GENETIC REGULATION OF THE *YEFM-YOEB* AND *PEZAT* TOXIN-ANTITOXIN LOCI OF *STREPTOCOCCUS PNEUMONIAE*

CHAN WAI TING

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2011
GENETIC REGULATION OF THE YEFM-YOEB AND PEZAT TOXIN-ANTITOXIN LOCI OF STREPTOCOCCUS PNEUMONIAE

CHAN WAI TING

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF GENETICS & MOLECULAR BIOLOGY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR
2011
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Chan Wai Ting (I.C/Passport No.: 791215-08-5966)
Registration/Matric No.: SHC060041
Name of Degree: Doctor of Philosophy
Title of Project/Research Report/Dissertation/Thesis (“this work”):
Genetic Regulation of the yefM-yoeB and pezAT Toxin-Antitoxin Loci of Streptococcus pneumoniae

Field of Study: Molecular Biology

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Date:

Subscribed and solemnly declared before,

Date:

Name: Assoc. Prof. Dr. Jennifer Ann Harikrishna
Designation: Head of Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya
Abstract

The genome of *Streptococcus pneumoniae* harbours at least eight putative toxin-antitoxin (TA) loci. Two of these TA loci, *pezAT* and *yefM-yoeB*_{Spn}, have previously been shown to be functional and the regulation mechanism of both TA loci was investigated in this study. Like most TA loci investigated, both the *pezAT* and *yefM-yoeB*_{Spn} loci were co-transcribed from σ⁷⁰-type promoters. Transcriptional fusion assays demonstrated that the PezA and YefM_{Spn} antitoxins served as repressors whereas their respective cognate toxins, PezT and YoeB_{Spn}, served as co-repressors to further repress the activities of their promoters. DNAse I footprinting results indicated that the PezA and YefM_{Spn} antitoxins bind to palindromic operator sites which overlap their respective promoter regions where they may hinder the binding of RNA polymerase thus resulting in the observed transcriptional repression. On the other hand, the PezA-PezT and YefM-YoeB_{Spn} TA protein complexes were able to bind to their respective operator sites with lesser amounts, which indicated that the PezT and YoeB_{Spn} toxins served as co-repressors to enhance the binding affinity of their cognate antitoxins, in agreement with the results from the transcription fusion assays and findings from investigations of other TA systems. However, the regulation of *yefM-yoeB*_{Spn} appeared to be more complex than *pezAT* or other common TA loci. A BOX mobile element was found within the intergenic region between *yefM*_{Spn} and the upstream gene in the *S. pneumoniae* R6 genome. The insertion of the BOX element, termed boxA-C, led to the incorporation of an additional promoter, P_{yefM1}, upstream of its original promoter, P_{yefM2}. Transcriptional fusion assays indicated that P_{yefM1} is a much weaker promoter compared to P_{yefM2}. Footprinting assays showed that either the YefM_{Spn} antitoxin or the YefM-YoeB_{Spn} TA complex binds only to a palindromic sequence that overlapped the –35 region of the P_{yefM2} promoter but not to any regions overlapping or surrounding the P_{yefM1} promoter. With just the P_{yefM2} promoter alone, the YefM_{Spn} antitoxin repressed transcription from P_{yefM2} both in trans and in cis and this repression was augmented by YoeB_{Spn}. However, in the presence of the entire upstream regulatory region, which included boxA-C, P_{yefM1} and P_{yefM2}, slight repression was observed when yefM_{Spn} was expressed in trans, but no further repression was observed when yefM_{Spn} and yoeB_{Spn} were expressed in trans. Interestingly, when yefM_{Spn} was constructed in cis along with the entire promoter region, transcriptional activation was observed, and the activation persisted even in the presence of the entire *yefM-yoeB*_{Spn} reading frames in cis. This indicated that the regulation of yefM-yoeB_{Spn} may involve cis-acting elements which include the entire promoter region along with the yefM_{Spn} reading frame and/or host factors that have yet to be determined. As the boxA-C element is conserved in the genome of all sequenced *S. pneumoniae* strains in the database, it is suggested that the boxA-C element may provide a selective advantage to the host. It is also postulated that P_{yefM1} is a constitutive promoter that provided a basal level of transcription to the yefM-yoeB_{Spn} locus to enable a faster response to any drastic changes in the environment.
Regulasi Genetik untuk Lokus Toksin-Antitoksin \(yefM-yoeB \) dan \(pezAT \) daripada
\textit{Streptococcus pneumoniae}

