GENETIC REGULATION OF THE YEFM-YOEB AND PEZAT TOXIN-ANTITOXIN LOCI OF STREPTOCOCCUS PNEUMONIAE

CHAN WAI TING

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

GENETIC REGULATION OF THE YEFM-YOEB AND PEZAT TOXIN-ANTITOXIN LOCI OF STREPTOCOCCUS PNEUMONIAE

CHAN WAI TING

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF GENETICS & MOLECULAR BIOLOGY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Chan Wai Ting(I.C/Passport No.: 791215-08-5966)Registration/Matric No.: SHC060041Name of Degree: Doctor of PhilosophyName of Degree: Doctor of PhilosophyTitle of Project/Research Report/Dissertation/Thesis ("this work"):Genetic Regulation of the yefM-yoeB and pezAT Toxin-Antitoxin Loci of Streptococcus pneumoniae

Field of Study: Molecular Biology

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Date:

Subscribed and solemnly declared before,

Date:

Name: Assoc. Prof. Dr. Jennifer Ann Harikrishna Designation: Head of Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya

Genetic Regulation of the *yefM-yoeB* and *pezAT* Toxin-Antitoxin Loci of *Streptococcus pneumoniae*

By

Chan Wai Ting

Abstract

The genome of Streptococcus pneumoniae harbours at least eight putative toxinantitoxin (TA) loci. Two of these TA loci, pezAT and yefM-yoeB_{Spn}, have previously been shown to be functional and the regulation mechanism of both TA loci was investigated in this study. Like most TA loci investigated, both the *pezAT* and *yefMyoeB*_{Spn} loci were co-transcribed from σ^{70} -type promoters. Transcriptional fusion assays demonstrated that the PezA and YefM_{Spn} antitoxins served as repressors whereas their respective cognate toxins, PezT and YoeB_{Spn}, served as co-repressors to further repress the activities of their promoters. DNAse I footprinting results indicated that the PezA and YefM_{Spn} antitoxins bind to palindromic operator sites which overlap their respective promoter regions where they may hinder the binding of RNA polymerase thus resulting in the observed transcriptional repression. On the other hand, the PezA-PezT and YefM- $YoeB_{Spn}$ TA protein complexes were able to bind to their respective operator sites with lesser amounts, which indicated that the PezT and YoeB_{Spn} toxins served as corepressors to enhance the binding affinity of their cognate antitoxins, in agreement with the results from the transcription fusion assays and findings from investigations of other TA systems. However, the regulation of yefM-yoeB_{Spn} appeared to be more complex than *pezAT* or other common TA loci. A BOX mobile element was found within the intergenic region between $yefM_{Spn}$ and the upstream gene in the S. pneumoniae R6 genome. The insertion of the BOX element, termed boxA-C, led to the incorporation of an additional promoter, P_{vefM1}, upstream of its original promoter, P_{vefM2}. Transcriptional fusion assays indicated that P_{vefM1} is a much weaker promoter compared to P_{vefM2} . Footprinting assays showed that either the YefMspn antitoxin or the YefM-YoeBspn TA complex binds only to a palindromic sequence that overlapped the -35 region of the P_{yefM2} promoter but not to any regions overlapping or surrounding the P_{yefM1} promoter. With just the P_{vefM2} promoter alone, the YefM_{Spn} antitoxin repressed transcription from P_{vefM2} both in *trans* and in *cis* and this repression was augmented by YoeB_{Spn}. However, in the presence of the entire upstream regulatory region, which included boxA-C, P_{yefM1} and P_{yefM2} , slight repression was observed when $yefM_{Spn}$ was expressed in *trans*, but no further repression was observed when $yefM_{Spn}$ and $yoeB_{Spn}$ were expressed in trans. Interestingly, when $yefM_{Spn}$ was constructed in *cis* along with the entire promoter region, transcriptional activation was observed, and the activation persisted even in the presence of the entire yefM- $yoeB_{Spn}$ reading frames in cis. This indicated that the regulation of yefM-yoeB_{Spn} may involve *cis*-acting elements which include the entire promoter region along with the $yefM_{Spn}$ reading frame and/or host factors that have yet to be determined. As the boxA-C element is conserved in the genome of all sequenced S. pneumoniae strains in the database, it is suggested that the boxA-C element may provide a selective advantage to the host. It is also postulated that P_{yefM1} is a constitutive promoter that provided a basal level of transcription to the yefM- $yoeB_{Spn}$ locus to enable a faster response to any drastic changes in the environment.

