluster on a modified electrode is described. 

Electrochemical and spectroscopic characterisations show that a redox active cubane 

assembly, covalently bound within a cysteinyl-alkylammonium functionalised 

polypyrrole, can be modified with a diiron dithiolate carbonyl unit to give an artificial 

hydrogenase H-cluster framework, confined within the polymer matrix. 
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An attempt to construct an H-cluster based on a mutant ferredoxin protein from 

hyperthermophile Pyroccocus furiosus led to the conclusion that mutant system 

containing is very robust. It is not easily to unfold it with guanidine hydrochloride, but 

at low pH, it seems possible that chemistry at one of the iron can be carried out. This is 

potential very interesting. 

 

Preliminary work on constructing a photoelectrochemical platform for hydrogen 

production is described. This based on the modification of indium phosphide 

nanocrystals and the incorporation of an Fe2(µ-S2)(CO)6, a procatalyst with a 

framework nominally related to the catalytic diiron sub-site of hydrogenase. 

Immobilisation of the components on a gold substrate provides a photocathode which 

can produce dihydrogen. 

 

Finally, a summary of the key findings of this work and an outline of possibilities for 

future work are provided.    
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Abstrak 

Kajian ini tertumpu kepada pemahaman tapak aktif [FeFe]-hidrogenesis iaitu H-kluster 

yang menjalankan penurunan berbalik proton kepada hidrogen. H-kluster mengandungi 

{4Fe-4S} kubika yang disambung kepada dwiferum yang turut terikat kepada 

kumpulan dwisufurlat, CO dan CN- melalui ikatan sistina. Interpretasi kimia ini telah 

membawa kepada ciptaan mangkin elektro yang membolehkan penjanaan hidrogen 

evolusi yang penting kepada tenaga transduksi. 

 

Kajian ini bermula dengan penjelasan ke atas sintesis bahan yang berkaitan dengan H-

kluster seperti {4Fe-4S} kluster kubika, sub-tapak {2Fe-2S} dan sintesis ligan 

berfungsi untuk modifikasi permukaan elektrod dan protein, serta monomer yang boleh 

dielektropolimerasasi dalam konteks modifikasi permukaan elektrod. Pengubahsuaian 

keatas sintesis tri-podal yang bertanggungjawab untuk pembentukkan molekul sasaran, 

dwiferum sub-tapak telah berjaya ditingkatkan hasil bahan sebanyak 41%. 

 

Beberapa langkah pertama dalam pembinaan struktur berhubung dengan [FeFe]-

hidrogenesis diatas tapak elektrod telah dibincangkan. Pengkoperasian sub-tapak 

kedalam polimer ionik telah menyumbang kepada stabiliti protonasi sub-tapak dimana 

kewujudan hydrit sub-tapak telah dikenalpasti menerusi spektroskopi infra merah. 

Pembinaan tapak aktif, H-kluster diatas permukaan elektrod juga telah dibincang. 

Pencirian elektrokimia dan spektroskopi menunjukan kejayaan pemasangan kubika 

redok aktif {Fe4S4}
2+ yang terikat secara kovalen dengan polypyrrole berfungsi sistina-
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alkylammonium yang boleh diubahsuai dengan dwiferum dwisulfulat. Ini telah 

menghasilkan rekaan H-kluster yang terbina dalam rangkaian matrik polimer. 

 

Percubaan untuk pembinaan H-kluster berdasarkan ferredoxin yang diambil dari 

Pyroccocus furiosus mendapati bahawa sistem mengandungi {4Fe-4S} adalah sangat 

tegap. Ini menyebabkan ia tidak senang diuraikan dengan guanidine hydrochloride. 

Akan tetapi pada pH rendah, ada kemungkinan tindak balas kimia keatas salah satu 

atom ferum boleh dilaksanakan. 

 

Kajian awal keatas binaan platform fotoelektrokimia untuk penghasilan hidrogen yang 

berasaskan modifikasi indium phosphide dan pengkoperasian promangkin, Fe2(µ-

S2)(CO)6 yang berkait dengan mangkin dwiferum hidrogenesis telah berjaya 

menghasilkan gas hidrogen yang dianggarkan sebanyak 60%. 

 

Akhirnya, kesimpulan terhadap penemuan dalam kajian ini bersama dengan 

kemungkinan kajian di masa hadapan telah diberi. 
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Asp aspartic acid 
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CB conduction band 
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CV cyclic voltammetry 
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GdnHCl guanidine hydrochloride 
h hour(s) 
H proton 
HDA hexadecylamine 
HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 
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