oleh

Chan Wai Ting

\textbf{Abstrak}

Genom \textit{Streptococcus pneumoniae} dijangka mengandungi sekurang-kurangnya lapan lokus toksin-antitoksin (TA). Dua lokus daripada jangkaan ini, iaitu \(pezAT \) dan \(yefM-yoeB_{Spn} \), telah dibuktikan berfungsi and regulasi mekanisme kedua-dua lokus TA ini telah diselidik dalam kajian ini. Seperti kebanyakan lokus TA yang diselidiki, \(pezAT \) dan \(yefM-yoeB_{Spn} \) adalah turut ditranskrip melalui promoter jenis \(\sigma^{70} \). Kajian gabungan transkripsi menunjukkan bahawa antitoksin PezA dan YoeB\(_{Spn}\) berfungsi sebagai represor manakala toksin berkaitan mereka masing-masing, yakni PezT dan YoeB\(_{Spn}\), berfungsi sebagai ko-represor untuk mengurangkan dengan selanjutnya aktiviti promotor masing-masing. Eksperimen DNAse I footprinting menunjukkan bahawa antitoksin PezA dan YefM\(_{Spn}\) mengikat kepada operator palindrom yang menindih dengan promotor mereka masing-masing. Ini kemungkinannya akan menghalang RNA polimerase daripada mengikat kepada promotor tersebut dan oleh yang demikian, pengurangan aktiviti promotor diperhatikan. Sementelahan pula, komplek protin TA PezA-PezT dan YefM-YoeB\(_{Spn}\) berkeupayaan untuk mengikat kepada operator masing-masing dengan kuanti yang lebih kurang. Ini menunjukkan bahawa toksin PezT dan YoeB\(_{Spn}\) berfungsi sebagai ko-represor untuk meningkatkan afiniti pengikatan antitoksin berkaitan mereka terhadap promotor masing-masing. Ini adalah bersetujuan dengan penemuan diselidik dalam kajian gabungan transkripsi serta penyelidikan sistem TA yang lain. Namun demikian, regulasi \(yefM-yoeB_{Spn} \) adalah lebih kompleks daripada \(pezAT \) atau lokus TA yang umum. Unsur mobil BOX telah ditemui di antara \(yefM_{Spn} \) dan gen di hulunya dalam genom \textit{S. pneumoniae} R6. Penyisipan unsur BOX, yang dinamakan boxA-C dalam kajian ini, menyebabkan penambah satu promotor baru, \(P_{yefM1} \), di hulu promotor asalnya, \(P_{yefM2} \). Kajian gabungan transkripsi menunjukkan bahawa \(P_{yefM1} \) adalah promotor yang jauh lebih lemah apabila dibanding dengan \(P_{yefM2} \). Kajian footprinting menunjukkan bahawa antitoksin YefM\(_{Spn}\) atau komplek TA YefM-YoeB\(_{Spn}\) hanya mengikat pada palindrom yang menindih dengan elemen -35 daripada promotor \(P_{yefM2} \) tetapi tidak mengikat kepada mana-mana tempat di sekitar promotor \(P_{yefM1} \). Jika dengan promotor \(P_{yefM2} \) sahaja, antitoksin YefM\(_{Spn}\) didapati mengurangkan transkripsi daripada \(P_{yefM2} \) di \textit{trans} dan juga di \textit{cis}, dan pengurangan aktiviti promotor ini diperkuatkan lagi oleh YoeB\(_{Spn}\). Akan tetapi, kehadiran keseluruh kawasan regulasi yang meliputi boxA-C, \(P_{yefM1} \) dan \(P_{yefM2} \), mengakibatkan hanya sedikit pengurangan aktiviti promoter diperhatikan ketika \(yefM_{Spn} \) diekspress di \textit{trans}, namun tidak ada pengurangan aktiviti promotor yang selanjutnya diperhatikan ketika \(yefM_{Spn} \) di \textit{cis}. Dengan hairannya, ketika \(yefM_{Spn} \) berada bersama-sama dengan seluruh promotor di \textit{cis}, pengaktifan transkripsi diperhatikan, dan pengaktifan ini berterusan walaupun dengan kehadiran \(yefM-yoeB_{Spn} \) di \textit{cis}. Ini menunjukkan bahawa regulasi \(yefM-yoeB_{Spn} \) mungkin melibatkan unsur \textit{cis} yang meliputi keseluruh kawasan promotor bersama-sama dengan \(yefM_{Spn} \) dan/atau faktor lain dalam bakteria yang belum ditentukan. Unsur boxA-C didapati kekal dalam genom di semua strain \textit{S. pneumoniae} dalam pengkalan data. Dengan sedemikian, adalah disarankan bahawa
unsur boxA-C dapat memberi kelebihan selektif kepada bakteria tersebut. Ini juga mencadangkan bahawa P_{yefM1} adalah promotor konstitutif yang memberi transkripsi tahap basal kepada lokus $yefM$-$yoeB_{Spn}$ supaya lokus ini boleh bertindak balas dengan lebih pantas terhadap perubahan kawasan sekitar yang drastik.
Acknowledgement