Regulasi Genetik untuk Lokus Toksin-Antitoksin yefM-yoeB dan pezAT daripada Streptococcus pneumoniae

oleh

Chan Wai Ting

Abstrak

Genom Streptococcus pneumoniae dijangka mengandungi sekurang-kurangnya lapan lokus toksin-antitoksin (TA). Dua lokus daripada jangkaan ini, iaitu pezAT dan yefMyoeB_{Snn}, telah dibukti berfungsi and regulasi mekanisme kedua-dua lokus TA ini telah diselidik dalam kajian ini. Seperti kebanyakan lokus TA yang diselidiki, pezAT dan yefM-yoeB_{Spn} adalah turut ditranskrip melalui promotor jenis σ^{70} . Kajian gabungan transkripsi menunjukkan bahawa antitoksin PezA dan YoeB_{snn} berfungsi sebagai represor manakala toksin berkaitan mereka masing-masing, yakni PezT dan YoeBspn, berfungsi sebagai ko-represor untuk mengurangkan dengan selanjutnya aktiviti promotor masing-masing. Eksperimen DNAse I footprinting menunjukkan bahawa antitoksin PezA dan YefM_{Spn} mengikat kepada operator palindrom yang menindih dengan promotor mereka masing-masing. Ini kemungkinannya akan menghalang RNA polimerase daripada mengikat kepada promotor tersebut dan oleh yang demikian, pengurangan aktiviti promotor diperhatikan. Sementelahan pula, komplek protin TA PezA-PezT dan YefM-YoeB_{Spn} berkeupayaan untuk mengikat kepada operator masingmasing dengan kuantiti yang lebih kurang. Ini menunjukkan bahawa toksin PezT dan YoeB_{Spn} berfungsi sebagai ko-represor untuk meningkatkan afiniti pengikatan antitoksin berkaitan mereka terhadap promotor masing-masing. Ini adalah bersetujuan dengan penemuan daripada kajian gabungan transkripsi serta penyelidikan sistem TA yang lain. Namun demikian, regulasi yefM-yoeB_{Spn} adalah lebih kompleks daripada pezAT atau lokus TA yang umum. Unsur mobil BOX telah ditemui di antara yefM_{Spn} dan gen di hulunya dalam genom S. pneumoniae R6. Penyisipan unsur BOX, yang dinamakan boxA-C dalam kajian ini, menyebabkan penambahan satu promotor baru, P_{vefM1}, di hulu promotor asalnya, P_{vefM2} . Kajian gabungan transkripsi menunjukkan bahawa P_{vefM1} adalah promotor yang jauh lebih lemah apabila dibandingkan dengan PyefM2. Kajian footprinting menunjukkan bahawa antitoksin YefMspn atau komplek TA YefM-YoeBspn hanya mengikat pada palindrom yang menindih dengan elemen -35 daripada promotor P_{yefM2} tetapi tidak mengikat kepada mana-mana tempat di sekitar promotor P_{yefM1} . Jika dengan promotor P_{vefM2} sahaja, antitoksin YefM_{Spn} didapati mengurangkan transkripsi daripada P_{vefM2} di trans dan juga di cis, dan pengurangan aktiviti promotor ini diperkuatkan lagi oleh YoeB_{Spn}. Akan tetapi, kehadiran keseluruhan kawasan regulasi yang meliputi boxA-C, P_{yefM1} dan P_{yefM2}, mengakibatkan hanya sedikit pengurangan aktiviti promoter diperhatikan ketika $yefM_{Spn}$ diekspres di trans, namun tidak ada pengurangan aktiviti promotor yang selanjutnya diperhatikan ketikay efM_{Spn} dan yo eB_{Spn} diekspres di *trans*. Dengan hairannya, ketika $yefM_{Spn}$ berada bersama-sama dengan seluruh promotor di cis, pengaktifan transkripsi diperhatikan, dan pengaktifan ini berterusan walaupun dengan kehadiran yefM-yoeB_{Spn} di cis. Ini menunjukkan bahawa regulasi yefM-yoeB_{Spn} mungkin melibatkan unsur cis yang meliputi keseluruhan kawasan promotor bersama-sama dengan yefMspn dan/atau faktor lain dalam bakteria yang belum ditentukan. Unsur boxA-C didapati kekal dalam genom di semua strain S. pneumoniae dalam pengkalan data. Dengan sedemikian, adalah disarankan bahawa

