CONSTRUCTION AND EXPRESSION OF HUMAN ADIPONECTIN IN PROKARYOTIC AND EUKARYOTIC EXPRESSION SYSTEMS AND THE STUDY OF ITS EFFECT ON SELECTED BLOOD PARAMETERS AND EXPRESSION OF RELATED GENES

HUSSIN ALWAN ROTHAN AL-MAAMURI

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

CONSTRUCTION AND EXPRESSION OF HUMAN ADIPONECTIN IN PROKARYOTIC AND EUKARYOTIC EXPRESSION SYSTEMS AND THE STUDY OF ITS EFFECT ON SELECTED BLOOD PARAMETERS AND EXPRESSION OF RELATED GENES

HUSSIN ALWAN ROTHAN AL-MAAMURI

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

Abstract

Adiponectin is one of the most bioactive substances secreted by adipose tissue which is involved in protection against metabolic syndrome, artherosclerosis and type II diabetes. Research into the use of adiponectin as a promising drug for metabolic syndromes requires production of this hormone in high quantities. This may be achieved using recombinant DNA technology, which would also allow the production of different molecular forms as well as providing greater input in terms of understanding its signalling pathway. This study was mainly targeted towards producing adiponectin hormone as a recombinant protein by *P. pastoris* (P-ADP) as a cheap and convenient eukaryotic expression system for potential application in pharmaceutical therapy. For comparison, adiponectin was also expressed using the *E. coli* (E-ADP) as a traditional prokaryotic expression system. Following successful expression, the relative bio-properties of P-ADP was assessed *in vivo* in comparison with E-ADP. Additional studies of the effect of P-ADP on the expression of the genes encoding glucagon, insulin and leptin receptors were carried out.

Adiponectin gene was constructed *in vitro* by splicing its two exons using overlap-extension PCR. Full length *adiponectin* was amplified by PCR and cloned into pMALTM-p4 vector for expression in *E. coli* as periplasmic secreted protein. The fusion protein was purified by amylose column after digestion with factor Xa. To express *adiponectin* in *P. pastoris*, the full length *adiponectin* was amplified by cloning into pGEM-T vector and then sub-cloning into pPICZ α A vector to be expressed as extracellular secreted protein. The 6xHis-tagged recombinant adiponectin was purified by one step affinity chromatography using Nickel column. SDS-PAGE and western blot were used to detect and analyse the recombinant proteins and Bradford assay was used for protein quantification. Three experiments were designed to assess and compare the effects of E-ADP and P-ADP on blood glucose and lipid profile using ICR mice as a Abstract

model system. Real-Time PCR was used to examine the changes in the regulation of glucagon, insulin and leptin receptors after administration with P-ADP. The expression of target genes was normalized with β -actin as endogenous gene and the data was statistically analysed based on Δct values and RQ values using t-test. The results showed that adiponectin gene was successfully constructed in vitro by overlapextension PCR and expressed by E. coli as a soluble periplasm protein and by P. pastoris as a soluble extracellular protein. P. pastoris expression system was successful in producing high molecular weight of adiponectin molecules and relatively high quantity of recombinant protein (0.1 mg/ml) as compared with E.coli (0.04 mg/ml). The optimum conditions of adiponectin production by P. pastoris were 0.5% of methanol induction every 12 hours for 60 hours at 30°C. E-ADP and P-ADP were biologically active in the lowering of blood glucose and triglyceride and increasing high density lipoprotein. The ability of P-ADP in lowering blood glucose was significantly higher than E-ADP. However, there was no significant difference on the effect on lipid profile. P-ADP significantly down-regulates glucagon receptors and up-regulates leptin receptors, whilst there was no significant effect on insulin receptors. Our results suggest that *P. pastoris* expression system is better in producing high quantity, high biological activity and easily purified recombinant adiponectin comparing with E. coli expression system that can be used in large scale production of adiponectin as potential drugs for metabolic syndromes.

ii

ACKNOWLEDGEMENTS

This project was supported through UMRG Research University grant RG022/09B10 and short term grant PS232/2008C, awarded to the author and his supervisor by the University Malaya and Ministry of Higher Education, Malaysia. The author wishes to thank these funding bodies for enabling this project to be completed. The author also wishes to acknowledge Faculty of Science, University of Malaya for access and use of all relevant facilities and many thanks to Center for Biotechnology Research in Agriculture (CEBAR) for use of equipments and facilities. The main person who guided me through all the steps in this work was my supervisor Associate Professor Dr. Zulqarnain Bin Mohamed, who gave ideas, time, support, and encouraged me to do the best; he deserves the highest respect and thanks. Many thanks and appreciation to Miss Teh Ser Huy. She provided so much gracious help with the research. Much appreciation is also expressed to Associate Professor Dr. Mahmood Ameen Abdulla who provided help, and research associates for bioassay experiments. I would really like to thank all my wonderful lab mates. Personally, I would like to thank my wife Rehab for her patience and support, and also to my brothers and sisters.

Contents	Page
Abstract	i
Acknowledgements	iii
contents	iv
List of figures	xi
List of tables	xvi
Abbreviations	xvii

Chapter 1: Introduction

1.1.	Adipon	ectin		1
	1.1.1.	Adipone	ctin gene characteristics	6
	1.1.2.	Adipone	ectin protein characteristics	7
	1.1.3.	Glycosy	lation of adiponectin protein	11
	1.1.4.	Regulati	on of adiponectin gene expression	13
	1.1.5.	Adipone	ctin single nucleotide polymorphisms (SNPs)	17
	1.1.6.	Adipone	ectin biological activity	20
		1.1.6.1.	Anti-diabetic properties of adiponectin	22
		1.1.6.2.	Anti-atherogenic, anti-inflammatory and cardioprotective properties of adiponectin	27
1.2.	Expressi	on of prote	eins in prokaryotic and eukaryotic expression	30
	systems.			
	1.2.1.	Expressi	on in <i>Escherichia coli</i>	31
		1.2.1.1.	The features of E. coli expression system	32
		1.2.1.2.	Formation of inclusion bodies and protein	34
			folding	

	1.2.2.	Pichia po	astoris expression system	38
		1.2.2.1.	Advantages of using P. pastoris as an	39
			expression system	
		1.2.2.2.	Pichia pastoris promoters	41
1.3.	Objecti	ves of stud	У	42

Chapter 2: Materials and Methods

2.1.	Construction of human <i>adiponectin</i> by overlap-extension PCR			44	
	2.1.1.	Primers design			
		2.1.1.1.	Primer design for expression of adiponectin in	44	
			P. pastoris		
		2.1.1.2.	Primer design for expression of <i>adiponectin</i> in	45	
			E. coli		
	2.1.2.	PCR read	ction	47	
2.2.	Agarose	e gel electr	ophoresis	48	
2.3.	DNA ex	straction b	raction by gel extraction kit		
2.4.	Adipon	ectin expre	ctin expression by E. coli		
	2.4.1.	Preparati	on of Luria-Bertani (LB) broth and agar media	49	
	2.4.2.	Compete	nt cells preparation of TB1 E. coli strain	50	
	2.4.3.	Cloning	of adiponectin into pMAL TM vector	50	
	2.4.4.	Transfor	mation into E. coli	53	
	2.4.5.	Colony s	creening PCR	53	
	2.4.6.	Small sca	ale expression of adiponetin by E. coli	54	
	2.4.7.	Native so	odium dodecyl sulfate poly-acrylamide gel	54	
		electroph	oresis (SDS-PAGE) and SDS-PAGE without		

denaturing condition.

	2.4.8.	Western	blot	56
	2.4.9.	Scale up	expression of adiponectin by E. coli	57
	2.4.10.	Protein p	urification by amylose resin column	58
	2.4.11.	Cleavage	, denaturing and re-purification of recombinant	58
		protein		
	2.4.12.	Bradford	assay	59
2.5.	Adipone	ectin expre	ssion by Pichia pastoris	59
	2.5.1.	Cloning	of adiponectin into pGEM-T vector	60
		2.5.1.1.	Ligation reaction	60
		2.5.1.2.	Transformation	60
		2.5.1.3.	Colony selection	61
		2.5.1.4.	Plasmid isolation	61
		2.5.1.5.	Restriction enzyme digestion of pGEMT-	63
			adiponectin recombinant plasmid	
	2.5.2.	Clone of	adiponectin in pPICZaA vector	63
		2.5.2.1.	Preparation of Low Salt Luria-Bertani (LSLB)	64
			broth and agar media	
		2.5.2.2.	Preparation of Top10F E. coli competent cells	64
		2.5.2.3.	Ligation reaction	64
		2.5.2.4.	Transformation	65
		2.5.2.5.	Colony selection	65
		2.5.2.6.	Plasmid isolation	65
		2.5.2.7.	Linearization of the recombinant plasmid	66
	2.5.3.	Cloning	into Pichia pastoris	66

	2.5.3.1.	Preparation	n of <i>P. pastoris</i> broth and agar	66
		media		
	2.5.3.2.	Preparation	n of <i>P. pastoris</i> competent cells	67
	2.5.3.3.	Transform	ation	67
	2.5.3.4.	Selection of	of positive colonies	68
		2.5.3.4.1.	Colony selection via PCR	68
		2.5.3.4.2.	Colonies capacity of the Zeocin TM	69
			resistance	
		2.5.3.4.3.	Differentiation between Mut^+ and	69
			Mut ^s phenotypes	
	2.5.3.5.	Preparation	n of expression media	69
	2.5.3.6.	Protein exp	pression and optimization	70
	2.5.3.7.	Protein pu	rification	71
	2.5.3.8.	Scale-up e	xpression of recombinant	71
		adiponecti	n	
2.5.4.	Bioactiv	ity tests		72
	2.5.4.1.	Effect of re	ecombinant adiponectin produced by	73
		P. pastoris	and <i>E. coli</i> on blood glucose and	
		lipids.		
	2.5.4.2.	High and l	ow doses effect of recombinant	73
		adiponecti	n on blood glucose and lipid profile.	
	2.5.4.3.	Oral gluco	se tolerance test	74
2.5.5.	Assessm	ent of genes	expression	74
	2.5.5.1.	Total RNA	extraction	74
	2.5.5.2.	DNase trea	atment	75

2.5.5.3.	cDNA prep	paration	76
2.5.5.4.	Real-Time	PCR	78
	2.5.4.4.1.	Primers design and validation	81
	2.5.4.4.2.	Data analysis of Real-Time PCR	84

Chapter 3: Results

3.1.	In vitro	In vitro construction of adiponectin			
3.2.	Expres	Expression of adiponectin gene in E. coli			
	3.2.1.	Restriction enzyme digestion	93		
	3.2.2.	Selection of recombinant E. coli colonies	95		
	3.2.3.	Sequencing analysis	98		
	3.2.4.	Recombinant adiponectin analysis	100		
	3.2.5.	Scale up expression of adiponectin by E. coli	103		
	3.2.6.	Recombinant adiponectin purification	103		
3.3.	Expres	Expression of adiponectin by Pichia pastoris			
	3.3.1.	Cloning of adiponectin in pGEM-T vector	110		
	3.3.2.	EcoRI and NotI digestion	114		
	3.3.3.	Cloning of adiponectin in pPICZaA	118		
	3.3.4.	Sequencing data	121		
	3.3.5.	Transformation into Pichia pastoris	124		
	3.3.6.	Colony selection	126		
	3.3.7.	Selection of Mut^+ phenotype with high insertion copy	129		
		number colonies			
	3.3.8.	Small scale expression of adiponectin	131		
	3.3.9.	Optimization of adiponectin expression	134		

	3.3.10.	Analysis of recombinant adiponectin protein produced by	140
		E. coli and P. pastoris	
3.4.	Biologi	cal activity assessment of recombinant adiponectin	142
	3.4.1.	Comparison of adiponectin bioactivity produced by <i>P</i> .	142
		pastoris and E. coli	
	3.4.2.	Effect of the high and low doses of P-ADP on blood	145
		glucose and lipid profile	
	3.4.3.	Oral glucose tolerant test	148
3.5.	Effect o	of P-ADP administration on the expression of glucagon,	150
	insulin	and leptin receptors	
	3.5.1.	Total RNA extraction and DNase treatment	150
	3.5.2.	RT- PCR	152
		3.5.2.1. Expression of glucagon receptors	152
		3.5.2.2. Expression of insulin receptors	157
		3.5.2.3. Expression of leptin receptors	162

Chapter 4: Discussion

4.1.	In vitro gene construction			168
4.2.	Expressions of adiponectin in prokaryotic and eukaryotic expression			172
	systems			
	4.2.1.	Expressi	on of adiponectin by E. coli	173
		4.2.1.1.	Adiponectin protein solubility	175
		4.2.1.2.	Adiponectin protein purification	177
	4.2.2.	Adipone	ctin expression by Pichia pastoris	178
		4.2.2.1.	Production of adiponectin as extracellular	179

secreted protein

		4.2.2.2. Optimization of pro	otein expression	180
		4.2.2.3. Protein solubility		182
	4.2.3.	Comparison between adipone	ectin expression in E. coli and	182
		P. pastoris		
4.3.	Adipon	ctin bioactivity		184
	4.3.1.	Effects of E-ADP and P-ADF	on blood glucose	185
	4.3.2.	P-ADP potential in lowering	blood glucose	187
	4.3.3.	Effects of E-ADP and P-ADP	on lipid profile	189
4.4.	Effect o	P-ADP administration on rela	ted gene expression	191
	4.4.1.	Effect of P-ADP administrati	on on the expression of	192
		glucagon receptors		
	4.4.2.	Effect of P-ADP administrati	on on the expression of insulin	193
		receptors		
	4.4.3.	Effect of P-ADP administrati	on on the expression of leptin	193
		receptors		
4.5.	Summa	y and conclusion		195
Refere	nces			198
Appen	dices			
	Append	x A Coference abstracts	s and presentations	

		1
Appendix B	Awards received	

List of figures

Figure 1.1	Summary of the diversity of cell-signalling responses to	2
	adipokines	
Figure 1.2	Research interest in adiponectin, a protein secreted by adipose	4
	tissue	
Figure 1.3	The relationships between plasma adiponectin levels, obesity	5
	and insulin resistance	
Figure 1.4	Structure and adiponectin domains	8
Figure 1.5	Multimer formation of adiponectin	10
Figure 1.6	Structural characteristics of adiponectin protein.	12
Figure 1.7	Regulation of adiponectin synthesis and function.	14
Figure 1.8	PPARγ agonists thiazolidinediones (TZDs) ameliorate insulin resistance and diabetes by both adiponectin-dependent and -	16
	independent pathways.	
Figure 1.9	Diagram of polymorphic variants of the adiponectin gene.	19
Figure 1.10	Main target organs and bio-activities of adiponectin.	21
Figure 1.11	The hypothesis of adiponectin effect on metabolic syndromes.	23
Figure 1.12	Proposed structure of adiponectin receptors.	26
Figure 1.13	Signal transduction by adiponectin receptors.	26
Figure 1.14	Adiponectin functions as anti-atherogenic factor.	29
Figure 1.15	The pathway of protein folding and secretion in E. coli	37
Figure 2.1	The design of RT-PCR experiment.	80
Figure 2.2	Melt curves of each gene of interest and an endogenous gene.	83
Figure 3.1	In vitro construction of ADPs.	88
Figure 3.2	In vitro construction of ADPws.	89
Figure 3.3	Amplification of ADPs and ADPws using different primers for	90

List of figures

cloning into P.pastoris and E.coli.

- Figure 3.4 The map of pMALTM-p4x and pMALTM-c4x vectors explaining 92 enzymes restriction sites.
- Figure 3.5Restriction enzyme digestion for cloning into E. coli94
- Figure 3.6 Agarose gel electrophoresis of colony screening *ADPs*. 96
- Figure 3.7 Agarose gel electrophoresis of colony screening for *ADPws*. 97
- Figure 3.8Sequencing data of ADPs.99
- Figure 3.9 SDS-PAGE analysis of adiponectin expression before and after 101 induction with IPTG.
- Figure 3.10 Western blot analysis of adiponectin expression before and after 102 induction with IPTG.
- Figure 3.11 Purification by amylose resin column. 104
- Figure 3.12 SDS-PAGE for optimization of Factor Xa digestion. 106
- Figure 3.13 SDS-PAGE for second purification by hydroxyapatite column 107 and amylose resin column.
- Figure 3.14 The map of pPICZα A plasmid that was used to clone the gene 109 of interest into *P. pastoris*.
- Figure 3.15 PGEMT-vector map. 111
- Figure 3.16 Agarose gel electrophoresis of colony selection by PCR using 112 M13 forward and reverse primers to detect existence of *ADPws*.
- Figure 3.17 Agarose gel electrophoresis of colony selection by PCR using 113 M13 forward and reverse primers to confirm existence of *ADPs*.
- Figure 3.18 Agarose gel electrophoresis of *adiponectin*-pGEMT 115 recombinant plasmid.
- Figure 3.19 Agarose gel electrophoresis of restriction enzyme digestion to 115

List of figures

generate ADPs with two sticky ends.

- Figure 3.20 Agarose gel electrophoresis of restriction enzyme digestion to 116 generate *ADPws* with two sticky ends.
- Figure 3.21 Agarose gel electrophoresis of pPICZαA plasmid digestion with 117 *Eco*RI and *Not*I.
- Figure 3.22 Colony screening PCR using α-factor forward primer and 1193'AOX1 reverse primer to detect *ADPws*.
- Figure 3.23 Colony screening PCR using α-factor forward primer and 1203'AOX1 reverse primer to detect *ADPs*.
- Figure 3.24 Sequencing data of *ADPws* after cloning in pPICZαA. 122
- Figure 3.25 The sequence of *ADPs* after cloning in pPICZ α A. 123
- Figure 3.26 Recombinant plasmid linearization with SacI restriction enzyme. 125
- Figure 3.27 Colony PCR screening using α-factor forward primer and 1273'AOX1 reverse primer to detect *ADPws* into yeast colonies.
- Figure 3.28 Colony screening PCR using α -factor forward primer and 128 3'AOX1 reverse primer to detect *ADPs* into yeast colonies.
- Figure 3.29 Multi insertion of expression cassette into yeast cells. 130
- Figure 3.30 SDS- PAGE analysis of the supernatant collected from cultures 132 inoculated with yeast colonies carrying *ADPws*.
- Figure 3.31 SDS- PAGE analysis of the supernatant collected from cultures 133 inoculated with yeast colonies carrying *ADPs*.
- Figure 3.32 The growth rate of yeast during time course expression. 135
- Figure 3.33 SDS-PAGE analysis of the time course for adding methanol and 136 culture harvesting every 12 hours after methanol induction.
- Figure 3.34 Western blot analysis of the time course for adding methanol 137 and culture harvesting every 12 hours after induction.

xiii

558		
Figure 3.35	SDS-PAGE without denaturing condition showed less oligomers	141
	for E-ADP compared with P-ADP.	
Figure 3.36	Effect of P-ADP and E-ADP on the levels of blood glucose.	143
Figure 3.37	Effect of P-ADP and E-ADP on lipid profile.	144
Figure 3.38	Effect of the high and low doses of P-ADP on blood glucose	146
	levels.	
Figure 3.39	Effect of the high and low doses of P-ADP on blood lipid	147
	profile.	
Figure 3.40	Oral glucose tolerance test.	149
Figure 3.41	Total RNA extraction by TRIzol [™] method.	151
Figure 3.42	Total RNA after DNase treatment.	151
Figure 3.43	Expression of glucagon receptors: The comparative ΔCt value of	153
	the biological groups that contain control or treatment groups.	
Figure 3.44	Expression of glucagon receptors: The mean of biological	154
	group's ΔCt value for liver, abdominal fat tissue and kidney for	
	treatment and control groups.	
Figure 3.45	Expression of glucagon receptors: Relative quantification	156
	differences between treatment and control groups.	
Figure 3.46	Expression of insulin receptors: The comparative ΔCt value of	158
	the biological groups that contain control or treatment groups.	

- Figure 3.47 Expression of insulin receptors: The mean of biological group's 159 $\triangle Ct$ value for liver, abdominal fat tissue, skeletal muscle and kidney for treatment and control groups.
- Figure 3.48 Expression of insulin receptors: Relative quantification 161 differences between treatment and control groups.
- Figure 3.49 Expression of leptin receptors: The comparative ΔCt value of the 163

xiv

biological groups that contain control or treatment groups.

- Figure 3.50 Expression of leptin receptors: The mean of biological group's 164 $\triangle Ct$ value for liver, abdominal fat tissue and kidney for treatment and control groups.
- Figure 3.51 Expression of leptin receptors: Relative quantification 166 differences between treatment and control groups.
- Figure 4.1 In vitro construction of adiponectin gene by overlap-extension 170 PCR

List of tables

Table 2.1	Sequences of primers used to express adiponectin in P. pastoris.	46
Table 2.2	Sequences of primers used to express adiponectin in E. coli.	46
Table 2.3	The components of the ligation mix.	52
Table 2.4	The components of 2X RT master mix.	77
Table 2.5	Thermal cycle conditions of RT reaction.	77
Table 2.6	The components of RT-PCR reaction	79
Table 2.7	Thermal cycle conditions of RT-PCR reaction	79
Table 2.8	Forward and reverse primers for each gene of interest and an	82
	endogenous gene.	
Table 3.1	The differences were observed in the optical density, total cells	139
	mass and protein concentration at different time points after	
	methanol induction.	
Table 3.2	The results of real time PCR and the results of statistical analysis	155
	for mean $\triangle Ct$ values and relative quantification values (RQ)	
	using <i>t-test</i> statistical analysis.	
Table 3.3	The results of real time PCR and the results of statistical analysis	160
	for mean $\triangle Ct$ values and relative quantification values (RQ)	
	using <i>t-test</i> statistical analysis.	

Table 3.4The results of real time PCR and the results of statistical analysis165for mean ΔCt values and relative quantification values (RQ)using *t-test* statistical analysis.

3T3-L1	Cell line derived from 3T3 cells used in biological research
	on adipose tissue.
°C	degree Celsius
μg	microgram
µg/ml	microgram per millilitre
μΙ	microlitre
μΜ	micro Molar
3T3-F442A	preadipocyte cell lines
ADPs	adiponectin DNA fragment with signal peptide sequence
ADPws	adiponectin DNA fragment without signal peptide
	sequence
AMPK	5' adenosine monophosphate-activated protein kinase
AOX	Alcohol oxidase
APS	ammonium persulfate
TEMED	N, N, N', N'-tetramethylethylenediamine
Arg	Arginine
BMGY	Buffered Glycerol-complex Medium
BMMY	Buffered Methanol-complex Medium
bp	base pair
BSA	bovine serum albumin
BW	Body weight
CaCl ₂	calcium chloride
cDNA	complementary DNA

CDS	coding sequence
СНО	Chinese hamster ovary
CHOL	total cholesterol
Ct	Cycle time
CV	coefficient of variation
Cys	cysteine
DEPC	Diethylpyrocarbonate
DNA	deoxyribonucleic acid
dNTPs	Deoxyribonucleoside triphosphate
e.g	for example
E-ADP	recombinant adiponectin expressed in E. coli
EDTA	ethylenediaminetetraacetic acid
ERp44	endoplasmic reticulum folding assistant protein
et al.	et alii (and other people)
et al. EtBr	<i>et alii</i> (and other people) ethidium bromide
et al. EtBr FLD1	<i>et alii</i> (and other people) ethidium bromide formaldehyde dehydrogenase gene
et al. EtBr <i>FLD1</i> g/L	<i>et alii</i> (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre
et al. EtBr <i>FLD1</i> g/L Glu	<i>et alii</i> (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid
et al. EtBr <i>FLD1</i> g/L Glu Gly	<i>et alii</i> (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine
et al. EtBr <i>FLD1</i> g/L Glu Gly HDL	et alii (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine high density lipoprotein
et al. EtBr <i>FLD1</i> g/L Glu Gly HDL His	et alii (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine high density lipoprotein Histidine
et al. EtBr <i>FLD1</i> g/L Glu Gly HDL His HMW	et alii (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine high density lipoprotein Histidine High molecular weight
et al. EtBr FLD1 g/L Glu Gly HDL His HMW hrs	et alii (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine high density lipoprotein Histidine High molecular weight hours
et al. EtBr FLD1 g/L Glu Gly HDL His HMW hrs i.e.	et alii (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine high density lipoprotein Histidine High molecular weight hours that is
et al. EtBr FLD1 g/L Glu Gly HDL His HMW hrs i.e. IGF-1	et alii (and other people) ethidium bromide formaldehyde dehydrogenase gene gram per litre Glutamic acid Glycine high density lipoprotein Histidine High molecular weight hours that is Insulin like growth factor 1

IPTG	isopropyl-beta-dthiogalactopyranoside
kb	kilo bases
kDa	kilo dalton
KOAc	potassium acetate
lbs/sq.in.	pounds per square inch
LB	Luria-Bertani broth
LDL	low-density lipoproteins
LMW	Low molecular weight
LSLB	low salt Luria-Bertani broth
М	molar
MBP	maltose binding protein
mg/L	milligram per litre
mg/ml	milligram per millilitre
Mg^{2+}	magnesium ion
min	minute
mM	milli Molar
mRNA	messenger RNA
Mut	methanol utilization minus
Mut ⁺	methanol utilization plus
Mut ^S	methanol utilization slow
NaCl	sodium chloride
NaOH	sodium hydroxide
ng	nanogram
Ni	nickel
nm	nanometer
O ₂	oxygen

OD ₆₀₀	optical density at 600nm
P-ADP	recombinant adiponectin expressed in P. pastoris
PAGE	polyacrylamide gel electrophoresis
PAOX1	promoter from the alcohol oxidase 1 gene
PBS	phosphate buffered saline
PCR	polymerase chain reaction
Pfu	Pyrococcus furiosus
ΡΡΑRγ	peroxisome proliferator-activated receptor γ
Pro	proline
RNA	ribonucleic acid
RNase A	ribonuclease A
rpm	revolutions per minute
RQ	relative quantification
RT	reverse transcription
RT-PCR	Real-Time PCR
S	second
sdH ₂ O	sterile distilled water
SDS	sodium dodecyl sulfate
SEM	standard error means
Ser	Serine
SNPs	single nucleotide polymorphisms
Stdev	standard deviation
Taq	Thermus aquaticus
TBE	Tris Borate EDTA
TBS	Tris buffered saline
TBST	Tris buffered saline-Tween 20

TCA	trichloroacetic acid
TE	Tris-EDTA
TG	triglyceride
Tm	Melting temperature
TNF-α	Tumor necrosis factor-alpha
TZDs	thiazolidinediones
U	unit
UV	ultraviolet
V	volume
X-Gal	bromo-chloro-indolyl-galactopyranoside
YPD	Yeast Extract Peptone Dextrose