I would like to extend my deepest gratitude to all my supervisors, Assoc. Prof. Dr. Jennifer Ann Harikrishna, Assoc. Prof. Dr. Yeo Chew Chieng and Prof. Rofina Yasmin Othman, who have made the completion of my study possible. Their valuable guidance, patience and generous supports had helped me passing though all the obstacles during the period of my study. Special heartfelt thankful to Assoc. Prof. Dr. Yeo Chew Chieng, who was also my supervisor during my master study, for his encouragement and motivation, which have assisted me to overcome my shortfalls.

I am indebted to Prof. Manuel Espinosa, who was our collaborator in Centro de Investigaciones Biológicas, Spain, and also my current superior. I am thankful to him, who was happy and showed more that willingness to share his professional knowledge and creative ideas with me. Not to forget also his sense of humour and caring that made my six months stint in his laboratory enjoyable.

I am also grateful to all my ex-labmates, Min Keong, Seok Kooi, Jong Hang, Lena, Chee Kent, Kah Fai, Kah Yan, Hui Li, Adiya, Wan Sin, Yee Song, Fauziah, Su Ee, Khai Swan, Nadirah, Hossein, Sahar, as well as my current labmates, Alicia, Gloria, Concha, José, Fabi, Celeste, Lorena, Virtu, Inna, Tania, Sofi, Cris, and Marta for their friendship, assistance and useful discussion in succeeding my research.

I also wish to dedicate my appreciation to Dr. Cheong Sok Ching from Cancer Research Initiatives Foundation (CARIF), who was generous to offer the gel doc for me to carry out my electrophoretic mobility shift assays. An honourable mention goes to my beloved family and all my friends for their understanding and support throughout the duration of my studies. I would therefore offer my regards and blessing to all of those who assisted me in any aspect, may they always be well, healthy and happy.