unsur boxA-C dapat memberi kelebihan selektif kepada bakteria tersebut. Ini juga mencadangkan bahawa P_{yefM1} adalah promotor konstitutif yang memberi transkripsi tahap basal kepada lokus yefM- $yoeB_{Spn}$ supaya lokus ini boleh bertindak balas dengan lebih pantas terhadap perubahan kawasan sekitar yang drastik.

Acknowledgement

I would like to extend my deepest gratitude to all my supervisors, Assoc. Prof. Dr. Jennifer Ann Harikrishna, Assoc. Prof. Dr. Yeo Chew Chieng and Prof. Rofina Yasmin Othman, who have made the completion of my study possible. Their valuble guidance, patience and generous supports had helped me passing though all the obstacles during the period of my study. Special heartfelt thankful to Assoc. Prof. Dr. Yeo Chew Chieng, who was also my supervisor during my master study, for his encouragement and motivation, which have assisted me to overcome my shortfalls.

I am indebted to Prof. Manuel Espinosa, who was our collaborator in Centro de Investigaciones Biológicas, Spain, and also my current superior. I am thankful to him, who was happy and showed more that willingness to share his professional knowledge and creative ideas with me. Not to forget also his sense of humour and caring that made my six months stint in his laboratory enjoyable.

I am also grateful to all my ex-labmates, Min Keong, Seok Kooi, Jong Hang, Lena, Chee Kent, Kah Fai, Kah Yan, Hui Li, Adriya, Wan Sin, Yee Song, Fauziah, Su Ee, Khai Swan, Nadirah, Hossein, Sahar, as well as my current labmates, Alicia, Gloria, Concha, José, Fabi, Celeste, Lorena, Virtu, Inma, Tania, Sofi, Cris, and Marta for their friendship, assistance and useful discussion in succeeding my research.

I also wish to dedicate my appreciation to Dr. Cheong Sok Ching from Cancer Research Initiatives Foundation (CARIF), who was generous to offer the gel doc for me to carry out my electrophoretic mobility shift assays. An hourable mention goes to my beloved family and all my friends for their understanding and support throughout the duration of my studies. I would therefore offer my regards and blessing to all of those who assisted me in any aspect, may they always be well, healthy and happy.

Last but not least, this research was supported by SAGA grant M18 from Akademi Sains Malaysia and Science Fund grants 02-02-05-SF0019 and 02-02-05-SF0026 from the Ministry of Science Technology and Innovation to Yeo CC, Grant Consolider-Ingenio 2010 CSD2008-00013 from the Spanish Ministry of Science and Innovation to M. Espinosa, as well as Perdana Scholarship, Peruntukan Penyelidikan Pascasiswazah (PPP) grants PS039/2007C and PS150/2009A from University of Malaya and European Molecular Biology Organization (EMBO) short term fellowship to Chan WT.

