ABSTRACT

Conventional techniques for removing dissolved heavy metals are only practical and cost-effective when applied to high strength wastes with heavy metal ion concentrations greater than 100 ppm. The possibility of using a non-living algal biomass to solve this problem was studied. Lead(II) was used in this study because it has been reported to cause several disorders in human.

The non-living algal biomass was obtained from the filamentous green alga *Spirogyra neglecta*. The effects of initial concentration and contact time, pH, and temperature on the adsorption of lead(II) by the non-living algal biomass were studied. The equilibrium isotherms and kinetics were found from batch adsorption experiments. The surface characteristics of the non-living algal biomass were examined using scanning electron microscope and Fourier Transformed Infrared Spectrometer. Langmuir, Freundlich models were applied to describe the adsorption isotherms of the metal ions by *S. neglecta* biomass.

Langmuir model is more closer to the equilibrium data than the Freundlich isotherm. The kinetics of adsorption was found to follow the pseudo-second-order kinetic model. The adsorption of lead(II) by native non-living biomass was rapid reaching equilibrium within one hour of contact time. The effects of solution pH and temperature on adsorption equilibrium were investigated and the results indicated that adsorption of lead(II) by *S. neglecta* biomass increased with increasing pH and temperature.

The calculated thermodynamic parameters, ΔG° , ΔH° and ΔS° showed that the adsorption of lead(II) ions onto *S. neglecta* was feasible, spontaneous and endothermic under examined conditions.

The maximum adsorption capacity (q_{max}) of *S. neglecta* biomass was found to be 132 mg/g form experimental data.

ABSTRAK

Bagi pengasingan logam berat yang terlarut teknik konvensional hanya praktikal dan kos-efektif apabila diaplikasi untuk sisa buangan kekuatan tinggi dengan kepekatan ion logam berat lebih dari 100 ppm. Kemungkinan menggunakan biojisim alga bukan-hidup untuk menyelesaikan masalah yang dikaji. Plumbum(II) digunakan dalam kajian ini kerana telah dilaporkan menyebabkan beberapa gangguan terhadap kesihatan manusia.

Alga biojism bukan-hidup diperolehi dari alga berbentuk filament hijau *Spirogyra neglecta*. Pengaruh kepekatan awal masa tindakbalas pH dan suhu semasa penyerapan Plumbum(II) oleh alga biojism bukan hidup dikaji keseimbangan isotermal dan kinetik didapati dari ujikaji penyerapan berkumpulan. Permukaan kriteria dari biojism alga bukan-hidup telah diteliti dengan menggunakan mikroskop elektron imbasan dan Fourier Transformed Infrared Spectrometer. Model Langmuir, Freundlich yang digunakan penyerapan isotermal ion logam oleh biojism *S. neglecta*.

Model Langmuir lebih hampir dengan data keseimbangan dari isotermal Freundlich kinetik penyerapan dapati mengikut pseudo tertib kedua model kinetik. Pengaruh pH larutan dan suhu pada keseimbangan penyerapan diselidiki dan haslinya menunjukkan bahawa penyerapan Plumbum(II) oleh biojism *S. neglecta* meningkatnya pH dan suhu.

Parameter termodinamik ΔG° , ΔH° and ΔS° menunjukkan bahawa penyerapanion Plumbum(II) atas *S. neglecta* mudah spontan dan endotermik dalam keadaan ujian .

Kapasiti penyerapan maksimum (q_{max}) dari biojism *S. neglecta* dijumpai 132 mg/g bentuk data eksperimen.

ACKNOWLEDGEMENTS

Alhmdlilallah, I would like to take this opportunity to express my sincere gratitude to Allah(s.w.t) the Almightly who help and support me until I finished my study.

I wish to express my greatest appreciation to those who have given me much guidance, advice and valued assistance, special acknowledgements to my supervisor,

Prof. Dr. Aishah Salleh. Also, I would like to thank my co-supervisor Dr. Pozi Milow for his useful assistance, invaluable advice and suggestions.

I am greatly indebted to Prof. Dr. Mohamed Radzi (Department of chemistry) for his useful comments and suggestions. I am thankful to the Department of Chemistry for allowing me to use analytical equipment. Thanks are also due to a master student Mr.Hatem Al-Aoh for helping during my study. To all my class mates in laboratory for their support and help during this study. I would also like to thank my wife and my parents for their support and encouragement until I finished my study.

Finally I would like to thank the University of Malaya for the research grant PS 176/2008A which enabled me to carry out this study.

TABLE OF CONTENTS

	Page
	Number
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	xiii
LIST OF TABLES	XV
LIST OF ABBREVIATION	xvi

CHAPTER ONE INTRODUCTION

1.1 Heavy metals and their toxicity	1
1.2 Lead	3
1.2.1 Toxicity of lead	3
1.2.2 Naturally occurring lead	4
1.2.3 Sources of lead	5
1.2.3.1 Lead in the atmosphere	5
1.2.3.2 Lead in the water	5
1.2.3.3 Lead in food	7
1.2.4 Properties of lead	7
1.3 Waste treatment technologies for heavy metals	8

1.3.1 Chemical precipitation	8
1.3.2 Ion-exchange	9
1.3.3 Adsorption technique	10
1.3.4 Reverse osmosis	11
1.3.5 Electrodialysis	11
1.4 Biological treatment	12
1.4.1 Biosorption	12
1.5 Objectives and scope of research	13

CHAPTER TWO LITERATURE REVIEW

2.1	The	ory of adsorption	14
2.2	Bio	logical treatment methods for heavy metal removal	17
	2.2.1	Algal adsorption	17
	2.2.2	Bacterial adsorption	18
	2.2.3	Fungal and yeast adsorption	18
2.3	Adso	orption of lead(II) by algal biomass	19
	2.3.1	Living biomass as bioaccumulator	21
	2.3.2	Dead biomass as adsorbent	22
2.4	Ads	orption kinetics and equilibrium	24

	2.4.1	Adsorption isotherms models	24
		2.4.1.1 Langmuir adsorption isotherm	26
		2.4.1.2 Freundlich adsorption isotherm	27
	2.4.2	Adsorption kinetic	27
		2.4.2.1 Pseudo-first-order-kinetic model	28
		2.4.2.2 Pseudo-Second-order-kinetic model	28
2.5	Facto	ors affecting the adsorption process	29
	2.5.1	Effects of initial concentration and contact time	
		on adsorption of lead(II)	29
	2.5.2	Effect of solution pH on adsorption of lead(II)	29
	2.5.3	Effect of temperature on adsorption of lead(II)	30

CHAPTER THREE MATERIAL AND METHODS

3.1	Collection of algal biomass	31
3.2	Identification of the alga	33
3.3	Preparation of algal sample and stock solution of lead(II)	33
3.4	Determination of baseline lead(II) concentration of the sample	34
3.5	Effects of initial concentration, contact time, pH and temperature	
	on the adsorption of lead(II) by the non-living algal biomass	34

	3.5.1 Effect of contact time and initial concentration	34
	3.5.2 Effect of pH	35
	3.5.3 Effect of temperature	35
3.6	FTIR analysis of the non-living algal biomass	35
3.7	Scanning electron microscope examination of the non-living	
	algal biomass	36
3.8	Adsorption isotherms of lead(II) by the non-living algal biomass	36
3.9	Kinetics of lead(II) adsorption by the non-living algal biomass	36
3.10	Thermodynamics of adsorption of lead(II) by the non-living	
	algal biomass	37
3.11	Application of non-living algal biomass to remove lead(II)	
	from a polluted water sample	38
	3.11.1 Collection and preservation of water sample	38
	3.11.2 Analysis of water sample from a polluted river	38
CH	APTER FOUR RESULTS	
4.1	Identification of the alga	39
4.2	Baseline concentration of the non-living algal biomass	39
4.3	Effects of initial concentration and contact time on	
	adsorption of lead(II)	39

4.4	Effect of pH on adsorption of lead(II)	40
4.5	Effect of temperature on adsorption of lead(II)	41
4.6	Scanning electron microscope examination of the non-living	
	algal biomass	41
4.7	The Fourier Transform Infrared Spectrometer (FTIR) analysis	
	for the adsorbent	43
4.8	Adsorption isotherms of lead(II) by the non-living algal biomass	45
4.9	Adsorption kinetics	46
2	4.9.1 Pseudo-first-order-kinetic model	47
2	4.9.2 Pseudo-second-order-kinetic model	49
4.10	Adsorption thermodynamics	51
4.11	Analysis of water sample from a polluted river	52
CH	APTER FIVE DISCUSSION	
5.1	Effects of initial concentration and contact time on adsorption	
	of lead(II)	53
5.2	Effect of pH on adsorption of lead(II)	54
5.3	Effect of temperature on adsorption of lead(II)	54
5.4	Scanning electron microscope examination of the	
	non-living algal biomass	56

х

5.5	The Fourier Transform Infrared Spectrometer (FTIR) analysis	
1	for the adsorbent	56
5.6	Adsorption isotherms of lead(II) by the non-living algal biomass	57
5.7	Adsorption kinetics	57
5.8	Adsorption thermodynamics	58
5.9	Analysis of water sample from a polluted river	59
5.10	Comparison with other adsorbent	60

CHAPTER SIX CONCLUSION & RECOMMENDATION

6.1	Conclusion	61
6.2	Recommendation and scope for future research	62
REF	FERENCES	63
APF	PENDICES	70
App	endix 1: Filaments of Spirogyra neglecta (Hasall) Kützing	
	(magnifications 20x scale 100µm)	70
App	endix 2: Calculation for Langmuir model	71
App	endix 3: Calculation for Freundlich model	72
Appendix 4: Atomic absorption spectrometer result showing		
	effect pH on adsorption lead(II) by non-living biomass	73

Appendix 5: Atomic absorption spectrometer result showing effect

temperature on adsorption lead(II) by non-living biomass	77
Appendix 6: The Fourier Transform Infrared Spectrometer (FTIR)	81
Appendix 7: Scanning Electron Microscopy (SEM)	82
Appendix 8: Publication	83

LIST OF FIGURS

Page

Number

Figure 1.1	Interim National Water Quality Standards for Malaysia (INWQS)	6
Figure 2.1	Mechanism of adsorption process	15
Figure 2.2	Schematic representation of adsorbate –adsorbent	
	-solvent relationship	16
Figure 3.1	Map of Peninsular Malaysia showing the location	
of n	on-living algal biomass and collection site of water sample	32
Figure 4.1	Effect of contact time and initial concentration on adsorption	
	of lead(II) by non-living biomass Spirogyra neglecta	40
Figure 4.2	Effect of pH on adsorption of lead(II) by non-living biomas	
	Spirogyra neglecta	40
Figure 4.3	Effect of temperature on adsorption of lead(II)	
	by non-living biomass Spirogyra neglecta	41
Figure 4.4(a	a-d) SEM image the biomass particles, with and	
without ad	sorbed	42
Figure 4.5	Peaks for non-living biomass of Spirogyra neglecta obtained	
	from FTIR analysis (range 370.0-4000.0 cm ⁻¹)	44

Figure 4.6	Langmuir adsorption isotherm of lead(II) by the	
	non-living biomass of Spirogyra neglecta	45
Figure 4.7	Freundlich adsorption isotherm of lead(II) by the	
	non-living biomass of Spirogyra neglecta	46
Figure 4.6	Pseudo-first-order kinetic adsorption of lead(II) by the non-living	
	biomass of Spirogyra neglecta	48
Figure 4.7	Pseudo-second-order kinetic adsorption of lead(II) by the	
	non-living biomass of Spirogyra neglecta	50

LIST OF TABLES

Table 1.1	Classifications of elements according to toxicity and availability	1-2
Table 1.2	Maximum permissible concentrations of various metals in natural	
	water for the protection of human health	2
Table 2.1	Ionisable groups in biological polymers capable of participating	
	in metal binding	20
Table 4.1	Langmuir and Freundlich constants at room temperature ($30 \pm 1^{\circ}C$)	46
Table 4.2	Pseudo - first -order kinetic model	49
Table 4.3	Pseudo - second -order kinetic model	51
Table 4.4	Thermodynamic parameters for the adsorption of lead(II) on algal	
	biomass (Spirogyra neglecta) at different temperatures	51
Table 5.1	Uptake capacities for lead(II) of various adsorbents	
	(at room temperature)	60

LIST OF ABBREVIATION (NOMENCLATURE)

Pb	Lead
C_0	Initial lead(II) concentration (mg /L)
C _e	Equilibrium lead(II) concentration (mg/L)
q _{max}	Maximum adsorption capacity of the adsorbent (mg/g)
q_e	Equilibrium capacity of adsorption (mg/L)
$K_{\rm F}$	Constant in the Freundlich equation
L	Liter
1/n	Constant in the Freundlich equation
V	Sample volume (ml)
W	Amount of dry biomass (g)
\mathbb{R}^2	Correlation coefficient
min.	Minute
hr.	Hour
t	Time (minute)
μ	Micro
Κ	Kelvin
AAS	Atomic Absorption Spectrometer
rpm	revolutions per minute
DOE	Department of Environment
Emf	Electromagnetic force
EPA	Environmental Protection Agency
FTIR	Fourier transform infrared spectroscopy
SEM	Scanning electron microscope
WHO	World Health Organization