Last but not least, this research was supported by SAGA grant M18 from Akademi Sains Malaysia and Science Fund grants 02-02-05-SF0019 and 02-02-05-SF0026 from the Ministry of Science Technology and Innovation to Yeo CC, Grant Consolider-Ingenio 2010 CSD2008-00013 from the Spanish Ministry of Science and Innovation to M. Espinosa, as well as Perdana Scholarship, Peruntukan Penyelidikan Pascasiswazah (PPP) grants PS039/2007C and PS150/2009A from University of Malaya and European Molecular Biology Organization (EMBO) short term fellowship to Chan WT.
Table of Contents

1 Literature Review ... 1
1.1 Overview of Bacterial Toxin-antitoxin (TA) Loci ... 1
1.2 Proteic TA Loci and Their Classification... 8
 1.2.1 The ccdAB TA locus ... 9
 1.2.2 The parDE TA locus ... 12
 1.2.3 The mazEF and the parD/pem TA loci .. 15
 1.2.3.1 The mazEF TA locus .. 15
 1.2.3.2 The parD/pem TA locus .. 21
 1.2.4 The vapBC TA locus ... 25
 1.2.5 The relBE and yefM-yoeB TA loci .. 31
 1.2.5.1 The relBE TA locus ... 31
 1.2.5.2 The yefM-yoeB TA loci .. 38
 1.2.6 The phd-doc TA locus ... 41
 1.2.7 The higBA TA locus .. 45
 1.2.8 The hipBA TA locus ... 50
 1.2.9 The ω-ε-ζ TA locus ... 55
1.3 TA Loci in the Genome of *S. pneumoniae* ... 59
1.4 Objectives of this Project ... 63
 1.4.1 The pezAT TA locus ... 63
 1.4.2 The yefM-yoeB_{Spn} TA locus .. 63
2 Materials and Methods ... 64
 2.1 Bioinformatics analyses ... 64
 2.2 Bacterial Growth Media and Conditions ... 65
 2.3 Construction of Recombinant Plasmids .. 67
 2.3.1 Construction of pGEM-T Easy, pQF52, pLNBAD and pET28a recombinant plasmids .. 67
 2.3.2 Primer design ... 74
 2.3.3 PCR .. 79
 2.3.4 Agarose gel electrophoresis .. 80
 2.3.5 Purification of DNA fragments from agarose gels 80
 2.3.6 Restriction enzyme digestion ... 81
 2.3.7 Ligation .. 82
 2.3.8 Preparation of chemically-induced *E. coli* competent cells 82
 2.3.9 Transformation of chemically-induced *E. coli* competent cells 83
 2.3.10 Screening of transformed cells .. 84
 2.3.11 Plasmid DNA extraction .. 84
 2.4 Site-Directed Mutagenesis .. 86
 2.5 Protein Purification .. 88
 2.5.1 Purification of PezA and PezAT protein complex 88
 2.5.2 Purification of YefM_{Spn} and YefM-YoeB_{Spn} protein complex 89
 2.5.3 Tris-Tricine SDS-PAGE ... 90
 2.5.4 Protein blotting for N-terminal sequencing 92
 2.5.5 Dialysis of purified proteins and determination of protein concentration .. 93
 2.6 Determination if the Toxin and Antitoxin Genes are Co-transcribed 94
 2.7 Determination of transcriptional start sites ... 95
 2.7.1 5'-RACE ... 95
 2.7.2 Primer extension analyses .. 98
 2.8 Assays for Promoter Activity ... 100
 2.8.1 Determination of promoter activities using β-galactosidase assays...... 101
 2.8.2 Determination of transcript levels using quantitative real-time RT-PCR 103
List of Figures

Figure 1: Sequence of the mazEF promoter region ... 19
Figure 2: The nucleotide sequence of the ntrPR promoter .. 28
Figure 3: The promoter region of the higBA-1 (A) and higBA-2 (B) loci 47
Figure 4: Nucleotide sequence of the hip regulatory region ... 51
Figure 5: Sequence of the 5'-RACE abridged anchor primer .. 77
Figure 6: An overview of 5'-RACE system (Invitrogen TM, USA).............................. 96
Figure 7: Regulation of the P_BAD promoter by L-Arabinose .. 101
Figure 8: Pairwise alignment of amino acid sequences of the S. pyogenes plasmid pSM19035 ζ toxin and PezT toxin encoded in the S. pneumoniae chromosome. 118
Figure 9: Pairwise amino acid sequence alignment of the S. pyogenes plasmid pSM19035 ε antitoxin and PezA found in the chromosome of S. pneumoniae 118
Figure 10: Multiple amino acid sequence alignment of the PezT homologues in annotated S. pneumoniae strains ... 120
Figure 11: Multiple amino acid sequence alignment of the PezA homologues found in annotated S. pneumoniae strains ... 121
Figure 12: Multiple amino acid sequence alignment of the PezA homologues found in S. pneumoniae strains following re-designation of the pezA start codon as in S. pneumoniae TIGR4 pezA .. 122
Figure 13: Multiple sequence alignment of the S. pyogenes plasmid pSM19035-encoded ω regulator with homologues from the chromosome of S. pneumoniae CGSP14.124
Figure 14: Nucleotide sequence of the upstream region of the pezA reading frame in the chromosome of S.pneumoniae TIGR4 ... 124
Figure 15: Multiple sequence alignment of nucleotide sequences upstream of the pezA reading frame in S. pneumoniae strains ... 125
Figure 16: The pezA and pezT reading frames are overlapped .. 125
Figure 17: CBB-stained 16% SDS-PAGE gel showing (His)_6-PezA and PezT from E. coli BL21-CodonPlus(DE3)-RIL purified under native conditions 128
Figure 18: Genetic organization of the pezAT operon and the result from RT-PCR 130
Figure 19: Nucleotide sequence of the region upstream of the pezAT locus in the chromosome of S. pneumoniae TIGR4 ... 131
Figure 20: β-galactosidase activity in E. coli DH5α cells carrying the recombinant plasmids pQF_P, pQF_PpezA, pQF_PpezApezT, pQF_CpezA and the parental pQF52 plasmid, as the negative control ... 132
Figure 21: Relative expression ratio of lacZ to 16S rRNA transcript levels in E. coli DH5α carrying plasmids pQF_P, pQF_PpezA, pQF_PpezApezT and pQF_CpezA, as determined by quantitative real-time RT-PCR... 134
Figure 22: EMSA showing in vitro binding of purified PezA protein and PezAT protein complex with 20 fmol of a 203 bp DNA fragment encompassing the imperfect palindrome sequence ... 136
Figure 23: Multiple alignment of YoeB_Spn of S. pneumoniae TIGR4 (indicated as S.pneumoniaeTIGR4_SP1740) with YoeBEco of E. coli K-12 (indicated as E.coliK12_b4539) and E. faecium plasmid pRUM-encoded Txe toxin (indicated as E.faciunU37pRUM_pRUMp06) ... 138
Figure 24: Multiple alignment of YefM_Spn of S. pneumoniae TIGR4 (indicated as S.pneumoniaeTIGR4_SP1741) with YefMEco of E. coli K-12 (indicated as E.coliK12_b2017) and E. faecium plasmid pRUM-encoded Axe antitoxin (indicated as E.faciunU37pRUM_pRUMp07) ... 139
Figure 25: Multiple sequence alignment of the YoeBSpn homologues found in the annotated genomes of S. pneumoniae strains in the NCBI databases 139
Figure 26: Multiple sequence alignment of the YefM_{Spn} homologues from the annotated genomes of <i>S. pneumoniae</i> strains in the NCBI databases ... 140

Figure 27: Nucleotide sequence of the yefM_{Spn} upstream regulatory region in the genome of <i>S. pneumoniae</i> R6.. 141

Figure 28: Predicted stem-loop structure of boxA-C element identified in region upstream of P_{yefM2} and downstream of the putative transcription terminator of gene upstream of yefM_{Spn} ... 142

Figure 29: Multiple sequence alignment of nucleotide sequences upstream of the yefM_{Spn} reading frame in several <i>S. pneumoniae</i> strains available in the database............. 143

Figure 30: Nucleotide and amino acid sequences of the C-terminus of yefM_{Spn} of the genome of <i>S. pneumoniae</i> R6 and the pET28a-HisYefMHiHis recombinant plasmid .. 145

Figure 31: CBB-stained 16% SDS-PAGE gel showing purified YefM-YoeB_{Spn} and YefM_{Spn} fusion proteins from <i>E. coli</i> BL21-CodonPlus(DE3)-RIL under native conditions .. 146