Table of Contents

1	Lite	rature Review	1
1.1	Overview of Bacterial Toxin-antitoxin (TA) Loci		1
1.2	Р	roteic TA Loci and Their Classification	
	1.2.1	The <i>ccdAB</i> TA locus	9
	1.2.2	The <i>parDE</i> TA locus	12
	1.2.3	The <i>mazEF</i> and the <i>parD/pem</i> TA loci	
	1.2.	3.1 The <i>mazEF</i> TA locus	15
	1.2.	3.2 The <i>parD/pem</i> TA locus	
	124	The vanBC TA locus	25
	125	The <i>relBE</i> and <i>vefM-voeB</i> TA loci	31
	1.2.0	5.1 The <i>relBE</i> TA locus	31
	1.2.	5.2 The verb M -voe B TA loci	38
	126	The <i>nhd-dac</i> TA locus	41
	1.2.0	The $hig BA TA$ locus	
	1.2.7	The $hin BA$ TA locus	
	1.2.0	The $m_{\rm c} c_{\rm c}$ TA locus	
13	1.2.) T	The ω - c - ζ TA locus	
1.3 1.4		A Loci in the Octome of 5. pheumonide	
1.4	1 4 1	The $nezATTA$ locus	05
	1.4.1	The pe_{AT} TA locus	05
r	1.4.2 Mot	The yeld-yoed Spn TA locus	05 61
2	Mai	in the methods in the second	04
2.1	В П	pointormatics analyses	04
2.2	В	acterial Growth Media and Conditions	
2.3		Construction of Recombinant Plasmids	
	2.3.1	Construction of pGEM-1 Easy, pQF52, pLNBAD and pE128a reco	moinant
	plasmi	Ids	
	2.3.2	Primer design	
	2.3.3		/9
	2.3.4	Agarose gel electrophoresis	80
	2.3.5	Purification of DNA fragments from agarose gels	
	2.3.6	Restriction enzyme digestion	
	2.3.7	Ligation	82
	2.3.8	Preparation of chemically-induced <i>E. coli</i> competent cells	
	2.3.9	Transformation of chemically-induced <i>E. coli</i> competent cells	
	2.3.10	Screening of transformed cells	84
	2.3.11	Plasmid DNA extraction	
2.4	S	ite-Directed Mutagenesis	
2.5	Р	rotein Purification	88
	2.5.1	Purification of PezA and PezAT protein complex	
	2.5.2	Purification of YefM _{Spn} and YefM-YoeB _{Spn} protein complex	
	2.5.3	Tris-Tricine SDS-PAGE	90
	2.5.4	Protein blotting for N-terminal sequencing	
	2.5.5	Dialysis of purified proteins and determination of protein concentra	tion 93
2.6	D	Determination if the Toxin and Antitoxin Genes are Co-transcribed	
2.7	D	Determination of transcriptional start sites	
	2.7.1	5'-RACE	95
	2.7.2	Primer extension analyses	98
2.8	А	ssays for Promoter Activity	100
	2.8.1	Determination of promoter activities using β -galactosidase assays	101
	2.8.2	Determination of transcript levels using quantitative real-time RT-F	CR. 103
			viii

	2.8.2.1	Total RNA extraction	104				
	2.8.2.2	Quantitative real-time RT-PCR	105				
2.9	Deterr	nination of the Growth Curves	107				
2.1	2.10 Determination of the DNA Binding Sites of the TA Loci						
	2.10.1 EM	SA	108				
	2.10.1.1	The <i>pezAT</i> TA locus	108				
	2.10.1.2	The <i>yefM-yoeB_{Spn}</i> TA locus	110				
	2.10.2 DN	aseI footprinting assay	112				
	2.10.2.1	DNaseI titration	112				
	2.10.2.2	Preparation of 8% urea polyacrylamide gel (7 M)	113				
	2.10.2.3	DNaseI footprinting assay	113				
	2.10.2.4	Dideoxy sequencing reaction	113				
	2.10.3 Hyd	droxyl radical footprinting assay	114				
	2.10.3.1	Hydroxyl radical footprinting assay	114				
	2.10.3.2	Preparation of sequencing ladder by the Maxam-Gilbert	DNA				
	sequenci	ng method for (G+A).	115				
3	Results.		117				
3.1	The p	ezAT TA Locus of S. pneumoniae	117				
	3.1.1 Seq	uence analysis	117				
	3.1.2 Cor	nstruction of recombinant plasmids	126				
	3.1.3 Pur	ification of PezA protein and the PezAT protein complex	127				
	3.1.4 Inv	estigation of co-transcription of <i>pezA</i> and <i>pezT</i>	129				
	3.1.5 Det	ermination of the <i>pezAT</i> transcriptional start site using 5'-RACE.	131				
	3.1.6 Det	ermination of promoter activity	132				
	3.1.6.1	β-galactosidase assay	132				
	3.1.6.2	Quantitative real-time RT-PCR	133				
	3.1.7 Det	ermination of the DNA binding site of PezA protein and PezAT	protein				
	complex us	sing EMSA	135				
3.2	The ve	efM-voeB _{Snn} TA Locus of S. pneumoniae	137				
	3.2.1 Seq	uence analysis	137				
	3.2.2 Cor	nstruction of recombinant plasmids	144				
	3.2.3 Pur	ification of YefM _{Snn} protein and YefM-YoeB _{Snn} protein complex	146				
	3.2.4 Inv	estigation of co-transcription of $vefM_{sor}$ and veB_{sor}	147				
	3.2.5 Det	ermination of <i>vefM-voeB</i> _{sn} transcriptional start sites	149				
	3.2.5.1	5'-RACE	149				
	3.2.5.2	Primer extension	149				
	3.2.6 Det	ermination of promoter activity	152				
	3.2.6.1	ß-galactosidase assays	152				
	3.2.7 Det	ermination of the DNA binding site of the Yef M_{sn} antitoxin	and the				
	YefM-Yoe	B_{sm} TA complex	173				
4	Discussi	— эри	181				
41	The n	ezATTA locus of <i>S</i> pneumoniae	181				
42	The p	efM-voeB _{sm} TA locus of S pneumoniae	186				
5	Conclusi	ion	198				
6	Reference	2es	202				
7	Annendi	ces	236				

List of Figures

Figure 1: Sequence of the <i>mazEF</i> promoter region
Figure 2: The nucleotide sequence of the <i>ntrPR</i> promoter
Figure 3: The promoter region of the <i>higBA-1</i> (Å) and <i>higBA-2</i> (B) loci
Figure 4: Nucleotide sequence of the <i>hip</i> regulatory region
Figure 5: Sequence of the 5'-RACE abridged anchor primer
Figure 6: An overview of 5'-RACE system (Invitrogen TM , USA)
Figure 7: Regulation of the P_{BAD} promoter by L-Arabinose
Figure 8: Pairwise alignment of amino acid sequences of the S. pyogenes plasmid
pSM19035 ζ toxin and PezT toxin encoded in the S. pneumoniae chromosome 118
Figure 9: Pairwise amino acid sequence alignment of the S. pyogenes plasmid
pSM19035 ε antitoxin and PezA found in the chromosome of S. pnuemoniae118
Figure 10: Multiple amino acid sequence alignment of the PezT homologues in
annotated S. pnuemoniae strains
Figure 11: Multiple amino acid sequence alignment of the PezA homologues found in
annotated <i>S. pnuemoniae</i> strains
Figure 12: Multiple amino acid sequence alignment of the PezA homologues found in <i>S</i> .
pnuemoniae strains following re-designation of the pezA start codon as in S.
pneumoniae TIGR4 pezA
Figure 13: Multiple sequence alignment of the S. pyogenes plasmid pSM19035-encoded
ω regulator with homologues from the chromosome of S. pneumoniae CGSP14.124
Figure 14: Nucleotide sequence of the upstream region of the <i>pezA</i> reading frame in the
chromosome of <i>S.pneumoniae</i> TIGR4
Figure 15: Multiple sequence alignment of nucleotide sequences upstream of the <i>pezA</i>
reading frame in <i>S. pneumoniae</i> strains
Figure 16: The <i>pezA</i> and <i>pezT</i> reading frames are overlapped
Figure 17: CBB-stained 16% SDS-PAGE gel showing (His) _k -PezA and PezT from E.
coli BL21-CodonPlus(DE3)-RIL purified under native conditions
Figure 18: Genetic organization of the <i>pezAT</i> operon and the result from RT-PCR 130
Figure 19: Nucleotide sequence of the region upstream of the pezAT locus in the
chromosome of <i>S. pneumoniae</i> TIGR4131
Figure 20: β-galactosidase activity in E. coli DH5α cells carrying the recombinant
plasmids pQF_P, pQF_PpezA, pQF_PpezApezT, pQF_CpezA and the parental
pQF52 plasmid, as the negative control
Figure 21: Relative expression ratio of lacZ to 16S rRNA transcript levels in E. coli
DH5α carrying plasmids pQF_P, pQF_PpezA, pQF_PpezApezT and pQF_CpezA,
as determined by quantitative real-time RT-PCR
Figure 22: EMSA showing in vitro binding of purified PezA protein and PezAT protein
complex with 20 fmol of a 203 bp DNA fragment encompassing the imperfect
palindrome sequence136
Figure 23: Multiple alignment of YoeBspn of S. pneumoniae TIGR4 (indicated as
S.pneumoniaeTIGR4_SP1740) with YoeB _{Eco} of E. coli K-12 (indicated as
E.coliK12_b4539) and E. faecium plasmid pRUM-encoded Txe toxin (indicated as
E.faciumU37pRUM_pRUMp06)138
Figure 24: Multiple alignment of YefM _{Spn} of S. pneumoniae TIGR4 (indicated as
S.peumoniaeTIGR4_SP1741) with YefM _{Eco} of E. coli K-12 (indicated as
E.coliK12_b2017) and E. faecium plasmid pRUM-encoded Axe antitoxin
(indicated as E.faciumU37pRUM_pRUMp07)139
Figure 25: Multiple sequence alignment of the $YoeB_{Spn}$ homologues found in the
annotated genomes of S. pnuemoniae strains in the NCBI databases

Figure 26: Multiple sequence alignment of the YefM _{Spn} homologues from the annotated
genomes of <i>S. pnuemoniae</i> strains in the NCBI databases
Figure 27: Nucleotide sequence of the $yefM_{Spn}$ upstream regulatory region in the genome
of S. pneumoniae R6141
Figure 28: Predicted stem-loop structure of boxA-C element identified in region
upstream of P_{vefM2} and downstream of the putative transcription terminator of gene
upstream of $vefM_{Snn}$
Figure 29: Multiple sequence alignment of nucleotide sequences upstream of the $vefM_{sem}$
reading frame in several <i>S pnuemoniae</i> strains available in the database 143
Figure 30: Nucleotide and amino acid sequences of the C-terminus of $vet M_{a}$ of the
genome of S <i>pnoumoniae</i> R6 and the pET28a HisVefMHis recombinant plasmid
genome of 5. preumoniae Ro and the pE120a_ThsTenvithsTecomonian plasma 145
Eigure 21: CPP stoined 16% CDS DACE get showing purified VofM VooP and
VofM fusion motions from E coli DL21 Coden Divo(DE2) DL under notive
Yenwisph fusion proteins from E. cou BL21-CodonPlus(DE5)-KIL under native
conditions
Figure 32: Genetic organization of the $yefM$ -yoeB _{spn} operon and the results from RT-
PCR148
Figure 33: Nucleotide sequence of the region upstream of the <i>yefM-yoeB_{spn}</i> TA locus in
the genome of S. pneumoniae R6150
Figure 34: Transcriptional start sites of the $yefM$ - $yoeB_{Spn}$ operon determined by primer
extension analyses151
Figure 35: β-galactosidase activities of <i>E. coli</i> TOP10 cells carrying the recombinant
plasmids pQF_P1P2, pQF_P2, pQF_P1, pQF_nP and the parental pQF52 plasmid
as the negative control
Figure 36: β-Galactosidase activities of E. coli TOP10 cells carrying the pLN yM-
derived recombinant plasmids harboring $yefM_{Spn}$ under the control of the arabinose-
inducible P_{BAD} promoter and pOF52-derived recombinant plasmids pOF P1P2.
pOF P2 pOF P1 and pOF nP containing various upstream regulatory fragments
as denicted
Figure 37: β -Galactosidase activities of <i>E</i> coli TOP10 cells carrying the nLN vM-
derived recombinant plasmids with $vefM$ -vee B_c under the control of the
arabinose-inducible P_{nup} promoter and pOE52-derived recombinant plasmids
$n \cap E$ P1P2 $n \cap E$ P2 $n \cap E$ P1 and $n \cap E$ $n P$ containing various unstream regulatory
frequents as denisted
Figure 28, β Calastanidase estivities of $E_{\rm cali}$ TOD10 calls commune the following
rigure 56. p-Galaciosidase activities of <i>E. coli</i> TOFTO cens carrying the following
pQF_{2} -derived recombinant plasmids: $pQF_{1}P_{2}$, $pQF_{1}P_{2}yW_{1}$,
pQF_PIP2yMyB, pQF_P2, pQF_P2yM, pQF_P2yMyB, pQF_MIYM,
pQF_MTyMyB, pQF_M2yM, pQF_M2yMyB, pQF_yM and pQF_CyM159
Figure 39: Sequence of the first 48 codons of $yefM_{Spn}$ indicating the locations in which
stop codons were introduced within the $yefM_{Spn}$ reading frame using site-directed
mutagenesis
Figure 40: β -Galactosidase activities of <i>E. coli</i> TOP 10 cells carrying the following
pQF52-derived recombinant plasmids: pQF_P1, pQF_P1yM, pQF_P1yMyB,
pQF_nP, pQF_nPyM, pQF_nPyMyB, pQF_yB and pQF_CyB164
Figure 41: Nucleotide sequence of the $yoeB_{Spn}$ reading frame with putative internal
promoters, secondary structure of mRNA sequence after $yoeB_{Spn}$ stop codon, and
the possible reading frames of the intergenic sequence between $yoeB_{Spn}$ and
spr1584
Figure 42: Growth curve of E. coli TOP10 cells harbouring the pLNBAD-derived
recombinant plasmid pLNyMyB encompassing the <i>vefM-voeB_{Sm}</i> reading frames
cloned downstream of the arabinose-inducible P_{BAD} promoter of the vector 167

- Figure 45: Nucleotide sequence of the $yefM_{Spn}$ reading frame encoding the C-terminal portion of YefM_{Spn}.....170

List of Tables

Table 1: The nine toxins with their cognate antitoxins	8
Table 2: The representation of solo toxins/antitoxins and TA pairs in S. pneu	<i>moniae</i> 60
Table 3: List of GenBank identifiers (GI numbers) for all predicted and k	nown toxins
and antitoxins of S. pneumoniae	61
Table 4: Bacterial strains and plasmid vectors used in this study	66
Table 5: Recombinant plasmids constructed in this study	69
Table 6: List of primers used in this study	77
Table 7: The PezAT homologues in the chromosomes of annotated S. strains	pneumoniae 119
Table 8: The YefM-YoeB _{Spn} homologues found in the annotated genomes of S. pneumoniae strains in the NCBI databases.	of sequenced

Abbreviations

5'-RACE	5'-Rapid Amplification of cDNA Ends
bp	base pair(s)
cDNA	complementary deoxyribonucleic acid
CSP	competence stimulating peptide
DNA	deoxyribonucleic acid
EDF	extracellular death factor
EMSA	electrophoretic mobility shift assays
FIS	factor for inversion stimulation
FitIS	Fit interaction sequence
FitPP	Fit perfect palindrome
h	hour(s)
IHF	integration host factor
IPTG	isopropyl-β-D-1-thiogalactopyranoside
min	minute(s)
mRNA	messenger ribonucleic acid
OD	optical density
ω-ε-ζ	omega-epsilon-zeta
ONPG	o-nitrophenyl-β-D-galactopyraniside
ORF	open reading frames
PCD	programmed cell death
PIN	PilT N-terminus
ppGpp	guanosine 5'-diphosphate 3'-diphosphate
PPI1	pathogenicity island I
PSK	post-segregational killing
RNA	ribonucleic acid
rRNA	ribosomal ribonucleic acid
RT-PCR	reverse transcriptase polymerase chain reaction
S	second(s)
SDS-PAGE	sodium dodecyl sulfate polyacrylamide gel electrophoresis
SI	superintegron(s)
ТА	toxin-antitoxin
tmRNA	transfer-messenger ribonucleic acid
tRNA	transfer ribonucleic acid
UNICEF	The United Nations Children's Fund
UV	Ultraviolet
WHO	World Health Organization
X-gal	5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside