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CHAPTER ONE 

INTRODUCTION 

 

1.1   Heavy metals and their toxicity 

     The presence of heavy metals in aqueous streams, air, soil and food have become a 

problem due to their harmful effects on human health even at low concentration in the 

environment. Heavy metal pollutants in wastewater is one of the problems facing 

human beings; heavy metal can be toxic to the life (Table 1.1). For example in Malaysia 

a particularly vexing problem is the presence of toxic and hazardous heavy metals in 

industrial effluents. When such metal bearing waste streams are insufficiently treated 

before discharge, they find their way into the environment and subsequently into the 

food chain. According to the world health organization, the metals of most immediate 

concern internationally are aluminum, chromium, manganese, iron, cobalt, copper, zinc, 

cadmium, mercury and lead (WHO, 1984). Economic development has become 

synonymous with industrial progress in Malaysia. This is in line with federal 

government's policy, the industrial master plan, to promote growth in the nation's 

industrial sector (Yeoh, 1993). 

Table 1.1 

Classification of elements according to toxicity and availability 

(based on Wood, 1974). 
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The element (metal) that is relevant to present study is lead. It can be noted that this 

metal belongs to the group that is very toxic. 

 

As a fact, metals are elements and they have been an intrinsic component of the 

environment to which human and animals are adapted. Therefore, a "natural" exposure 

to all metals may thus be harmless to a human being. Many "trace metals" are even 

fundamental for growth and metabolism at low concentrations as they serve a biological 

function. Heavy metals only exert their harmful effect when exposure is excessive. The 

United States Environment Protection Agency (EPA, 1987) has recommended the 

maximum permissible concentrations of some toxic metals for the protection of human 

health as given in (Table 1.2). Lead is primarily of interest because of its toxic effect 

and it therefore may cause either acute or sub acute health effects in a human 

population. 

Table 1.2 

Maximum permissible concentration of various metals in natural water for the 

protection of human health (based EPA, 1987). 

 

Metals 

Maximum permissible level 

mg/m³                µmol/m³ 

Mercury 

Lead 

Cadmium 

Selenium 

Thallium 

Nickel 

Silver 

Manganese 

Chromium 

Iron 

Barium 

 

0.144                1.72 

 5                      24 

10                      89 

 10                     127 

13                      64 

13.4                   228 

50                      464 

50                      910 

50                      962 

300                    5372 

1000                  7281 
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1.2   Lead 

     Lead has been known since ancient times. It is naturally present in the earth's crust in 

small concentration, but for centuries it has been mined and disseminated throughout 

the environments from where it has gradually become incorporated into the structural 

tissue of animals, plants and humans. Lead exists as Pb
+2 

ion during the chemical 

reaction. Lead is a well known highly toxic metal and a cumulative poison. The 

common industries that deal with lead are the battery manufacturing, motor vehicle 

repair, cable making and metal grinding industries and it is also used in piping, 

conducting materials, accumulators, lead chambers, printing characters, soldering, anti-

knock substances, colored pigments, radiation shielding, wrappings for food, tobacco 

and as an additive in gasoline. 

 

 

1.2.1   Toxicity of lead 

     Lead is among the majority toxic heavy metal ions affecting the environment 

(Alloway and Ayres, 1993). Lead poisoning results from ingestion of lead-containing 

materials such as paint or water which has stood in lead pipes. Poisoning can also occur 

from inhalation of fumes from burning storage batteries or solder. 

 

However, there is no doubt that lead is seriously poisonous to human beings and 

evidence is accumulating that considerable differing effects result in different human 

beings who have absorbed similar amounts. Most of the absorbed lead is stored in the 

bones, blood or brain. Lead colic (painter's cramps) is characterized by severe 

abdominal pain. Damage to the brain can occur in children it is known to cause 

convulsions, mental retardation and even death. It is also known that lead is harmful to 

the kidney and permanent neurological injury (Snyder et al., 1971). Lead can reason 
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several unwanted effects, such as disorder of the biosynthesis of haemoglobin and 

anaemia, a rise in blood pressure, declined fertility of men through sperm damage and 

behavioural disruptions of children, such as aggression, impulsive behavior and 

hyperactivity. 

Lead can enter a foetus through the placenta of the mother and it can cause serious 

damage to the nervous system and the brains of unborn children. Lead is known to 

cause precipitation of protein, through the interaction of lead ions with the sulphydryl (-

SH) groups of proteins. 

 

 

1.2.2   Naturally occurring lead 

     The  common  magnitude of   the   lead content of   the earth's crust is approximately 

16 µg/g of soil (De Treville, 1964). Basic rocks have a concentration of lead up to 8 

µg/g and acidic rocks have concentration up to 20 µg/g. Lead is usually found in ore 

with silver, zinc and (most abundantly) copper, and is extracted together with these 

metals. Lead ores are found in England, Spain, Mexico and U.S.A. The most abundant 

lead-containing ore is galena, in which it occurs as sulphide, PbS, and from which 

commercial lead is chiefly obtained. It is also found in crocoisite (chromate), and 

cerussite (carbonate). It is present in plants and soils in varying is amounts. Fixation by 

clay of normal soil converts added lead to insoluble inactive compounds, but very acid 

soils increase the solubility and soluble compounds are toxic to plants except in very 

low concentration (Browning, 1969). Other naturally occurring lead is the result of the 

decay of Uranium-238, which occur naturally in trace amounts in the soil. Uranium-238 

decays through a series of radioactive elements until the stable nuclide lead ends chain 

(Snyder et al., 1971). 
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1.2.3   Sources of lead 

1.2.3.1   Lead in the atmosphere 

     Lead enters the atmosphere through both natural processes and as a consequence of 

activities of human. Natural processes include a continuous emission of radioactive 

precursors of elemental lead from the surface of all soils around the earth except those 

covered heavily with snow and ice and those saturate with water. Lead in several 

chemical forms is released by volcanic activity, forest fires, dust raised by the wind. 

Lead can be emitted into the atmosphere during the combustion of lead-bearing fuels 

such as coal containing lead and other impurities because coal and fuel oil contain lead. 

These contributions of natural processes appear to be very small when compared to the 

results of activities from human. 

 

1.2.3.2   Lead in the water 

     The natural sources for lead in water is the earth which the water comes in contact. 

The average value of lead in the earth's crust is approximately 16µg/g (de Treville, 

1964). 

 

One of the sources of lead is rainwater may contain significant increased lead as a result 

of washout of airborne lead in the precipitation process. Also the surface soils which are 

so affected by man's activities especially those near heavily-travel highways, represents 

a source of pollution to water courses draining the area. 

Lead emissions from mining, smelting, and refining operation may cause local surface 

pollution. Lead products are widely used and may contribute in varying amounts to 

water pollution. Fortunately, much of the use of lead is in products such as batteries, 

lead shot, and sheet metal which are not readily mobilized in the environment. Another 

source of lead in water is from the use of lead pipe in older plumbing systems. 
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In Malaysia analysis of heavy metals in 5,613 water samples revealed that almost all 

samples complied with Class III, National Water Quality Standards for, lead (Pb) , zinc 

(Zn) mercury, (Hg), , chromium (Cr), arsenic (As)and cadmium (Cd), except iron (Fe) 

with 83 percent compliance (Figure 1.1). Lead contamination was evident in Perak 

(56%), Kelantan (78%) and Terengganu (86%), (DOE, 2006). 

Heavy metals contamination was comparatively low with lead (Pb) exceeding the 

INWQS by 20 percent, followed by heavy metal mercury (18%) and copper (6%) 

(DOE, 2006). 

 

Figure 1.1 

Interim National Water Quality Standards for Malaysia (INWQS),  

(based on DOE, 2006) 
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1.2.3.3   Lead in food 

     The three primary means for the introduction of lead into the human body are 

through air, water and food. However, about 90 percent of lead uptake is due to food 

(Snyder et al., 1971). 

 

The highly unnatural lead levels on the modern diet result from the use of lead in food 

technology, e.g. from the rims of food cans as well as to some level from lead-glazed 

pottery, particularly if the glaze is chipped, cracked or improperly applied. However, 

human's activity has resulted in the lead level of food. Being about twenty times this 

value, 0.2µ/g (Snyder et al., 1971). This value include not only the lead in the plant or 

its fruit but also that introduced in processing and handling of the food. 

 

 

1.2.4   Properties of lead 

     Lead is a bluish-grey metal with a bright metallic. In moist air it becomes coated 

with a film, probably an oxide, ultimately converted into a basic carbonate. It is not 

tough enough to be hammered into foil or drawn into wire but can be pressed into pipes 

or rolled thin sheets. It is fairly rapidly dissolved by nitric acid and is soluble, to some 

extent, in organic acids such as food acids and acetic, and by water in pipes if the water 

holds carbon dioxide, ammonium salts and nitrates in solution. The presence of 

carbonate from chalk or limestone prevents this process by the formation of a film on 

the interior of the pipes which protects the lead from further action (Browning., 1969).  

 

Atomic number of lead is 82 atomic, weight of lead is 207, specific gravity: 11.25-11.4, 

melting point: 327°C., boiling point: 1749°C.  
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Crystal structure, lead is a member of the cubic crystal system is clear. Elastic 

properties, elastic modulus of lead at room temperature between1.493kg/mm
2
 and 2.040 

kg/mm
2
. 

 

 

1.3   Waste treatment technologies for heavy metals 

     Physical-chemical treatment is the conventional technology employed to treat heavy 

metal waste. Therefore, method for heavy metal removal are continuously being 

developed and new technologies that are more practical and economically feasible are 

being explored by researchers. Conventional heavy metal removal techniques that are 

well established and widely employed include precipitation, ion-exchange, reverse 

osmosis, electrodialysis and adsorption. 

 

1.3.1   Chemical precipitation 

     Unlike organic pollutants heavy metals are difficult to detoxify and cannot be 

degraded. The most common method employed to treat heavy metal waste is chemical 

precipitation. This done by adding lime or caustic soda to produce metal hydroxide 

precipitates. Alternatively sulphide compounds may be added to from metal sulphide 

precipitates. After de-watering the metal laden sludge is collected and disposed off in a 

landfill.  

 

The main disadvantage of this method is in the separation of solids and the disposal of 

sludge. It has been shown that metal hydroxide sludges collected in clarifiers contain up 

to 3.4% solids. 
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To mitigate this problem anionic polyelectrolyte, alum and ferric chloride have been 

used as sludge conditioners and flocculating agents. The sludge produce has to be 

ultimately disposed in a landfill. This is not a good environmental practice because there 

is always the possibility that the heavy metals from the heavy metal sludge (classified as 

a hazardous waste) may leach out and pose a threat to the environment. 

 

Furthermore, chemical precipitation is suitable only for wastewater containing high 

concentration (parts per thousand or higher) of metal pollutants. With dilute wastewater 

(in the range of ten parts per million or less), chemical precipitation is ineffective and 

costly. 

 

1.3.2   Ion-exchange 

     In this method the ion exchange resins are used to remove and concentrate the heavy 

metal. These resins are polymeric beads that contain functional groups that act as 

binding site, depending on the resin type the appropriate heavy metal may be removed. 

Electrowining is then used to remove the metal ions from the wastewater by plating the 

metal onto cathodes of an electrochemical cell. The advantage of this method is that the 

heavy metals are recovered and may be reused. Although the ion-

exchange/electrowining treatment method is environment friendly it is very expensive. 

The Method has also limited value and is not effective where the wastewater contains 

low concentrations of metal ions. 
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1.3.3 Adsorption technique 

     Adsorption is the accumulation of molecules from a material dissolved in a solvent 

onto the surface of an adsorbent particle. Adsorption techniques are used to take away 

soluble organic from wastewaters and drinking waters. The application of Adsorption 

technology for pollution control usually deals with the control of organic compounds. It 

is widely used in applications like wastewater purification, recovery of volatile organic 

compounds (VOCs), air-separation, drying of air, removal of bitter ingredients in fruit 

juices. 

The substance on which adsorption takes place is known as the adsorbent and the 

substance which is adsorbed is known as adsorbate. Adsorption is a surface 

phenomenon in which the solutes are concentrated at the surface of adsorbent, and 

effective adsorbents which have a highly porous composition so that their surface area 

to volume ratio is very high. The solute particals is held in contact with the adsorbent by 

a combination of physical, ionic and chemical forces. When an adsorbent is left in 

contact with a solution the quantity of adsorbed solute increases on the surface of the 

adsorbent and decreases in the solvent. When the number of molecules of solute is equal 

in the solvent and on the adsorbent it represents the adsorption equilibrium 

 

Generally the rate of adsorption is governed by the rate of diffusion of solute into the 

internal surface of porous of the adsorbent particle. The rate decreases with increasing 

particle mass and increases with increasing solute concentration and temperature. Low 

molecular weight solutes are more simply adsorbed than the high molecular weight 

solutes 
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1.3.4   Reverse osmosis 

     Heavy metal removal by reverse osmosis can be done by applying a pressure greater 

than the osmotic pressure of the solution and forcing the water to flow through the 

membrane whilst retaining the metal ions. In the treatment of wastewater, reverse 

osmosis may be used by itself or may supplement other methods. This technology is 

usually employed for the recovery of precious or common metals in the metal finishing 

industry. In principle, this is a simple technique but the development of suitable 

membranes is much more difficult. A membrane must possess selectivity for water over 

the metal ions and must have sufficiently high permeability to enable a reasonable flow 

rate of water across it without applying excessive high pressures. 

 

Other operational constraints of this technology are caused by fouling of the membrane 

and the phenomenon of concentration polarization, which is caused by ion built-up, may 

shorten the service of the membrane. The use of high pressures and the need for 

sophisticated process equipment to adequately support the membrane give rise to high 

capital costs. Frequent membrane replacement and the associated high maintenance 

costs are additional factors which hinder the application of reverse osmosis to remove 

heavy metals. 

 

 

1.3.5   Electrodialysis 

     Electrodialysis is another technique which utilizes membranes. In this case the metal 

ions move through the membrane by application of an electromagnetic force (emf). The 

treatment unit consists of a number of chambers made up of alternate cation-anion 

membrane located between two electrodes. When dilute solution is fed through the unit 

and an emf applied, the cations migrate towards the anode. Since the membrane only 
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allows the transfer of one type of ions, one side of the membrane more concentrated 

with metal ions while the other become more diluted. 

 

There are a number of intrinsic disadvantage by applying this technique. Dilute solution, 

particularly those produce in the unit, have very low electrical conductivity thus 

necessitating high power input to produce acceptable ionic transfer rates across the 

membrane. Consequently, accumulation of acidic and basic solution on opposite sides 

of the membrane will happen and precipitates may be formed which foul the membrane 

and it might lose its ion selective properties too. 

 

Furthermore, electrodialysis involves high capital and operating costs even though the 

value of recovered metals may help to offset the costs in a small amount. 

 

1.4    Biological treatment 

1.4.1   Biosorption 

     Biosorption or biologically based treatment technology the ability of biological 

materials, both living and non-living to passively bind (adsorb) metal species dissolved 

in solution onto the cell surface is commonly known as biosorption. 

 

The adsorption process can reversibly bind metal ions to the surface of non-living 

microbial biomass because the dead organisms are unaffected by the toxic nature of the 

metal ions. Although live cells can remove heavy metal, but the living cell may not 

survive under the conditions of point-source discharge of industrial wastewater which 

normally contain high levels of toxic metals. 
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A further limitation of the system is the inability to recover the metal ions from the 

metal-saturated cells while maintaining their viability. This makes living cell unsuitable 

for repeated use and eventually increase the cost of the process. 

 

These problems and shortcomings have initiated the development of adsorption method 

which involved non-living biomass. A variety of biological materials have been used by 

researchers to study adsorption. These include bacteria, fungi, algae (Volesky, 1987) 

and oil palm waste (Hashim et al., 1996). Biological treatment is excellent for treating 

streams with low concentration of heavy metal. 

 

 

1.5   Objectives and scope of research 

     The main thrust of this research was to focus on the adsorption (removal) of lead by 

non-living biomass of algal species from aqueous solution. Lead(II) is selected as the 

model metal because is commonly found in industrial wastewater discharged by various 

industries. 

The objectives of this study were: 

1. To determine the effect of initial concentration, contact time, pH, and temperature on 

the adsorption of lead(II) by non-living algal biomass 

2. To describe the thermodynamics of the adsorption of lead(II) by non-living algal 

biomass 

3. To test the ability of non-living algal biomass in removing lead(II) from a polluted 

water sample. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1   Theory of adsorption 

     Adsorption is a process where molecules of a gas or liquid contact and adhere to a 

solid surface. The adsorption process occurs at an interface between any two phases, 

such as, liquid-liquid, gas-liquid, gas-solid, or liquid-solid interfaces. The interface of 

interest in water and wastewater treatment is the liquid-solid interface. The adsorption 

of various substances on solids is due to the increased free surface energy of solids to 

their extensive surface. According to the second law of thermodynamics, this energy has 

to be reduced. This is achieved by reduced the surface tension via the capture of 

extrinsic substance. From external surface of solids and liquids as well as from the 

internal surface of porous solid or liquids (Skoulikides, 1989). Adorption is one of the 

most widely used methods for potable and wastewater treatment (Ahmad-Asbchin et al., 

2008). By adsorption method most of the heavy metals are efficiently removed (Connell 

et al., 2008). Depending on the type of bonding involved, adsorption can be classified as 

follows: 

1. Physisorption 

Physisorption or physical adsorption occurs as result of energy differences and/or 

electrical attractive weak forces such as the (Van der Waals forces), the adsorbate 

molecules (liquid contamination) are physically attached to the adsorbent molecules 

(solid surface). The reversibility of physisorption is dependent on the attractive forces 

between adsorbent and adsorbate. If these forces are weak, desorption is readily 

effected. The heat of adsorption for physisorption is at most a few Kcal/mole and 

therefore this type of adsorption is stable only at temperature below 150°C. 
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2. Chemisorption 

Chemisorption or chemical adsorption occurs when a chemical compound is produced 

by the reaction between the adsorbent and the adsorbed molecule. Unlike physisorption, 

this procedure is one molecule thick and irreversible because energy is released to form 

the new chemical compound at the surface of the adsorbent and energy would be 

necessary to reverse the process. 

 

Both processes take place when the molecules in the liquid phase are attached to the 

surface of solid as a result of the attractive forces at the adsorbent, overcoming the 

kinetic energy of the adsorbate molecules. The substance that is being removed from 

liquid phase at the interface is call adsorbate or sorbent. The adsorbent or sorbate is the 

solid, liquid or gas phase onto which the adsorbate accumulate, as show in (Figure 2.1) 

 

 
Figure.2.1 

Mechanism of adsorption process 

 

In general, adsorption is  the accumulation of molecules from a solvent onto the interior 

and exterior (i.e. pore) surface of the adsorbent. 
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The surface phenomenon is a manifestation of complicated interactions among three 

components involves, i.e. the algae, the lead(II) and the solvent (Figure 2.2) shows a 

schematic for the three components in adsorption model and their interactions. 

Normally, the affinity between the algae and the lead(II) is main interaction force 

controlling adsorption. However, the affinity between the algae and the solvent (i.e. 

solubility) can also play a main role in adsorption. 

 
Figure.2.2 

Schematic representation of adsorbate-adsorbent-solvent relationship. 

 

There are four factors that effect an adsorption: 

1.The physical and chemical characteristics of the adsorbate, that is molecular size, 

molecular polarity, concentration of the adsorbate in the liquid phase (solution) and 

chemical composition. 

2. The physical and chemical characteristics of the adsorbent, that is pore size, surface 

area and chemical composition. 

3. The characteristics of the liquid phase pH and temperature. 

4. The residence time of the system. 
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2.2   Biological treatment methods for heavy metal removal 

     In view of the toxicity of heavy metals on human health and their high usage 

industries microbial adsorption of heavy metals has been employed to treat industrial 

effluents containing heavy metals before discharging into environment. The term 

adsorption is the process of accumulation substances that are in solution on a suitable 

interface. Another definition was a mass transfer operation in that a constituent in the 

liquid phase is transferred to the solid phase. 

             

2.2.1 Algal adsorption 

     Algae are the main organisms that have been used in adsorption. This may be due to 

the rugged nature of algal biomass, making them easy to be processed into adsorbents. 

Furthermore, they can be cultivated easily and cheaply (Corder and Reeves, 1994). 

Their large surface area chelating potential are attractive for metal removal (Roy et al., 

1993). 

 

The ability of Chlorella vulgaris to remove copper, zinc and iron was shown by Aksu 

and Kutsal (1987). Further, it was shown to be a good adsorbent for lead(II), cadmium 

and copper removal by the brown alga Fucus vesiculosus (Mata et al., 2008). 

 

Macroalgae(seaweeds) also have good adsorption characteristics. The biomass of 

Ascophyllum nodosum has been shown to adsorb cobalt (Kuyucak and Volesky,1989). 

Sargassum natans and Ascophyllum nodosum were able to sequester lead(II) and 

cadmium to more than 20% of their biomass dry weight. The passive adsorptive uptake 

of lead(II) and nickel by some brown marine algae was also reported by Holan and 

Volesky (1994). 
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2.2.2   Bacterial adsorption 

     Bacterial cell wall possesses several metal-binding components contribute to the 

adsorption process. Shumate and Strandberg (1985) showed the ability of Streptomyces 

elongateus and Pseudomonas aeruginosa in the removal of uranium from seawater. 

Zooglea ramigera, which is commonly found in activate sludge, was shown to have 

chromium (VI) removal ability (Nourbakhsh et al., 1994). 

 

In gram-positive bacteria such as Bacillus subtilis, metal adsorption was related to the 

carboxyl group of the glutamic acid of peptide glycan (Doyle et al.,1980). In addition, 

Beveridge and Fyfe (1985) suggested that teichoic and teichuronic acids were important 

binding sites in Bacillus licheniformis. On the other hand, most metal deposition gram-

negative bacteria occurred at the phosphate group (Mclean and Beveridge, 1990). 

 

 

2.2.3   Fungal and yeast adsorption 

     Chitin, a polymer of N-acetyl glucosamine which is an effective metal adsorbent, is 

the main chemical constituent in fungal cell wall (Tsezos and Volesky, 1981). This was 

confirmed by a study in which exposed chitin/chitosan after alkaline treatment exhibited 

better removal ability than untreated hyhae from Mucor mucedo and Rhizomucor miehei 

(Wales and Sagar, 1990). 

 

Evidently, chitosan and other chitin derivatives have a significant adsorptive capability 

and it can be enhanced by chemical treatment. Niu el al. (1993) reported that 

Penicillium sp. exhibited high lead(II) removal within the pH range 4.0 to 5.0 . 

Saccaromyces cerevisae was also showed to be a good adsorbent to remove chromium 

(VI) (Nourbakhsh et al., 1994). 
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2.3 Adsorption of lead(II) by algal biomass 

     A variety of biological materials have been used by researchers to study adsorption 

utilized algae. Existing research on the adsorption of lead(II) by Spirogyra species 

biomass is still not well established and the availability of Spirogyra species in Malaysia 

with huge quantities. Furthermore, they can be cultivated easily and cheaply. Because of 

this the present research study was carried out to investigate the adsorption of lead(II) 

by algal of the principle mechanism of metallic ion sequestration involves the formation 

of complexes between a metal ion and functional groups present on the surface or inside 

the porous structure of the biological material. 

On the other hand, this study might reduce the agriculture waste of Spirogyra neglecta  

which are widely available in Malaysia. 

In this study is very important compared with others researchers because we are going 

to use this biological material to adsorb heavy metal-lead(II) which is very high 

effective to human health due to its highest concentration in water stream in  Malaysia 

according to Department of Environment(2006) Also, we are going to use  new species  

and size of algae with 0.05nm. Most researchers are using artificial solution, whereas    

we are going to use the artificial solution and natural solution to investigate ability of 

adsorption of a non-living algal biomass.  

Several  research  have  been  completed  to study the feasibility of using non-live algal.  

The ability of Oedogonium sp. and Nostoc sp to remove lead(II) ion  from aqueous 

solutions in batch system was investigated. The biomass of Oedogonium sp. was found 

to be more appropriate than Nostoc sp. for the removal of lead(II) , as it showed higher 

values of adsorption capacity (145.0 mg/g for Oedogonium sp. and 93.5 mg/g for 

Nostoc sp.). Langmuir model fitted the equilibrium better than data the Freundlich 

isotherm. The spectrum of FTIR analysis showed included that amino and carboxyl 

groups on the surface of algal biomass were the main adsorption sites for lead removal. 
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Gupta and Rastogi (2008). Also, Denga et al.,(2007) it was shown to be a good 

adsorbent for lead(II) by green algae Cladophora fascicularis The adsorption kinetics 

followed the pseudo-second order model.  The maximum adsorption capacity was 198.5 

mg/g at 298K. The adsorption processes were endothermic from batch experiments. 

 

Most algal species have unique metal binding properties. Both the living and non-living 

forms can reversibly bind metal ions from aqueous solution and different species exhibit 

binding characteristics at a given pH. The main reason for this is in their different cell 

wall structure. The cell wall is a fibrillar lattice of cellulose derivatives, pectins and 

proteins. This structure provides a large surface area for the rapid but reversible binding 

of cations. Table 2.1 lists the probably potential groups on the cell wall that are 

implicated for metal binding and their respective pKa level (Segel, 1976). 

 

Table 2.1 

Ionisable groups in biological polymers capable of participating in metal binding 

(based on Hunt, 1986; Segel, 1976) 

Functional group Location pKa  

Carboxyl protein C-terminal 3.5-4.0 

Carboxyl Beta as partic 4-5 

Carboxyl Gamma glutamic 4-5 

Carboxyl Uronic acid 3-4.4 

Carboxyl N-Acetyl neuraminic 2.6 

Carboxyl Lactate 3.8 

Suiphonic acid cysteic acid 1.3 

Phosphate serine as ester 6.8,2.0 

Phosphate Polyol monoester 0.9-2.1 

Phosphate Polysaccharide diester 1.5,6.0 

Hydroxyl Tyrosine-phenolic 9.5-10.5 

Hydroxyl soccharide-alcol 12-13.0 

Amino protein N-terminal 7.5-8.0 

Amino Cytidine 4.11 

Amino Adenosine 3.45 

Amino Lysine 8.9,10.5 

Imidazole Guanosine 2.3 

Imidazole Histidine 6-7 

Imino peptide 13 
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2.3.1   Living biomass as bioaccumulator 

     Metabolically uptake or bioaccumulation of heavy metals was first put to practical 

use for the monitoring traces of heavy metals in the environment (Muraleadharan et 

al.1991). Several investigation have been made to examine the feasibility of using live 

algal cultures in lagoons or ponds to recover heavy metal ions from industrial effluents 

or processed water (Becker,1983; Filip et al.,1979). 

 

In case of monitoring heavy metals in sea water Fucus vesiculosus and Ascophyllum 

nodusum have been suggested as bioindicator of metal contamination (Soderlund et al., 

1988). Karez et al. (1994) showed that phaeophyceae (brown algae) in general 

contained a greater concentration of metals such as zinc, cadmium and chromium 

adsorbed from sea water under aerated condition compared to Chlorophyceae (green 

algae) and Rhodophyceae (red algae). In addition to algae, some capsulated bacteria and 

N2-fixing bacteria have been studied as adsorbent for heavy metals. Sag and Kutsal 

(1989) noted a very high metal uptake by Zoogloea ramigera.  

Since these biomass actively accumulate metals, they can concentrate metals by a 

variety of mechanisms including ion exchange at the cell walls, complexation reaction 

at the cell walls, intra and extracellular precipitation and intra-extra cellular 

complexation reactions. Thus the kinetics of metal binding by living organisms may be 

affected the viability of the biomass. 

 

As a result, the use of living organisms for metal removal and recovery is generally not 

feasible due to certain disadvantages. It is difficult to control and maintain the growth of 

microorganisms since wastewater normally contains high concentration of toxic metals 

and widely fluctuating pH condition. A further limitation is the incapability to recover 

the metal ions while maintaining their viability. This is because substantial pH 
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adjustments or addition of specific complexing agents (which may be toxic) are 

necessary to strip bound metals from the biomass which require a narrow pH range for 

optimum growth. The acid or alkaline generates used for metal recovery will kill the 

organisms. Due to these limitations, more attention has been focused on the use of dead 

biomass as adsorbents. 

 

 

2.3.2   Dead biomass as adsorbent 

     The main difficultly of using living biomass for the removal of heavy metals from 

water was to maintain the growth of the biomass in those polluted waters. The reason 

for this was that the pH of those water did not encourage the survival of species 

(Becker, 1983). 

 

 

 

In addition, the  marine algae(Ecklonia radiate and Durvillaea potatorum) showed that 

the maximum adsorption for lead and copper were 1.6 and 1.3 mmol/g, respectively 

.The heavy metal uptake process was found 90% of the adsorption completed in about 

10 min in batch system(Jose et al.,1999). 

 

The macro algae species (Sargassum muticum, Bifurcaria bifurcata, Fucus spiralis and 

Laminaria hyperborea) were shown to be effective for removing toxic metals (Pb(II), 

Zn(II) and Cd(II)) from aqueous solutions. Kinetic uptake with 75% of the first 10 min 

for all algal species. Experimental data were well fitted by a pseudo-second order rate 

(Olga et al.,2008). 
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The marine algae Gracillaria sp., Ulva sp., Sargassum sp. and Padina sp. were 

investigated for adsorption of lead, copper, nickel, zinc and cadmium from aqueous 

solutions. Experimental results were well to the Langmuir adsorption isotherm. FTIR 

analysis showed included amino groups and carboxyl(Sheng et al.,2004). 

 

Further more, Ahmet and Mustafa (2008) used  species Ulva lactuca of algae were 

investigated  for  adsorption Cd(II)  and Pb(II)  from aqueous solution. Langmuir 

isotherm fitted the equilibrium data better than the Freundlich model. The capacity of 

adsorption of Ulva lactuca biomass for Pb(II) and Cd(II) ions was found to be 34.7 

mg/g and 29.2 mg/g, respectively. Adsorption processes of both metal ions followed 

pseudo-second-order kinetics. 

The lack of organic substrates to maintain algal growth was another factor. Furthermore 

the adsorption of heavy metals itself would affect the viability of the algae. It would 

necessitate the addition of the complexing agents and the constant adjustment of the pH 

of the wastewaters. This involves cost and in some instances it would be impractical to 

do so. However, the use of dead cell systems would do away with these disadvantages 

in complicated and cut down costs. The disadvantage of course is that the process of 

active bioaccumulation would be sacrificed. Considering the fact 90% of total metal 

uptake by algal biomass can be attributed to adsorption it is a small price to pay. 

Moreover non-living adsorbents may also be reused repeatedly and the metal ions 

recycled (Harris and Ramelow, 1990). It also been shown that dead cells are capable of 

accumulation heavy metals as efficiently as their living counterpart (Sakaguchi et al., 

1979) because of these advantage, the main thrust of research into the field of 

adsorption has now been the use of dead biomass. 
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2.4   Adsorption kinetics and equilibrium 

     Evaluation of metal adsorption by non-living biomass as a unit operation often focus 

on two important physico-chemical aspects of the process, i.e. adsorption kinetics and 

equilibrium. 

 

2.4.1   Adsorption isotherms models 

     Adsorption models are frequently used to describe the equilibrium between metal 

ions in solution and metal ions adsorbed on the surface. Equilibrium studies on 

adsorption give information about the capability of the adsorbent to remove a unit gram 

of metal ions under specific system report conditions. 

 

Adsorption equilibrium is established when a certain amount of metallic species 

sequestered and bound by a solid phase, is in dynamic balance with remaining dissolved 

metal in the solution. When a metal ion in solution collides with a solid (adsorbent) 

surface, a limited number of outcomes are possible (Allen and Brown, 1995). Positive 

adsorption in adsorbent-metal ion system results in the transfer of the metal ions to the 

surface of the algal cells where it increases in concentration until a dynamic equilibrium 

is reached between the metal ions and the adsorbent and with that of the interface. At 

this point of equilibrium position there is a define distribution of metal ions between the 

adsorbent surface (solid phases) and liquid (reaction solution). The distribution ratio is a 

calculate of the position of equilibrium in the adsorption process. It is usually 

represented in the form of an equilibrium isotherm. This isotherm is a efficient 

expression for the variation of adsorption with concentration of metal ion in the bulk 

solution at constant temperature. In other words, the isotherm plot is a graphical 

expression that represents metal adsorption by the adsorbent against the residual metal 

concentration in the contact solution. 
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Many researchers have used equilibrium isotherms to characterize the removal of heavy 

metals by adsorbent (Fourest and Roux, 1992; Avery and Tobin, 1993; Chang and 

Hong, 1994). 

 

When a metal solution is contacted with algal cells, metal ions may collide with the cell 

surface and result in several incidences; they are as follows: 

i. The metal ion may rebound from the surface. 

ii. The metal ions may be adsorbed and the solid phase may referentially concentrate 

specific metal ion species from solution onto its surface. 

iii. Reaction may take place between the incoming cation and functional group on the 

solid surface. The phenomenon is termed ion-exchange. 

 

The two most commonly used equilibrium isotherms are the Langmuir isotherm model 

and the Freundlich isotherm model (Smith, 1981; Chang and Hong, 1994). 

In this study, two adsorption isotherms: the Lungmuir and Freundlish were applied to fit 

equilibrium data of adsorption of lead(II) on the algal biomass. 

Freundlich model is an empirical equation on sorption on a heterogeneous surface or 

surfaces supporting site of varied affinities. It is assumed that the increasing degree of 

site occupation (Freundlich., 1906) 

 

Langmuir isotherm assumes monolayer adsorption onto a surface containing a limited 

number of adsorption sites of uniform strategies of adsorption with no transmigration of 

adsorbate in the plane of surface (Weber and Chakkravorti, 1974). 
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2.4.1.1   Langmuir adsorption isotherm 

     The Langmuir adsorption isotherm has been effectively applied to many pollutant 

adsorption processes and has been the most widely used isotherm for the adsorption of a 

solute from a liquid solution, on another word it has been employed to characterize the 

uptake of heavy metals by evaluating the adsorption capacities of the microorganisms. It 

is also useful to describe the equilibrium conditions for adsorption in different systems. 

Basic assumptions of the Langmuir theory are: 

1. Surface is homogeneous that is adsorption energy is unvarying over all sites. 

2. Adsorption on surface is localized that is adsorbed molecules or atoms are adsorbed 

at definite localized sites. 

3. Every site can accommodate only one atom or molecule. 

This model can be written in non-linear form (Langmuir) as: 

e

Le

e C
qKqq

C

maxmax

11


                    (1) 

 

Where 

qmax    =     is the monolayer adsorption capacity of the adsorbent(mg/g) is the(maximum 

amount adsorbed) 

K L        =      is the Langmuir adsorption constant (L/mg) 

Ce        =      the equilibrium metal ion concentration in the solution (mg/L), 

qe         =       is the equilibrium metal ion concentration on the adsorbent (mg/g) 

 

The solid phase equilibrium metal concentration which is the amount of metal adsorbed 

on the biomass surface in a batch system was calculated using the following mass 

balance equation: 

       V (C0− C t) 

 q = ------------                                       (2) 

            W 
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Where 

q     = is the metal uptake (mg metal/g biomass), 

C0  = initial metal concentrations in the solution (mg metal/l fluid) 

Ct  = final metal concentrations in the solution (mg metal/l fluid), 

V   = the volume of solution, 

W  = is the dry weight of the added adsorbent (g). 

2.4.1.2   Freundlich adsorption isotherm 

     The Freundlich model is the most popular adsorption model for a single solute 

system. The model has found broad acceptance because of its accuracy and broad 

applicability. The Freundlich model assumes a heterogeneous adsorption surface and 

dynamic sites with different energy. The Freundlich model (Freundlich equation) is 

eFe C
n

Kq ln
1

lnln 
                 (3) 

where 

qe         = amount of the adsorbate per unit weight of adsorbent(mg/g). 

KF        =    is a constant relating the adsorption capacity (Freundlich constants) 

1/n    =   is an empirical parameter relating the adsorption intensity (which varies with 

the heterogeneity of the material). 

2.4.2   Adsorption kinetics 

     The pseudo-first-order and pseudo second-order models were used to exam 

adsorption kinetic data to investigate the mechanism of adsorption. The kinetics of the 

metal sequestering process is a crucial parameter which determines the time required for 

the adsorption system to attain equilibrium, commonly referred to the contact time. The 

contact time is a critical factor especially in large-scale operation as it determines the 

size of the reaction which in turn affects the capital and operating costs of the process. 

A rapid metal binding process, i.e. short adsorbent-solution contact time is desirable. 
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The method of kinetic adsorption tests was identical to that of batch equilibrium tests. 

The lead(II) uptake at any time, qt(mg/g), was calculated by equation (4). 

       V (C0− C t) 

 q = ------------                                       (4) 

            W 

 

                         

2.4.2.1   Pseudo-first-order-kinetic model 

     One of the major characteristics to define the efficiency of adsorption is its kinetics. 

The pseudo-first-order-kinetic model has been widely used to predict adsorption 

kinetics. The pseudo first-order model is presented by the following equation (Ho, 

2004): 

  t
k

qqq ete
303.2

loglog 1
       (5) 

Where 

qe and qt = the amounts of lead(II) adsorbed on the algal biomass at equilibrium and 

time in mg/g 

kl              = constant of pseudo first-order adsorption 

 

2.4.2.2   Pseudo-second-order-kinetic model 

     The pseudo second-order model is presented by the following equation (Demirbas et 

al., 2004): 

 

                                                                        (6) 
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2.5   Factors affecting the adsorption process 

     Adsorption of heavy metal ions onto the surface of a microorganism is affected by 

many factors such as initial temperature, pH, biomass concentration, and initial metal 

ion concentration (Özer et al., 1999). 

 

2.5.1   Effects of initial concentration and contact time on adsorption of lead(II) 

     Contact time is one of the vital parameters for successful use of the adsorbents for 

practical application and rapid sorption is among desirable parameters (Akar and Tunali, 

2005). 

 

2.5.2   Effect of solution pH on adsorption of lead(II) 

     Adsorption process is dependent on the aqueous phase pH and the functional groups 

on the algal cell walls and their ionic states (at particular pH) determine the extent of 

adsorption (Crack, 1965; Wilde et al., 1993; Genc et al., 2003). 

 

The effect of pH on adsorption can be explained by ion-exchange mechanism, in which 

the significant role is played by the functional groups of the biomass that have cation-

exchange properties (Volesky et al., 2000). Since adsorption is a chemical/physical 

reaction between positively charged metal ions and anionic group of cell surface, it is to 

be expected that metal adsorption is strongly influenced by pH which affects the 

speciation of metal and reaction groups. Initial adsorption rate and capacity are affected 

by pH. 

The pH of metal solution is critical because of its effect on the formation of metal-

adsorbent complexes. It not only affects the ionization of the function groups 

responsible for metal binding on the cell wall surface, but also regulates the solution 

chemistry affecting the chemical speciation of metal ions. This in turn determines the 
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mobility and ability of the ions to adsorb onto the biomass surface (Kuyucak and 

Volesky, 1989, Zhou and Kiff, 1991). Each metal has its own individual optimal pH 

value, depending on its solution chemistry 

 

2.5.3   Effect of temperature on adsorption of lead(II) 

     Temperature affects the adsorption rate by changing the molecular interaction and 

solubility of adsorbate. Temperature plays a vital part in biochemical reactions which 

hastens reactions if raised, since higher temperature increases the energy of the 

molecules, creating more collisions per unit time, and is an important factor influencing 

self-purification in streams. The metabolic rate of aquatic organisms is related to water 

temperature, and in warm waters, respiration rates increase leading to increase oxygen 

consumption. Growth rate will also increases. This can lead to increased decomposition 

of organic matter, water turbidity, macrophyte growth and algal blooms, especially 

when nutrient conditions are suitable (Jackson and Jackson, 1996). Toxic chemicals 

made more soluble by higher temperature may present an additional hazard to the 

organisms in the water (USEPA, 1986). Higher temperature increases the toxicity of 

many substances such as heavy metals or pesticides, whilst the sensitivity of the 

organisms to toxic substances also increases. 

The temperature of the working solution usually play an important role in the adsorption 

processes because some of adsorption processes are endothermic, so the temperature 

increasing lead to increasing in adsorption capacity. This may be due to improved 

interaction or increased equilibrium constant between solute and the adsorbent. 
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CHAPTER THREE 

MATERIAL AND METHODS 

 

3.1   Collection of algal biomass 

     Fresh algal biomass was collected from a shallow, slow-flowing stream in Rimba 

Bukit Kiara, Kuala Lumpur (Figure 3.1). The alga formed a dark-green filamentous 

mass floating the water surface or attached to submerged rocks and concrete surfaces.  

The algal biomass hand picked with the aid of forceps and placed in a pail, was brought 

back to the laboratory. 

 

In the laboratory the algal biomass was repeatedly washed with distilled water to 

remove dirt and other organisms such as zooplankton and epiphytes. A small portion of 

the algal biomass was kept aside for identification. The rest of the algal biomass was 

placed on a filter paper to reduce its water content. It was then dried for 72 hours in an 

oven with temperature set at 45 °C, this process killed the alga and therefore, the dried 

algal material is termed as ―non-living algal biomass‖. 
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3.2   Identification of the alga 

     Filaments of the alga was placed and immersed in drop of distilled water on a glass 

slide. This was covered with a cover slip and then observed under a light microscope. 

Vegetative cell sizes were determined using a computer which was attached to the light 

microscope. The algae of chloroplasts in each vegetative cell were noted.  

          

The characteristics of the alga were compared with those of other species of filamentous 

fresh water algae in the literature. The alga was identified as a species which was most 

agreeable that belong to the characteristics examined. 

 

 

3.3   Preparation of sample algal and stock solution of lead(II) 

     The non-living algal biomass was ground to powder using an agate stone pestle and 

mortar. The non-living algal biomass powder was sieved using a standard testing sieve 

to sieved select the particles of 300 to 425 µm in diameter. Powder of the desired 

particle size was kept in an air-tight plastic container at room temperature. Samples of 

the non-living algal biomass for subsequent analysis were all obtained from the above. 

 

Stock solution (2000 mg/L) of lead(II) was prepared by adding (3.19 g) powder lead 

nitrate (contain 2  of lead), to 1000 ml  plastic volumetric flask. 
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3.4   Determination of baseline lead(II) concentration of the sample 

     The concentration of lead(II) in the sample of the non-living algal biomass was 

determined because high level of lead(II) in the sample interferes and affects the results 

of the subsequence experiments. 

 

 

3.5   Effects of initial concentration, contact time, pH, temperature on the                                             

adsorption of lead(II) by the non-living algal biomass 

 

3.5.1   Effect of contact time and initial concentration on adsorption of lead(II) 

     The effect of contact time and initial concentration on the adsorption uptake, were 

studied at room temperature 30±1. Through the following procedure: a series of initial 

concentrations of lead(II) solution (50 mg/L, 100 mg/L, 150 mg/L, 200 mg/L and 

250mg/L) were prepared from the stock solution according to the law of 

dilution(equation. 7). From each solution of the series mentioned above 50 ml was 

added to five vial culture containing (0.05g) of algae. Then put in a shaker and shaken at 

150 rpm for 15 minute. No pH adjustments were made and all of the studies were 

carried out at natural pH. After predetermined time interval the content of vial culture 

were filtered by vacuum filtration through 0.45µm membrane filter. The filtrates were 

diluted ten times and analyzed for residual lead(II) using atomic absorption 

spectrometer (AAS) at wavelength of 283.3 nm. The same experiment was repeated at 

different times (30min, 45min, 60min, 75min, 90min, 120min, and 165min) to 

determine the final concentration of lead(II) solution. 

M1  ×  V1 = M2  ×  V2                     (7) 
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3.5.2   Effect of pH 

     The effect of pH on the lead(II) solution  was examined by varying the pH of the 

solution from pH 3 to pH 6. The pH of the solution were adjusted to a desired pH using 

0.1N HCl and 0.1N sodium hydroxide (NaOH), magnetic stirrer was used to agitate the 

solution continuously and pH measurements were done using EUTCH pH meter. The 

lead(II) initial concentration was fixed at 150 mg/L with biomass dosage of 0.05g 

agitation 1 hour, and rotation speed 150 rpm under room temperature. 

 

3.5.3   Effect of temperature 

     The effect of temperature on the adsorption of lead(II) was studied by the varying of 

the adsorption temperature at 40, 50 and 60 °C by adjusting the temperature controlled 

at the shaking incubator(JEIO TECH, model SI-900r), while other operating parameters 

such as biomass dosage, rotation speed and initial concentration 150 mg/L were 

remained constant while the solution pH was original without any adjustment. 

 

3.6   FTIR analysis of the non-living algal biomass 

      This was done by mixing approximately 1.0 mg dried sample of algae with 100 mg 

KBr (1:100), ground to fine powder and pressed under vacuum to a pellet. The 

instrument   was   switched   on   and   background   was  obtained   without   placing 

the   pellet. Then  the  pellet   was   placed   and  scan  was  obtained  in  the  range from  

370.0 to 4000.0 cm−¹. The data was plotted using standard software provided with the 

instrument. 
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3.7   Scanning electron microscopic examination of the non-living algal biomass 

     Scanning electron microscope examination of the adsorbent was done under SEM 

(JEOL 6400, Japan) to study the surface texture and morphology of the adsorbent which 

participated in metal adsorption. Sample of the adsorbent was prepared based on 

technique and procedure of Gabriel (1982). 

 

3.8   Adsorption isotherms of lead(II) by the non-living algal biomass 

     Data obtained from the removal study of lead(II) were tested with Freundlich 

adsorption isotherm and Langmuir adsorption isotherm to have a satisfactory 

description of the equilibrium state between the two phases in order to successfully 

represent the dynamic behavior of lead(II) from the solution to solid (algal biomass) 

phase. 

 

Batch mode adsorption studies were carried out at 30±1 °C by varying the concentration 

of lead(II) using atomic absorption spectrometer (AAS) at wavelength of 283.3 nm 

 

3.9   Kinetics of lead(II) adsorption by the non-living algal biomass 

     Determination of effectiveness of adsorption process requires an understanding of 

kinetics of uptake of adsorbate or the time dependence of the time concentration 

distribution of solute in both bulk solution and solid adsorbent and identification of rate 

determining step. The study of kinetic of adsorption describes solute uptake rate. 

In order to examine the order of adsorption process, several kinetic models were used to 

test the experimental data. In the present work following kinetics models were applied 

to check the applicability of the equations. 
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3.10   Thermodynamics of adsorption of lead(II) by the non-living algal biomass 

     In order to describe thermodynamic behavior of the adsorption of lead(II) ions onto 

Spirogyra  neglecta  biomass, thermodynamic parameters including the change in free 

energy (ΔG
◦
), enthalpy (ΔH

◦
) and entropy (ΔS

◦
) were calculated from following 

equations 

ΔG
◦
 = − RT lnKc        (7) 

Where 

R = is the universal gas constant (1.987 cal/deg/mol) 

T   = is the temperature in kelvin. (K). 

Kc (qe/Ce) = is the distribution coefficient (Aravindhan et al.,2007, Sarı et al.,2007) 

From the following equation: 

Kc = (qe/Ce)                    (8) 

The enthalpy (ΔH
◦
) parameters were obtained from Van’t Hoof equation 

                                  - ΔH
◦
         1           1 

lnKc(T4)-ln Kc (T1)=   ------   ( ----    -   ---- )             (9) 

                                       R           T4         T1 

 

Where 

T4 and T1 are two different temperatures 

and entropy (ΔS
◦
)from the following equation: 

               

 

                 ΔG
◦
 - ΔH

◦
 

ΔS
◦
 = -   ---------------                                      (10) 

                      T 
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3.11 Application of non-living algal biomass to remove lead(II) from a polluted 

water sample 

3.11.1   Collection and preservation of water sample 

     Water sample was collected from Klang River near Kampong Jawa, Selangor 

(Figure 3.1). Five samples were collected from under the surface of the river at intervals 

of 1 meter starting from the edge of the right bank. These collected samples were mixed 

in a plastic bottle and the solution was acidified with 1.5 ml of concentrated  nitric acid 

(HNO3). One liter of the acidified sample was stored in box containing ice and analyzed 

as soon as it reached the laboratory.  

 

3.11.2   Analysis of water sample from a polluted river                                    

     150 ml of the sample bottled river water was filtered by vacuum filtration through                                        

0.45 µm membrane filter. 50 ml of the filtered water was poured into a vial culture 

containing algae while another 50 ml was poured into vial culture without algae. Both 

were shaken for 1 hour and subsequently filtered by vacuum filtration through 0.45µm 

membrane filter. The filtered water was analyzed using atomic absorption 

spectrophotometer (AAS). 
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CHAPTER FOUR 

RESULTS 

 

4.1   Identification of the algae 

     The alga which was used in this study was identified as Spirogyra neglecta (Hasall) 

Kutzing. The alga was filamentous and unbranched. Its vegetative cells possessed spiral 

chloroplasts, 43.97μm to 47.90μm wide and 122.29μm to 186.25μm long. No 

reproductive cells were seen in the algae. (Appendix 1) 

 

4.2   Baseline concentration of lead(II) in the non-living algal biomass 

     Percentage contamination of lead(II) in the algal biomass was 0.01%. This amount of 

contamination was considered negligible and therefore did not interfere with treatments 

in subsequent experiments.  

 

4.3   Effects of initial concentration and contact time on adsorption of lead(II) 

     The adsorption of lead(II) increase with time and at certain point in time, it reached a 

content value beyond which no more lead(II) was further removed from solution. 

(Figure 4.1) shows that maximum adsorption taken place within the first 60 minute. The 

amount of lead(II) adsorbed at the equilibrium time reflected the maximum adsorption 

uptake of the adsorbent under the operating conditions applied. The information 

obtained from this experiment was further used successfully to estimate the kinetics of 

the adsorption process.  
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Figure 4.1 

Effect of contact time and on initial concentration adsorption of lead(II) by   

non-living biomass of Spirogyra neglecta 

 

4.4   Effect of pH on adsorption of lead(II) 

     The pH of a solution is an essential parameter in adsorption process. The adsorption 

of lead(II) ions by Spirogyra neglecta as a function of pH are shown in Figure 4.2. In all 

cases, metal uptake by the biomass will increases with increasing pH until it reaches a 

maximum pH at 6.0 g (Appendix 4). The pH of the solution decreased after adsorption 

the metal uptake. The adsorption at above pH 6 was not investigated because 

precipitation of this metal start in that pH range. 

 
Figure. 4.2 

Effect of pH on adsorption of lead(II) by non-living biomass 

Spirogyra neglecta 
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4.5   Effect of temperature on adsorption of lead(II) 

     Temperature has essential effect on adsorption process as it can increase or decrease 

the amount of adsorption. In the present experiment the adsorption rate of lead(II) on 

the adsorbent, at three different temperatures (40,50 and 60 
◦
C) have been analyzed and 

adsorption capacity as a function of temperature are shown in Figure 4.3. The 

adsorption of lead(II) ion increase with increase of temperature from 40 to 60 
◦
C,  

(Appendix 5). This effect is the characteristic of a chemical reaction or bonding being 

involved in the adsorption process with the increase in temperature. The fact that the 

adsorption increases with an increase in temperatures indicates the raise in the mobility 

of large metal molecules with increasing temperatures and the ongoing adsorption 

process is endothermic. Suggesting that the removal of the lead(II) from aqueous 

solutions to adsorbent is faster at high temperature than at low temperature. 

 

 
Figure 4.3 

Effect of temperature on adsorption of lead(II) 

by non-living biomass Spirogyra neglecta 

 

 

 

4.6   Scanning electron microscopic examination of the non-living algal biomass 

     Figure 4.4(a-d) showed that it was evident from the micrographs that the adsorbent 

sample before and after adsorption. The micrograph (the surface texture and 

morphology of algae) is one of the principle characteristics affecting the adsorptive 
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capacity of an adsorbent since the adsorption process result in a concentration of solutes 

at the surface.  

In Figure 4.4(a-b) before the adsorption shown the algae exhibits a caves-like, or pores 

which increase capacity of adsorption. In contrast, Figure 4.4(c-d) after adsorption noted 

uneven surface texture along with lot of irregular surface because full the pores by 

heavy metal ion belong to the function group on surface of adsorbent which are playing 

important role in almost all potential binding mechanisms. 

 

 

 

         
 
                                                                              

           
 

        

Figure 4.4(a-d) 

SEM image the biomass particles, with and without adsorbed metal 
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4.7 The Fourier Transform Infrared Spectrometer (FTIR) analysis for the 

adsorbent 

     The spectrum of FTIR analysis are shown in (Figure 4.5). The FT-IR of the native 

biomass displays a number of adsorption peaks, indicating the complex nature of the 

biomass examined. The broad adsorption peak around 2923 cm
-1

 is indicative of the 

existence of bonded alkanes group (C-H). The peak observed at 1655 cm
 -1

 can be 

assigned to the to the carbonyl group (C=O). The peak observed at 3250 cm
-1

 can be 

assigned to the carboxyl group (COOH). The peak observed at 3404.06 cm
-1

 can be 

assigned to the amine group (N-H).  

The results indicated that the algae biomass has a variety of functional groups, such as 

carboxyl, and amine and these groups are involved in almost all potential binding 

mechanisms. 
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Figure 4.5 

Peaks for non-living biomass of Spirogyra neglecta obtained from FTIR analysis 

(range 370.0-4000.0 cm−¹). 
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  4.8   Adsorption isotherms of lead(II) by the non-living algal biomass 

     The adsorption of lead(II) by native biomass was rapid and attained equilibrium 

within  the first 60 minutes and the maximum adsorption capacity (qmax) of Spirogyra 

neglecta was found 132 mg/g for lead(II) ions. 

In Figure 2.3 shown the Ce versus Ce/qe were drawn to calculate the value of Langmuir 

constant. 
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Figure 4.6 

Langmuir adsorption isotherm of lead(II) by the non-living biomass of 

Spirogyra neglecta 

 

 

In Figure 2.4 shown the ln/qe versus ln/Ce were drawn to calculate the value of 

Freundlich constants. 
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Figure 4.7 

Freundlich adsorption isotherm of lead(II) by the non-living biomass of 

Spirogyra neglecta 

 

All the correlation coefficient, R
2
 values and the constants obtained from the two 

isotherms models applied for the adsorption of lead(II) on algal biomass are 

summarized in (Table 4.1). 

 

Table 4.1 

Langmuir and  Freundlich constants at room temperature (30±1
◦
C) 

Models Parameters Values Calculation 

Langmuir qmax  (mg/g) 132 

 

Appendix 2 

KL (mg/L) 0.023 

R
2

L 0.8978 

Freundlich k F (mg/L) 0.1897 Appendix 3 

N 0.75 

R
2

F  0.7054 

 

4.9   Adsorption kinetics 

     In order to understand the adsorption kinetics of lead(II) ions, two kinetic models, 

which are the pseudo-first-order and pseudo-second-order have been applied for the test 

experimental data. 
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4.9.1    Pseudo-first-order-kinetic model 

     Result based on pseudo-first-order-kinetic model is shown in (Figure 4.6) explained 

the plot of log(qe-qt) versus t(time). The constants K1 and qe obtained from the slope and 

intercept of this plot respectively. The value of correlation coefficients R
2

1 obtained 

from the plot (Figure 4.6) for adsorption of lead(II) on the algal biomass at room 

temperature 30±1 °C are listed in (Table 4.2).  
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Figure 4.6 

Pseudo-first-order kinetic adsorption of lead(II) by the non-living biomass 

of Spirogyra neglecta 
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In Table 4.2 lists the computed results obtained from pseudo- first -order kinetic model. 

 

 

Table 4.2 

Pseudo-first-order kinetic model 

 

Concentration 

(mg/L) 

Pseudo-First-order kinetic model 

qe (mg/g) 

experiment 

qe1(mg/g)cal K1 R
2

1 

50 30.8 12.49 0.021 0.5944 

100 61.4 26.26 0.028 0.5762 

150 102.1 157.03 0.054 0.7539 

200 97.2 135.49 0.051 0.7227 

250 98.8 141.58 0.052 0.7195 

 

 

4.9.2   Pseudo-second-order-kinetic model 

     The validity of the adsorption order were based on two main criteria, first based on 

the correlation coefficient and secondly based on the calculated qe values.  

Result based on the second-order-kinetic model is shown in Figure.4.7 explained the 

plot of t/qt versus t(time) were used to calculate the second-order rate constants K2 and 

qe. The values of parameters K2, qe and correlation coefficients R
2

2 are summarized in 

Table 4.3.    
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Figure 4.7 

Pseudo-second-order kinetic adsorption of lead(II) by the non-living biomass 

of Spirogyra neglecta 
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In Table 4.3 lists the computed results obtained from the second-order kinetic model. 

 

Table 4.3 

Pseudo-second-order kinetic model 

Concentration

mg/L)) 

Pseudo- second –order kinetic 

model 

qe2 K2 R
2

2 

50  40.65 1406.04 0.9108 

100  95.23 2834.22 0.7535 

150  166.66 12815.64 0.7648 

200  166.66 14134.98 0.6867 

250  175.43 16052.59 0.6875 
 

 
The straight lines in plot of t/qt versus t showed good agreement of experimental data 

with the second-order kinetic model for different initial concentration for adsorption 

kinetics of lead(II) on algae biomass at room temperature 30 ±1 °C. 

 

 

4.10    Adsorption thermodynamics 

     The result obtained from the calculation is shown in Table 4.4. 

Table 4.4 

Thermodynamic parameters for the adsorption of lead(II) on algal biomass 

(Spirogyra  neglecta) at different temperatures. 

Temperature (K) Thermodynamic parameters 

ΔG
◦
 (cal mol

-1
)    ΔH

◦
(cal mol

-1
)    ΔS

◦
(cal mol

-1
 K

-1
 (  

303 

313 

323 

333 

          - 457.6                     6613.3                  16.36 

          - 777.4 

          - 930.6 

          -1164.5 

 

Table 4.4 shows the positive value of ΔS
◦ 
meaning entropy was increase and the positive 

value of enthalpy ΔH
◦
 meaning reaction had taken more calories. The value of ΔH

◦
was 
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positive, indicating that the adsorption reaction is endothermic. This is also supported 

by the increase in value of uptake capability of the adsorbent with the rise in 

temperature. Positive value of enthalpy ΔH
◦  

assumes that the entropy is responsible for 

making the ΔG
◦
 value negative. The negative value of ΔG

◦ 
confirms the feasibility of the 

process and the spontaneous nature of adsorption of lead(II) on Spirogyra neglecta. 

 

4.11   Analysis of water sample from a polluted river                                    

     The concentration of lead(II) in the untreated water sample was analyzed using 

FAAS (flame atomic absorption spectrometer) at wavelength of 283.3 nm under room 

temperature (30 ± 1
◦
C) was found 5.673 mg /L. After treatment of water sample with 

non-living algal biomass the concentration of lead(II) in treated water sample was 

analyzed and found 4.472 mg /L. 

The percentage e of removal was calculated by using following equation: 

 

                                                             initial concentration  -  final concentration 

Percentage of removal (%) of lead(II)= ---------------------------------------------     × 100% 

                                                                      initial concentration 

 

                                                                  5.673 - 4.472   

Percentage of removal (%) of lead(II) =  ---------------------   ×   100% 

                                                                          5.673   

Percentage of removal lead(II) from polluted water was found 21.2% 
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CHAPTER FIVE 

DISCUSSION 

 

5.1   Effects of initial concentration and contact time on adsorption of lead(II) 

     The amount of lead(II) adsorbed at the equilibrium time reflected the maximum 

adsorption uptake of the adsorbent under the operating conditions applied. 

The results revealed that the lead(II) adsorption was fast at initial stage of the contact 

period and then became slower near the equilibrium, which showed that no more 

lead(II) was further removed from the solution.  

The amend in the rate of removal might be due to the fact that initially all adsorbent 

sites were vacant and the solute concentration gradient was high. So, the rate of 

adsorption was also high. Later, the lead(II) uptake by adsorbent was decreased 

significantly, due to the decrease in number of adsorption site as well as lead(II) 

concentration. As time passes, the number of sites on the adsorbent filled up by the 

adsorbate also increases. At equilibrium, when all the sites are filled, the rate of 

adsorption is equal to the rate of desorption. So, after equilibrium, it is found that there 

was no increase in removal of adsorbate with increase in contact time. Decrease 

removal rate, particularly towards the end of experiments, indicate the possible 

monolayer formation of lead(II) on the outer surface. Similar trend was observed for 

adsorption of lead(II) onto modified fly ash (Wooland et al., 2000), activated phosphate 

(Moufliha et al., 2005) and agricultural by-products (Tiemann et al., 2002). 
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5.2  Effect of pH on adsorption of lead(II) 

     The effect of the pH of metal solution is one important parameter that influence the 

adsorption process. The results show that adsorption of lead(II) was increasing with 

increasing of pH of the solution. At low pH values, the inactivated cell exterior becomes 

more positively charged, leading to reduce the hold between metal ions and functional 

groups at the cell wall. In contrast, when the pH increases, the cell surface is extra 

negatively charged and the process of retention is favored (Pardo et al., 2003; Volesky 

and Holan, 1995) until a maximum is reached around pH 6. However, at pH higher than 

6, the precipitation of insoluble metal hydroxides takes place restricting the true 

adsorption studies according to the formula: 

Pb(NO3)2 + NaOH → Pb(OH)2↓ + NaNO3 

In other words, adsorption decreases at higher pH. 

Lead(II) adsorption is maximized at pH 6.0, a value which is in similar to the results 

obtained by Pardo et al. (2003), who found that the maximum pH for lead(II) by 

Pseudomonas putida is 6.0. Moreover, Seki et al. (1998) studied the function of pH on 

adsorption of lead(II) by  Rhodobacter  sphaeroides and reported that the maximum pH 

is around 6.0. This is not only related to the formation of soluble hydroxylated 

complexes of the metal ions, but also to the ionized nature of the cell wall surface of the 

biomass under the studied pH (Chojnacka, 2005). 

 

 

5.3  Effect of temperature on adsorption of lead(II) 

     The adsorption reaction for the endothermic processes could be because of the 

increase in temperature increase the rate of diffusion of the adsorbate molecules across 

the external boundary layer and in the internal pores of the adsorbent particle, owing to 

the decrease in the viscosity of the solution. Wang and Zhu (2007) noted similar 
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observations and they suggested that the increase in adsorption uptake with increase in 

temperature might be due to the possibility and in the total pore volume of the 

adsorbent, an increase of number of active sites for the adsorption as well as an increase 

in the mobility of the adsorbate molecules. In addition, Meena et al. (2005) reported the 

adsorption of metal ions has been found to increase with increase in temperature from 

20 to 60
 ◦

C, and they suggested the increase in adsorption with temperature may be 

attributed to the increase in the number of active surface sites available for sorption on 

the adsorbent. The increase in metal adsorption with increase temperature could be due 

to dissociation of some compounds available in the adsorbent, which may provide more 

sites from metal adsorption (Sammer and Duvnjak, 1999). In other words, the rise in 

adsorption capacity with temperature is caused by the rise in the kinetic energy of 

adsorbent particles. Firstly, the collision rate between adsorbent and adsorbate increases 

this results in the enhanced adsorption on to the surface of the adsorbent. Secondly, at 

high temperature due to bond break of functional groups on adsorbent surface there may 

be an increase in number of active adsorption sites, which may also lead to enhance 

adsorption with the rise in temperature. The increase of the uptake capacity at high 

temperature indicated that the adsorption of lead(II) ions onto Spirogyra neglecta is 

endothermic in nature. 

 

Temperature could effects the desorption and consequently the reversibility of the 

adsorption equilibrium also (Özer et al., 2006). In other words, more increase in 

temperature will be followed by a decrease in adsorption capacity meaning with the 

further rise in temperature may be due to either the damage of active binding sites in the 

biomass (Ozer and Ozer, 2003). 
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5.4   Scanning electron microscopic examination of the non-living algal biomass 

     The morphology of adsorbent have most effect on selection of the mode application 

of the adsorption process using that particular adsorbent. Some morphology such as 

surface area and size and distribution of pores in particles direct affect adsorption 

performance by determining the amount of adsorbent capacity available and the 

individual ions or molecules of an adsorbate which can be adsorbed.      

These pores (caves-like) in the biomass algal showed the increase surface area 

adsorption for the heavy metal-lead(II). After adsorption lead(II) was distributed 

uniformly over the algal surface independently of the initial morphology. In other 

words, it is noted that the electron-micrograph of the biomass algal after lead(II) 

adsorption Figure 4.4(c-d) was more dense than that of the biomass algal  which not in 

contact with lead(II)-Figure4.4(a-b). The change in structure of the surface adsorbent 

was probably influenced by lead(II). Thus, it can be assumed that dense area contains 

most of the adsorption metal.  

 

 

5.5 The Fourier Transform Infrared Spectrometer (FTIR) analysis for the 

adsorbent 

     The FTIR analyses of the sample provided a better understanding of the possible 

functional groups associated with the heavy metal binding. 

The results indicated that the biomass has a variety of function group, including 

carboxyl and amine function groups. These groups are involved in almost all potential 

binding mechanism. Therefore, Spirogyra neglecta provides more adsorption sites for 

lead(II) ions. The similar FT-IR result were observed by Ruhan et al., (2009) on 

biosorption of lead(II) by Lactarius scrobiculatus  biomass. 
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5.6   Adsorption isotherms of lead(II) by the non-living algal biomass 

     The equilibrium adsorption isotherms are known as one of the most important data to 

understand the mechanism of the adsorption. The value of the correlation coefficient for 

Langmuir model was higher compared to correlation coefficient for Freundlich model 

indicating that the adsorption of lead(II) onto Spirogyra neglecta biomass was 

unfavorable at studied conditions for Freundlich model. However, these results indicate 

that the Freundlich model did not describe adequately the relationship between the 

amounts of adsorbed metal ions and their equilibrium concentration in the solution. 

Therefore, it can be concluded that the Langmuir isotherm model was best fitted the 

equilibrium data since it presents higher R
2 

value. In other words, the adsorption of 

lead(II) onto Spirogyra neglecta took place at the functional groups/binding sites on the 

surface of the biomass which is regarded as monolayer adsorption coverage on the 

surface of algal biomass with lead(II) and localized adsorption. In addition, all sites 

having equal adsorption energies. Therefore, the adsorption is homogeneous. 

Similar results agreed with the works carried out by previous researchers which reported 

that Langmuir model gave a better fit than the Freundlich model on the adsorption of 

lead(II) using different adsorbents such as adsorption isotherms of lead(II) was obtained 

on brown seaweed Turbinaria conoides (Luo et al., 2006) and pretreated biomass of 

Australian marine algae Durvillaea potatorum (Matheickal et al., 1999) and Ecklonia 

radiate. 

 

5.7   Adsorption kinetics 

     According to the correlation coefficients R
2

2 obtained for pseudo-second-order 

kinetics were greater than correlation coefficients R
2

1 for pseudo-first-order kinetics it 

can be concluded from the R
2
 values in Table 4.2 and Table 4.3 that the adsorption 

mechanisms of lead(II) ions onto Spirogyra neglecta biomass does not follow the 
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pseudo-first-order kinetic model. Moreover, from Table 4.2, it can be seen that the 

experimental values of qe, exp are not in good agreement with the theoretical values 

calculated (qe1,cal) from equation (5). Therefore, the pseudo-first-order model is not 

appropriate for modeling the adsorption of lead(II) onto Spirogyra neglecta. In the view 

of these outcome, it can be said that the pseudo-second-order kinetic model provided a 

excellent correlation for the adsorption of lead(II) onto Spirogyra neglecta. In addition, 

the pseudo-second-order model which further suggests that chemisorption involving 

valency forces through the sharing or exchange of electrons between the adsorbent and 

adsorbate. Therefore, it has been concluded that the pseudo-second-order adsorption 

model is more appropriate to describe the adsorption kinetics of lead(II) by algal 

biomass.  

Similar results agreed with the works carried out by previous researchers which reported 

by Ozgul and Ferdi (2007) on  adsorption of lead(II) ions by activated carbon prepared 

from biomass plant material of Euphorbia rigida, and  Dandan et al. (2009) on removal 

of lead(II) using the modified lawny grass. Moreover, Vandana et al. (2007) also 

reported the removal of  from lead(II) by using Cassia grandis seed gum-graft-

poly(methyl methacrylate). 

 Also, similar results have been reported by Musa et al.(2008) on adsorption 

characteristics of lead(II) ions onto the clay/poly(methoxyethyl)acrylamide (PMEA) 

composite. 

 

5.8   Adsorption thermodynamics 

     The positive value of ΔS
◦
 indicate some structure changes in the adsorbent and also 

reflect the affinity of the adsorbent therefore, increase in the randomness at the 

solid/solution interface during the fixation of the lead(II) on the active sites of the 

sorbent. Since the adsorption method is endothermic, it follows that under these 
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situations the process becomes spontaneous because of the positive entropy change. 

Positive value of enthalpy ΔH
◦ 

indicates the endothermic nature of the adsorption 

therefore, increase in adsorption on successive increase in temperature. Further, 

negative value of ΔG
◦
 at each temperature indicates the feasibility and spontaneity of 

ongoing adsorption. Positive value of enthalpy ΔH
◦
 assumes that entropy is responsible 

for making the ΔG
◦ 
value negative.  

 

The positive ΔS
◦
 value had been report by (Tsezos, 1984) showed a slight increase in 

cation adsorption by seaweed biomass with increase in temperature from 4 to 55 
◦
C. 

Similarly, (Aksu, 2002) recorded increase in Ni
2+

 adsorption by dried biomass of 

Chlorella vulgaris with enhancement of temperature from 15
◦
C to 45

◦
C. On the 

contrary, some studies show exothermic nature of metal adsorption by algae. For 

instance, it is stated that Cd
2+

 sorption by Sargassum sp. biomass decreased slightly 

with an increase in temperature (Cruz et al., 2004).
 

 
In addition, Musa et al. (2008) also reported about the adsorption of lead(II) ions onto 

the clay/poly (methoxyethyl) acrylamide (PMEA) composite.
 

 

 

5. 9   Analysis of water sample from a polluted river 

    The result indicated that the non-living algal biomass is able to adsorb 21.2% of 

lead(II) from a polluted water at room temperature(30 ±1
◦
C). The percentage of removal 

is low may be because of competition between lead(II) and other heavy metals in 

polluted water. Also, speciation of lead(II) in polluted water is different from free 

lead(II) in artificial solution. 
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5.10   Comparison with other adsorbents 

       A comparison between the results of this work and others found in literatures are 

presented in Table 4.5. The value of lead(II) uptake found in this work is significantly 

higher than reported for other adsorbents. The adsorption capacity differences of metal 

uptake are because of the properties of each adsorbent such as functional groups, 

surface area, and structure. Thus, the comparison of adsorption capacities shows the 

alga Spirogyra neglecta biomass has the potential to remove lead(II) ions from aqueous 

solution. 

 

 

Table 5.1 

Uptake capacities for lead(II) of various adsorbents (at room temperature) 

Adsorbent 

 

qmax (mg /g ) Literature 

Chlamydomonas 

reinhardtii 
96.3  Tuzun et al. (2005) 

Gelidium algae 64.0 Vilor et al. (2005) 

Zoogloea ramigera 82.8 
Sag et al. (1995) 

 

Phanerochaete 

chrysosporium 
134 

Iqbal and Edyvean (2004) 

 

Pseudomonas  

aerogenosa (bacteria) 

 

23.00 Chang et al. (1997) 

Cyclotella cryptica 

(diatom) 

 

26.28 Gupta et al. (2001) 

Bacillus sp. 92.27 (Tunali et al. (2006) 

Arthrobacter sp. 130 
Veglio et al. (1997) 

 

Rhizopus arrhizus 76.4 Sag et al. (1997) 

Spirogyra  neglecta 132 This study 
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATION 

 

6.1   Conclusions 

     This study indicated that Spirogyra neglecta which are widely available, can be used 

as an efficient adsorbent material for removal of lead(II) from polluted water. The 

adsorption procedure was fast enough, as maximum removal took place within one hour 

of contact time for the studied alga. The values of lead(II) uptake found in this work 

were significantly higher than reported for other adsorbents. 

The maximum lead(II) adsorption capacity has been found to be 132 mg lead(II)/g of 

dry weight of biomass at an algal dose of (0.05 g) with initial lead(II) concentration of 

150 mg/L and optimum pH of adsorption is 6 and optimum adsorption temperature is 

60°C . 

The Freundlich and Langmuir adsorption model were used for the mathematical 

description of the adsorption of lead(II) ions onto algal biomass and it was found that 

the adsorption equilibrium data fitted well to the Langmuir model thus proving 

monolayer adsorption of lead(II) on algal biomass Spirogyra neglecta. 

 

Analysis of data shows that the pseudo-second-order kinetic model agrees very well 

with the dynamic behavior for the adsorption of lead(II) ions on algal biomass 

Spirogyra neglecta. 

 

Equilibrium data for thermodynamic treatment shows endothermic nature of the 

adsorption process and ΔG
◦
 (standard free energy) values indicated spontaneous nature 

of the adsorption. ΔS
◦
 (standard entropy) value suggests increase in the randomness at 

the solid/solution interface during the adsorption. 
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FTIR analysis suggested amino and carboxyl groups combine intensively with lead(II). 

The advantage of high metal adsorption capacity, the biomass of Spirogyra neglecta has 

the potential to be used as an efficient, effective methods and economic adsorbent 

material for the removal of lead(II) from polluted water. 

 

 

6.2   Recommendation for future studies 

     All the results presented in this work had been derived from studies involving a 

single metal. In actual industrial wastewater, many inorganic and organic compounds 

are often present. Future work should investigate the behavior of the biomass in 

adsorption studies involving multi-component solution. The effect of the speed method 

(speed of the shaker) on the behavior of the biomass was not investigated in a 

comprehensive manner. More work has to be done in order to enhance the rate of uptake 

of lead(II). 

Modification of the biomass by chemical methods such as (salt, acid and base) or 

physical methods such as (pyrolysis) to enhance activity of adsorption because of 

increase the surface area and functional group should be investigation in addition    

study effect of desorption agent to recovering the heavy metal from algae for reuse and 

at the same time does not damage the biomass also needed. Studies on the utilization of 

algae for removing organic pollutants such as dyes and phenolic compounds has to be 

done in order to reduce contamination in the environment. Study of physical properties 

such as odour and color of water after using an adsorbent in order to use biomass in 

home water-filter system in the future because it is cheap and naturally available. 
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Appendices 

Appendix 1: Filaments of Spirogyra neglecta (Hasall) Kützing(magnifications 

                     20x scale 100µm). 
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Appendix 2: Calculation for Langmuir model  

 

 

 

Langmuir Model 

 

Slope Intercept Correlation coefficient(R
2
) 

Values 0.0076 0.316 0.8978 

 

Calculate of    qmax : 
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 -------       = Slope 

  qmax 
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 -------       =  0.0076  

  qmax 

 

  qmax      = 132 mg lead(II)/g of dry weight of biomass 

 

  

 

Calculate of  KL : 
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----------- = Intercept 
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0.316 × KL ×  132 = 1 

 

KL = 0.023 
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Appendix 3: Calculation for Freundlich model 

 

 

 

 

 

Freundlich Model 

 

Slope Intercept Correlation coefficient(R
2
) 

Values 1.3327 1.6622 0.7054 

 

Calculate of  1/n : 
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 -------       = Slope              

    n 
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 -------       =  1.3327 
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n =  0.75 

 

Calculate of  ln KF : 

ln KF = Intercept 

  

ln KF =  1.6622 

 

KF =  0.1897 
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Appendix 4: Atomic absorption spectrometer result showing effect pH on                          

a                     adsorption lead(II) by non-living biomass.  
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Appendix 5: Atomic absorption spectrometer result showing effect temperature on   

                     adsorption lead(II) by non-living biomass. 
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Appendix 6: The Fourier Transform Infrared Spectrometer (FTIR) 
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Appendix 7:  Scanning Electron Microscopy (SEM) 
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Appendix 8: Publication (http://www.scipub.org/fulltext/ajbb/ajbb5275-83.pdf) 

 

http://www.scipub.org/fulltext/ajbb/ajbb5275-83.pdf
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