Figure 32: Genetic organization of the yefM-yoeB_{Spn} operon and the results from RT-PCR .. 148

Figure 33: Nucleotide sequence of the region upstream of the yefM-yoeB_{Spn} TA locus in the genome of <i>S. pneumoniae</i> R6... 150

Figure 34: Transcriptional start sites of the yefM-yoeB_{Spn} operon determined by primer extension analyses. .. 151

Figure 35: β-galactosidase activities of <i>E. coli</i> TOP10 cells carrying the recombinant plasmids pQF_P1P2, pQF_P2, pQF_P1, pQF_nP and the parental pQF52 plasmid as the negative control .. 153

Figure 36: β-Galactosidase activities of <i>E. coli</i> TOP10 cells carrying the pLN_yM-derived recombinant plasmids harboring yefM_{Spn} under the control of the arabinose-inducible P_{BAD} promoter and pQF52-derived recombinant plasmids pQF_P1P2, pQF_P2, pQF_P1 and pQF_nP containing various upstream regulatory fragments as depicted ... 155

Figure 37: β-Galactosidase activities of <i>E. coli</i> TOP10 cells carrying the pLN_yM-derived recombinant plasmids with yefM-yoeB_{Spn} under the control of the arabinose-inducible P_{BAD} promoter and pQF52-derived recombinant plasmids pQF_P1P2, pQF_P2, pQF_P1 and pQF_nP containing various upstream regulatory fragments as depicted ... 156

Figure 38: β-Galactosidase activities of <i>E. coli</i> TOP10 cells carrying the following pQF52-derived recombinant plasmids: pQF_P1P2, pQF_P1P2yM, pQF_P1P2yMyB, pQF_P2, pQF_P2yM, pQF_P2yMyB, pQF_M1yMyB, pQF_M1yMyB, pQF_M2yM, pQF_M2yMyB, pQF_M2yMyB, pQF_yM and pQF_CyM............. 159

Figure 39: Sequence of the first 48 codons of yefM_{Spn} indicating the locations in which stop codons were introduced within the yefM_{Spn} reading frame using site-directed mutagenesis ... 160

Figure 40: β-Galactosidase activities of <i>E. coli</i> TOP10 cells carrying the following pQF52-derived recombinant plasmids: pQF_P1, pQF_P1yM, pQF_P1yMyB, pQF_nP, pQF_nPyM, pQF_nPyMyB, pQF_yB and pQF_CyB .. 164

Figure 41: Nucleotide sequence of the yoeB_{Spn} reading frame with putative internal promoters, secondary structure of mRNA sequence after yoeB_{Spn} stop codon, and the possible reading frames of the intergenic sequence between yoeB_{Spn} and spr1584 .. 165

Figure 42: Growth curve of <i>E. coli</i> TOP10 cells harbouring the pLN_BAD-derived recombinant plasmid pLN_yMMyB encompassing the yefM-yoeB_{Spn} reading frames cloned downstream of the arabinose-inducible P_{BAD} promoter of the vector............ 167
Figure 43: Growth curve of *E. coli* TOP10 cells harbouring the pLNBAD-derived recombinant plasmid pLN_yM encompassing the yefM_{Spn} reading frame inserted downstream of the arabinose-inducible P_{BAD} promoter of the vector..........................168

Figure 44: *E. coli* cells on Luria-Bertani agar supplemented with 100 μg/ml of Ampicillin and 80 μg/ml of X-gal ...170

Figure 45: Nucleotide sequence of the yefM_{Spn} reading frame encoding the C-terminal portion of YefM_{Spn}..170

Figure 46: Growth curve of the *E. coli* TOP10 cells harbouring pLNBAD-derived recombinant plasmid containing the DNA fragment encoding amino acid residues 34 – 84 of YefM_{Spn} and the entire yoeB_{Spn} reading frame inserted downstream of the arabinose-inducible P_{BAD} promoter (pLN_CyMyB)..171

Figure 47: β-Galactosidase activities of *E. coli* TOP 10 cells carrying the pLNBAD-derived recombinant pLN_CyMyB plasmid and each of the following pQF52-derived recombinant plasmids harbouring various upstream regulatory fragments: pQF_P1P2, pQF_P2, pQF_P1 and pQF_nP ...172

Figure 48: EMSA showing in vitro binding of increasing amounts (from left to right: 0.00, 0.01, 0.05 and 0.10 μg) of purified YefM-YoeB_{Spn} protein complex with 322 bp of [γ-³²P]ATP labeled DNA fragment (3000 cpm per lane) encompassing the boxA-C element and palindrome sequence, with (lanes 5 to 8) and without (lanes 1 to 4) 10 ng/μl of heparin...174

Figure 49: EMSA showing in vitro binding of purified YefM_{Spn} protein and the YefM-YoeB_{Spn} protein complex with the 284 bp of [γ-³²P]ATP labeled DNA fragment (3000 cpm per lane) encompassing the PS palindrome sequence upstream of yefM-yoeB_{Spn} with 10 ng/μl of heparin ...175

Figure 50: DNaseI footprinting assays for the purified YefM_{Spn} and YefM-YoeB_{Spn} proteins on the DNA fragment containing the PS palindrome sequence.............177

Figure 51: Nucleotide sequence of the coding and non-coding DNA strands of the yefM_{Spn} upstream region containing the PS palindrome sequence178

Figure 52: Hydroxyl radical footprinting assay for YefM_{Spn} and YefM-YoeB_{Spn} on the PS palindrome sequence ..179

Figure 53: Nucleotide sequence of the coding and non-coding DNA strands of the yefM_{Spn} upstream region containing the PS palindrome sequence180

Figure 54: Schematic drawing of the DNA double helix of yefM_{Spn} upstream region containing the PS palindrome sequence ..180
List of Tables

Table 1: The nine toxins with their cognate antitoxins ... 8
Table 2: The representation of solo toxins/antitoxins and TA pairs in *S. pneumoniae* ... 60
Table 3: List of GenBank identifiers (GI numbers) for all predicted and known toxins and antitoxins of *S. pneumoniae* ... 61
Table 4: Bacterial strains and plasmid vectors used in this study................................. 66
Table 5: Recombinant plasmids constructed in this study.. 69
Table 6: List of primers used in this study.. 77
Table 7: The PezAT homologues in the chromosomes of annotated *S. pneumoniae* strains. ... 119
Table 8: The YefM-YoeB*Spn* homologues found in the annotated genomes of sequenced *S. pneumoniae* strains in the NCBI databases. ... 139
Abbreviations

5'-RACE 5'-Rapid Amplification of cDNA Ends
bp base pair(s)
cDNA complementary deoxyribonucleic acid
CSP competence stimulating peptide
DNA deoxyribonucleic acid
EDF extracellular death factor
EMSA electrophoretic mobility shift assays
FIS factor for inversion stimulation
FitIS Fit interaction sequence
FitPP Fit perfect palindrome
h hour(s)
IHF integration host factor
IPTG isopropyl-β-D-1-thiogalactopyranoside
min minute(s)
mRNA messenger ribonucleic acid
OD optical density
ω-ε-ζ omega-epsilon-zeta
ONPG o-nitrophenyl-β-D-galactopyranoside
ORF open reading frames
PCD programmed cell death
PIN PilT N-terminus
ppGpp guanosine 5′-diphosphate 3′-diphosphate
PPI1 pathogenicity island I
PSK post-segregational killing
RNA ribonucleic acid
rRNA ribosomal ribonucleic acid
RT-PCR reverse transcriptase polymerase chain reaction
s second(s)
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SI superintegron(s)
TA toxin-antitoxin
tmRNA transfer-messenger ribonucleic acid
tRNA transfer ribonucleic acid
UNICEF The United Nations Children's Fund
UV Ultraviolet
WHO World Health Organization
X-gal 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside