ABSTRACT

Soil bacterial diversity from three locations on maritime Antarctica was analyzed using 16S rRNA gene clone library construction and restriction fragment length polymorphism (RFLP) fingerprinting. Soil samples were from near Rothera Research Station in Rothera Point from Adelaide Island, from Viking Valley on northeastern side of Mars Glacier from Alexander Island, and from Léonie Island on northern Marguerite Bay, Antarctic Peninsula. Five hundred and forty-eight clones were screened by RFLP and representatives of each phylotype were sequenced for identification. The phylotype sequences showed close relationship (i.e. \geq 95% similarity) with bacterial divisions Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, Verrucomicrobia and Unclassified Bacteria. The least number of phylotypes were observed in Rothera Point soil sample (25) whereas the highest phylotype diversity belonged to Léonie Island (35). Certain phylotypes were exclusive to one site or two, whereas 33% of the phylotypes were shared by all clone libraries. Shannon diversity index (H') revealed the highest bacterial diversity in Léonie Island (3.14) and lowest diversity in Rothera Point (2.93). The soil from Viking Valley showed high diversity (H'=3.09) comparable to that of the vegetated soil of Léonie Island despite the severity of its climate condition. There is an evident environmental influence on the pattern of biodiversity where the humandisturbed soil sample of Rothera Point revealed less bacterial diversity than the undisturbed soils of Léonie Island and Viking Valley.

ACKNOWLEDGEMENTS

I wish to begin with the name of God, who is the meaning of everything and without whom none of this would be. He is the one true light that I seek in darkness, and is the only one who keeps me sane throughout hard times. There is no possible way that I can ever show my gratitude and humbleness towards Him and for that I bow before Him alone and say: "al-Hamdulillah" (thanks to God).

In light of that, I would like to show my respect and appreciation to my supervisor, Prof. Dr. Irene Tan Kit Ping, for giving me the opportunity to work as one of the group members despite my lack of expertise in the field of laboratory work. This project has definitely launched the ship of my career into the ever-expanding ocean of science. I would like to give my sincere thanks for all the support and guidance she has granted me.

For a ship to get home safe, it requires a handful of staff and crew running about and keeping things together. Therefore, I'd like to thank the crew members who welcomed us aboard, our co-captain and consultant Mr. Chong Chun Wie for all his help during experimental work and data analysis, Ms. Goh Yuh Shan for constant advisory and a helping hand when supplies were running low, and all the other seniors who showed me around the place and helped me get started.

My regards also go to my loyal friends and lab-mates, Mrs. Maryam Karimian Oloumi and Ms. Elaheh Movahed for being there for me whenever I needed a little escape to paradise. Many thanks to both who are true friends and companions in good times and in bad, and for making this experience an enjoyable one indeed.

And last but certainly not least, to the two most important people in my life, I dedicate this to my parents for believing in me when I had no trust in myself and for pushing me beyond my boundaries. I can simply say thank you for all you have done and God bless you.

TABLE OF CONTENTS

CONTENT		PAGE
ADCT		
ABSI	KAUI	111
ACKI	NOWLEDGMEN IS	1V
IABL	LE OF CONTENTS	V
	OF FIGURES	V111
LIST OF TABLES		X
ABBF	REVIATIONS	X1
CHAI	PTER 1. INTRODUCTION	1
1.1	Objectives	3
	•	
CHAI	PTER 2. LITERATURE REVIEW	4
2.1	Antarctica	4
2.1.1	History	4
2.1.2	Geography and climate conditions	5
2.1.3	Flora and fauna	7
2.1.4	Microbial diversity	8
2.2	Biodiversity; an overview	9
2.3	Significance of biodiversity	10
2.3.1	Story of evolution	10
2.3.2	Circle of life	11
2.3.3	Biotechnology perspective	13
2.4	Scale estimation	14
2.4.1	Culture-dependent techniques	15
2.4.2	Culture-independent techniques	16
2.4.2.1	DNA Extraction	16
2.4.2.2	2 Pursuing the gene	18
2.4.2.3	3 Primers and polymerase chain reaction (PCR)	19
2.4.2.4	Separation via cloning	21

v

2.4.2.5 Molecular fingerprinting 23		
2.4.2.6 DNA sequencing		
2.4.2.7	7 Identification	26
2.5	Biodiversity assessment	29
2.5.1	Diversity indices	29
2.5.2	Species richness estimation	30
2.6	Final remark	33
CHAI	PTER 3. METHODOLOGY	35
2 1		25
3.1 2.2	Study sites	55 27
5.2 2.2.1	DNA extraction	51 27
3.2.1 2.2	DNA concentration	37
5.5 2.4	A corresponded to a laboration of the strength correspondence	37 20
3.4 2.5	Agarose gel electrophoresis	39
3.5		40
3.6	165 rRNA gene cloning	41
3.6.1		42
3.6.1.1 Selective Luria Bertani (LB) agar		42
3.6.1.2	2 Super Optimal Broth with Catabolite Repression (SOC) medium	42
3.6.2	Ligation	43
3.6.2.1 Insert:vector ratio calculation 43		
3.6.2.2 Cloning PCR product with pGEM [®] -T Easy Vector 43		
3.6.3	Transformation	44
3.6.3.1	Cold CaCl ₂ treatment	44
3.6.3.2 Heat shock 4		45
3.6.3.3	3 Pre-incubation	45
3.6.3.4	4 Plating	45
3.6.4	Screening	46
3.7	Detection of positive insert	46
3.7.1	SP6 and T7 promoter PCR amplification	46
3.7.2	Glycerol stock	47
3.8	Restriction fragment length polymorphism (RFLP)	47
3.8.1	Restriction enzyme digestion with HaeIII and HhaI	47
3.8.2	RFLP analysis	48

3.9	Sequencing	49
3.10	Data analysis	49
3.10.1	Phylogenetic analysis	49
3.10.2	Statistical analysis	51
СНАР	TER 4. RESULTS	52
4 1	Conomia DNA concentration and murity	50
4.1	Primary PCP reaction	52
4.2	Tamplete	52
4.2.1	PCP purification	55
4.5		54
4.4	DEL D englyzis	50
4.5	KFLF allalysis	50
4.0	Data analysis	61
4.7 171	16S rPNA gene sequences	61
4.7.1	Phylogenetic analysis	61
473	Statistical analysis	64
4731	Observed number of phylotypes	64
4732	Biodiversity indices	64
4733	Accumulation curves and richness estimators	65
1.7.5.5		05
СНАР	TER 5. DISCUSSION	69
5.1	Conclusion	77
	NDICES	78
	NDICE5	70
Appen	dix A	78
Appen	dix B	79
Appendix C		81
Appen	dix D	82
Appendix E		84

REFERENCES

86

LIST OF FIGURES

FIGURES

PAGE

Figure 2.1 Map of Antarctica continent (retrieved from: <u>http://www.map-of-antarctica.us/</u> , on May 3, 2010)	5
Figure 3.1 a. Map of Antarctic Peninsula showing the two main Islands where study sites are located b. Map of Rothera Point on Adelaide Island and Léonie Island (obtained from Convey & Smith, 1997) c. Map of Viking Valley on Alexander Island (Convey & Smith, 1997)	36
Figure 3.2 5µl HyperLadder I/lane, 1% molecular biology grade agarose in 1× TAE stained with Ethidium Bromide (retrieved from: <u>http://www.bioline.com/h_ladderguide.asp</u> , on May 19, 2010)	39
Figure 3.3 pGEM [®] -T Easy Vector map and sequence reference points showing multiple cloning sequences (Technical Manual for pGEM [®] -T and pGEM [®] -T Easy Vector Systems, retrieved from: <u>http://www.promega.com/tbs/tm042/tm042.pdf</u> , on May 30, 2010)	41
Figure 4.1 Primary PCR amplification of RO site DNA sample a. Resulting bands after $50 \times$ (left) and $20 \times$ dilutions (right). The lanes are marked according to the volume of template used; no band is observed in negative control b. Purified DNA	54
Figure 4.2 Blue/white colony screening of plates of RO cloning session (from left to right, top row transformation and negative control plates, bottom row sample and positive control plates)	56
Figure 4.3 a. the promoter and MCS of pGEM [®] -T Easy Vector (Technical Manual for pGEM [®] -T and pGEM [®] -T Easy Vector Systems, retrieved from: <u>http://www.promega.com/tbs/tm042/tm042.pdf</u> , on May 30, 2010)	57
Figure 4.3 b. Colony PCR of cloned cells from RO cloning session; all bands showing the correct size except one (pointed out with arrow)	58
Figure 4.4 An overview of RFLP analysis corresponding to ROI clone library with examples of some of the patterns. Lambda DNA (image to the right) was used as a control for monitoring enzyme digestion.	59
Figure 4.5 PCR amplification of 16S rRNA gene; the sample showing a second band at ~300bp (pointed out by arrow) was discarded.	60
Figure 4.6 Bar charts of clone library composition at phylum level for Rothera (RO), Viking Valley (VV), and Léonie Island (LE) samples	62
Figure 4.7 Log abundance plots of observed phylotypes considering their relative abundance in each clone library	66

Figure 4.8 a. Phylotype accumulation curves (collector's curves) for different clone libraries from study sites b. phylotype richness corresponding to each clone library estimated by *Chao1* unbiased formula

Figure 4.9 Phylotype level non-metric multidimensional scaling (nMDS) of 68 clone library data from three different sites in Antarctica

Figure 1S Example of sequence chromatogram obtained from clone ROI-2 81

Figure 2S Unrooted Neighbor-Joining phylogenetic tree of 16S rRNA gene 84 sequences using Maximum Composite Likelihood method. Representatives of phylotypes along with the occurrence in respective sites are shown. GenBank accession numbers of supplementary sequences are presented in square brackets. Bootstrap analysis with 500 repetitions was calculated and values above 50% are shown.

67

LIST OF TABLES

TABLES	PAGE
Table 3.1 Study sites specifications and soil characteristic	35
Table 3.2 Master mix composition for different number of PCR reactions	38
Table 3.3 SOC media chemical components in 1000ml LB broth	43
Table 3.4Ligation reaction set up for cloning PCR product with pGEM [®] -TEasy Vector System	44
Table 3.5 Restriction enzyme reaction preparation	47
Table 4.1Genomic DNA concentration of soils collected from Rothera (RO),Viking Valley (VV) and Léonie Island (LE)	52
Table 4.2Purified DNA concentration post PCR amplification and calculated amount of DNA required for ligation reaction for each cloning session (duplicates carried out for each site indicated by Roman numerals)	55
Table 4.3Colony count of duplicate cloning sessions, number of white colonies and blue colonies for both sample and positive control plates	57
Table 4.4 Number of clones from soil clone libraries of three different sites in Antarctica, number of unique and community-dominant (CD) phylotypes, percentage of clones in CD phylotypes and sampling coverage for each clone library	60
Table 4.5 Diversity indices calculated for soil clone libraries	65
Table 1SAdvantages and disadvantages of some molecular-based methodsto study soil microbial diversity (Kirk <i>et al.</i> , 2004)	78
Table 2SPhylotypes and their closest sequence match from GeneBank(retrieved from: http://www.ncbi.nlm.nih.gov/BLAST , on June 15, 2010)	79
Table 3SPhylotype classifications (retrieved from: http://rdp.cme.msu.edu/index.jsp , on June 22, 2010)	82

ABBREVIATIONS

%	: percent
=	: equal to
\geq	: greater than or equal to
\leq	: smaller than or equal to
°C	: degree Celsius
μg	: microgram
μl	: microlitre
μΜ	: micromolar
A_{260}/A_{230}	: ratio of UV absorbance at 260nm and 230nm
A_{260}/A_{280}	: ratio of UV absorbance at 260nm and 280nm
ARDRA	: amplified ribosomal DNA restriction analysis
ATS	: Antarctic Treaty System
BAS	: British Antarctic Survey
BLAST	: basic local alignment search tool
bp	: base pairs
CaCl ₂	: calcium chloride
cAMP	: cyclic adenosine monophosphate
CAP	: catabolite activator protein
CD	: community-dominant
cm	: centimetre
D	: Simpson's diversity index
DGGE	: denaturing gradient gel electrophoresis
dH ₂ O	: distilled water
DNA	: deoxyribonucleic acid
dNTP	: deoxyribonucleoside triphosphate
dsDNA	: double-stranded deoxyribonucleic acid
EDTA	: ethylenediaminetetraacetate acid
E. coli	: Escherichia coli
ET	: extra-terrestrial
EtBr	: ethidium bromide
F	: forward
g	: gram

GPS	: Global Positioning System
H'	: Shannon's diversity index
HaeIII	: Haemophilus aegypticusIII
HCl	: hydrochloric acid
HhaI	: Haemophilus haemolyticusI
IPTG	: isopropylthiogalactose
J'	: Pielou's evenness
KCl	: potassium chloride
L	: litre
LB	: Luria Bertani
LE	: Léonie Island
М	: molar
MCS	: multiple cloning site
mg	: milligram
MgCl ₂	: magnesium chloride
min	: minute
ml	: millilitre
mM	: millimolar
NaCl	: sodium chloride
NJ	: neighbour-joining
nm	: nanometre
nMDS	: non-metric multidimensional scaling
OD	: optical density
OTU	: operational taxonomic unit
PCR	: polymerase chain reaction
PSI	: percentage sequence identity
R	: reverse
rDNA	: ribosomal deoxyribonucleic acid
RDP	: Ribosomal Database Project
RE	: restriction enzyme
RFLP	: restriction fragment length polymorphism
RNA	: ribonucleic acid
RO	: Rothera Point
rpm	: revolutions per minute
rRNA	: ribosomal ribonucleic acid

sec	: second
SOC	: super optimal broth with catabolite repression
SSCP	: single strand conformation polymorphism
ssDNA	: single-stranded deoxyribonucleic acid
ssu	: small subunit
TAE	: tris acetate ethylenediaminetetraacetate acid
Taq	: Thermus aquaticus
TGGE	: temperature gradient gel electrophoresis
UV	: ultraviolet
V	: volt
VV	: Viking Valley
w/v	: weight per volume
X-Gal	: 5-bromo-4-chloro-3-indolyl β -D-galactopyranoside