
1

CHAPTER 1 INTRODUCTION

Over the past several years, there has been a tremendous growth in the area of resource

sharing in the computational world. Before the invention of the Internet, end users can only

perform computation activities on a stand-alone computer. With the advancement in the

microprocessor chip technologies, more and more computational intensive activities are

been performed on powerful workstations. Subsequent to the introduction of the Internet,

the computational activities are performed using remote servers. A number of users can

logon to a server simultaneously to conduct their studies using the client-server architecture.

Such demands led to the introduction of the distributed system. A distributed system is

defined as hardware or software components that are located at networked computers with

communication and coordination done through message passing (Coulouris et al., 2005).

While the demands for greater computation activities led to the introduction of distributed

systems, the growth in distributed system further drives more complex computational

activities. The Message Passing Interface (MPI) is introduced to allow the parallel

execution of computation activities. MPI allows parallel execution in computer cluster,

Shared-memory Multi Processor (SMP) as well as supercomputer. MPI also reduces the

time required to complete the computation activities.

Buyya (1999) defines a cluster as a type of parallel and distributed system, consisting of a

collection of inter-connected stand-alone computers which forms a single integrated

computing resource. However, most of the computational activities can only be conducted

2

in the Local Area Network (LAN); there is lack of technology and network bandwidth to

support those activities in different regions or across the Wide Area Network (WAN).

The emergence of high speed networks and the increasing number of computing resources

has revolutionized the ability to use distributed resources located worldwide. Grid

Computing has been introduced as the solution to coordinate the sharing of resources

across different regions. Grid Computing makes computing and services ubiquitous by

enabling the aggregation of distributed resources running on multiple platforms in different

networks. In addition, Grid Computing provides a transparent platform to execute compute

intensive as well as data intensive applications across different regions. The introduction of

Grid Computing has changed the way people deal with information.

In line with the popularity of Grid Computing, Web Services have become another

promising technology for distributed computing due to the popularity of the Internet. Web

Services use open standards and protocols and provides the solutions for different software

applications running on different platforms and frameworks to interoperate. In addition,

Web Services allow the reuse of services and components within an infrastructure.

Due to above characteristics, Service Oriented Architecture (SOA) is introduced in parallel

with Grid Computing to allow the integration of Web Services and Grid (Foster and

Kesselman, 2004). SOA is a new model in the distributed system that is extensible and

compatible with legacy systems. SOA is a set of principles that defines an architecture that

is loosely coupled and comprised of service providers and service consumers that interact

according to a negotiated contract or interface (Mansukhani, 2005). SOA provides the

3

standard that guarantees the interoperability among the services in the Grid environment

and simplifies the integration of heterogeneous systems.

The application of the service oriented computing paradigm on Grid Computing has

transformed most of the Grid functionalities into services. Furthermore, the service-

oriented Grid paradigm offers the potential to provide a fine-grained virtualization of the

available resources which will significantly increase the versatility of the Grid (Smith et al.,

2004). Another important area that is gaining momentum, along with Grid Computing, is

Software as a Service (SaaS). SaaS allows software providers to offer software as services,

simplify installations and provide a centralized management. At the same time, SaaS

enables end users to access services anytime and anywhere. This leads to Utility

Computing where services are being sold to the end users.

The convergence of Grid Computing, SaaS and Utility Computing has led to a new

technology, known as Cloud Computing. Cloud Computing is a new paradigm that is able

to provide large amount of computing capacity with increase of scalability, availability and

fault tolerance. Cloud Computing represents the merging of technologies, software

developments in the Internet (Web Services), resources and applications. This emerging

technology is able to streamline the on-demand provisioning of software, hardware and

data as a service. In summary, the adoption of Cloud Computing as a new technology will

benefit both the service providers as well as the end users.

4

1.1 Motivation

Although Cloud Computing provides many new opportunities to the computational world,

this technology is still immature. There are still various issues and challenges that have to

be addressed especially in the area of job scheduling (Buyya et al., 2002), (Doulamis et al.,

2007), (Lee and Zomaya, 2007), (Dong and Akl, 2009), (Fatos et al., 2009), (Ferretti et al.,

2010) etc. Job scheduling is a core area of research in Grid and Cloud Computing. Since

both the Grid and Cloud Computing need to be able to manage large group of resources and

Cloud Computing evolved from Grid, job scheduling play a similar role in both

technologies.

Cloud Computing has attracted the attention of the researchers from different fields (Vouk,

2008), (Xu et al., 2009), (Fito et al., 2010), (Reig et al., 2010), (Takabi et al., 2010) etc.

Due to the increasing number of virtual distributed resources, designing an effective

scheduling algorithm in Cloud Computing is getting more challenging. Moreover, the

problems with job scheduling in Cloud Computing are dynamic due to the heterogeneous

nature of Grid and Cloud in terms of applications and resources.

Although the job scheduling problem is NP-complete (Grama et al., 2003), there are still

many methods to optimize the overall performance. The accuracy of the job length as well

as the resource information will determine the efficiency of the scheduling algorithm.

Besides, the ability to predict resource and service availability will be the key factors that

influence the overall performances.

5

Grid and Cloud Computing must have the capability to provide services to many users

simultaneously and meet different users QoS requirements. The QoS requirements such as

availability, scalability, deadline, cost and security are decisive for service selection and

resource mapping. In order to address the above issue, further studies and analyses are

carried out in the areas of QoS scheduling in Grid and Cloud Computing.

1.2 Objectives

The objectives of this thesis are as follows:

 To propose job scheduling algorithm that maximizes resources utilization and

minimizes the makespan in Grid and Cloud environment.

 To enhance job scheduling algorithms to maximize reliability and profit while

guaranteeing the users QoS requirements.

 To optimize the performance of the proposed job scheduling algorithms through

testbed testing.

1.3 Scope

The work scopes for this thesis include:

 The studies on the technologies used for Grid and Cloud Computing such as Web

Services, SOA, Extensible Markup Language (XML), Simple Object Access

Protocol (SOAP), Web Services Description Language (WSDL), Universal

Description, Discovery and Integration (UDDI) and REpresentational State Transfer

(REST).

 The understanding of the requirements needed for job scheduling process as well as

QoS in Grid and Cloud Computing.

6

 Defining and developing the testbed environment. The testbed environment

includes cluster servers, application servers, virtual servers and desktop computers.

 Selecting and specifying the jobs used for verifying the testbed. The jobs chosen are

compute intensive jobs and each job consists of multiple independent tasks. The

tasks used are classified as parametric tasks. A parametric task uses the parameter

values to determine the task length and output.

 Conducting test on the testbed testing using different job length and job arrival

distributions.

 Analyzing the testbed and algorithm performance based on the selected metrics

which include makespan, reliability and cost.

1.4 Research Methodology

This thesis is conducted using the empirical research method. The research begins with a

study on the fundamental concepts of Grid and Cloud Computing which includes the

architecture, characteristics, and problems. Subsequently, the relevant technologies such as

Web Services and SOA are explored. Based on the study, job scheduling and QoS support

have been identified as the two major problem areas. Specifically, there are 2 fundamental

issues which are: 1) How to provide an efficient job scheduling decision? 2) How to

guarantee the users QoS requirements in Grid and Cloud environment?

Once the major problems are identified, the problems are described using mathematical

modeling. Subsequently, various algorithms and mechanisms are proposed and applied to

the mathematical models to determine the effectiveness in resolving the problems and

achieving the objectives set out.

7

A Grid and Cloud testbed is designed and developed to conduct the testing of the proposed

algorithms using various test cases. The proposed algorithms are then evaluated using

empirical testing through the testbed. Also, performance analysis is conducted between the

proposed and existing algorithms and enhancements are made to optimize the performance

of the proposed algorithms.

1.5 Thesis Organization

This thesis is organized into six chapters as follows.

Chapter 1 gives an introduction and overview of the goals of the thesis.

In Chapter 2, a general background of Grid and Cloud Computing is reviewed. This

includes the discussion of the underlying architectures, characteristics and problems of the

Grid and Cloud Computing. Then, the Web Services and SOA are discussed. Finally, the

research opportunities in Grid and Cloud Computing are presented.

Chapter 3 presents the solution that used to address the job scheduling problem in Grid and

Cloud environment. The first section describes the scheduling process in Grid and Cloud

Computing. Following that, the strengths and weaknesses of the existing job scheduling

algorithms are identified. A HSA is proposed and is followed by the discussion of the

automatic deployment mechanism. The final section describes the experiment setup and

evaluates the performance of the proposed algorithm.

8

Chapter 4 presents the enhancement of the HSA using benchmarking and adaptive

mechanism. The chapter begins with a discussion on the job length estimation using

application and resource benchmarking. Then, the ASA is proposed to enhance the HSA.

Finally, the experiment setup is presented and the performance of ASA is evaluated.

Chapter 5 presents the solution that guarantee end users QoS requirement and cost

management in Grid and Cloud environment. Firstly, the QoS issues in Grid and Cloud

Computing are investigated. This includes the discussion on the QoS metrics and SLA.

Then, an AQoSSA and the rescheduling mechanism are presented. Subsequently, the

performance of AQoSSA is evaluated using the experimental setup running on Grid and

Cloud testbed.

Chapter 6 summarizes the efforts and contributions made. This chapter also provides

suggestions for future research.

9

CHAPTER 2 PRELIMINARY

This chapter reviews the relevant background information on Grid and Cloud Computing.

The first section describes the underlying concepts, characteristics and problems in Grid

Computing. The second section discusses the system architectures, characteristics and

issues in Cloud Computing. A discussion on Web Services and SOA is included as well.

The final section presents the research opportunities in Cloud Computing.

2.1 Grid Computing

The term Grid Computing originated in the early 1990s as a metaphor for making computer

power as easy to access as an electric power grid. Built on top of the Internet and the World

Wide Web (WWW), Grid Computing is an infrastructure that enables resource sharing and

collaborations within the scientific communities. The origins of these ideas were brought

together by Ian Foster, Carl Kesselman, and Steve Tuecke (Foster and Kesselman, 1999).

Over the years, there are many definitions for Grid Computing. Foster and Kesselman

(1999) first defined Grid Computing as a hardware and software infrastructure that

provides dependable, consistent, pervasive, and inexpensive access to high-end

computational capabilities. This definition is redefined to encompass the resources sharing

and problems solving in a dynamic, multi-institutional virtual organizations (Foster et al.,

2001). Baker, Buyya and Laforenza (2002) defined Grid Computing as a type of parallel

and distributed system that enables the sharing, selection, and aggregation of

geographically distributed autonomous and heterogeneous resources dynamically at

10

runtime depending on the availability, capability, performance, cost, and users’ quality-of-

service requirements.

Foster and Kesselman (2004) have suggested that Grid Computing is summarized as:

 Grid coordinates resources that are not subjected to centralized control. The

resources are distributed in different administrative domains.

 Grid uses standard, open, general-purpose protocols and interfaces.

 Grid allows its resources to be used to deliver various QoS to meet different user

demands.

Grid Computing has emerged as an active platform for large scale scientific and

engineering applications. Grid Computing allows a number of collaborative organizations

and academics to share documents, software, scientific data, journals as well as hardware

and controller. Generally, Grid Computing is broadly classified as Computational Grid and

Data Grid.

2.1.1 Computational Grid

Computational Grid is a set of hardware and software infrastructure that provides

dependable, consistent, pervasive, and inexpensive access to high-end computational

capabilities (Foster and Kesselman, 1999). This infrastructure provides users with easy,

inexpensive and pervasive access to resources.

11

2.1.2 Data Grid

Over the last decade, disk storage capacity is increasing at a faster rate than Moore’s Law

of processing power (Abbas, 2003). Storage accesses and retrievals have become a great

concern due to the huge amount of datasets being generated. Furthermore, scientific

analytical activities require access to Terabytes of data that is distributed across different

locations. As such, Data Grid infrastructure is created to provide easy data sharing and

optimal data transfer performance for data-intensive applications.

Chervenak et al. (2000) defined Data Grid as a technology that provides infrastructure for

accessing, transferring, and managing large datasets stored in distributed repositories. Data

Grid provides secure access to remote data resources such as flat file, relational and

streaming data. Besides, Data Grid also provides an infrastructure in which shared data,

storage, networking, and compute resources is delivered to data analysis activities in an

integrated, flexible manner (Foster and Kesselman, 2004). In order to access this huge

amount of data, various data handling mechanisms are needed. These mechanisms include

data discovery, data integration, data mining and data delivery.

2.1.3 Grid Computing Architecture

Grid Computing has become the solution for the sharing of distributed computing power

and data. Figure 2.1 depicts the layered Grid Computing architecture.

12

Figure 2.1: Layered Grid Computing architecture (adapted from Foster and

Kesselman, 2004)

The first layer in Grid Computing architecture is the fabric layer which consists of the

physical resources that are shared within the Grid infrastructure. These include

computational, storage and network resources. The second layer is the connectivity and

resource layer. The connectivity layer defines core communication and authentication

protocols that are required for Grid-specific network transactions. The resource layer uses

the connectivity layer protocols to control secure negotiations, monitoring, accounting, and

payment for the function sharing of individual resources.

The third layer is the collective layer which is responsible for global resource management

and interaction with collections of resources. This layer provides directory services, co-

allocation, scheduling and brokering services, monitoring and diagnostics services, and

data replication services. The final layer of Grid Computing architecture comprises the user

applications that operate within the Grid infrastructure.

13

The Grid architecture provides the functionalities needed for resource sharing and

coordination. All the layers are interrelated and dependent on one another. The design of

the Grid architecture has made the Grid unique over other distributed systems.

2.1.4 Characteristics of Grid Computing

In Grid Computing, there exist many unique characteristics such as heterogeneity, dynamic

resource performance, sharing, scalability, adaptability, transparency and security.

2.1.4.1 Heterogeneity

Grid Computing enables the creation of Virtual Organization (VO) that interconnects

geographically distributed heterogeneous computing systems with a variety of resources.

The resources comprise of personal computers, servers, clusters, supercomputers, Shared-

memory Multi Processor (SMP), data storages, instruments, software applications, and

network devices. Each of these resources has a range of capabilities and performances.

2.1.4.2 Dynamic Resource Performance

VO can span across few small corporate departments that are in the same physical location

to large groups of people from different organizations that are spread across the globe

(Abbas, 2003). Due to the above nature, the number of available resources changes

dynamically. Resources may join or leave from different VOs and existing resources may

become idle or busy. Besides, the utilization of the resources changes randomly as the

resources are not dedicated to any one application. Resources are utilized to execute

multiple Grid jobs as well as local jobs. In addition, the performance of the Grid jobs are

always impacted by the local jobs as the latter are given higher priority.

14

2.1.4.3 Sharing

Grid Computing encompasses a large variety of concepts involving the sharing of resources

such as data exchange and direct accesses to remote software, sensor, etc. Thus, each

resource provider shall define the resource management policies, usage patterns and the

accessing right for users to view the shared resources.

2.1.4.4 Scalability

Scalability is clearly a critical necessity for Grid Computing as Grid Computing has to deal

with a large number of resources. Grid Computing should be able to scale both upwards

and downwards and able to function according to different system scales. Also, the Grid

infrastructure should be able to scale well without performance degradation.

2.1.4.5 Adaptability

Adaptability refers to the degree of possible projected adjustments in practices, processes,

or structures of systems or the actual changes of their environment (Andrzejak et al., 2004).

The Grid middleware should be able to adapt to changes in the applications or user needs

without human intervention. Besides, this middleware must be able to recover whenever a

failure occurs.

2.1.4.6 Transparency

Grid middleware provides a wide variety of users with a transparent access to various types

of resources via a single and easy-to-use interface. Grid middleware should support local

and remote transparency with respect to invocation and location. Grid middleware should

15

provide a mechanism to act on behalf of the user at different sites. It should allow users to

discover access and process relevant content anywhere in the Grid environment.

2.1.4.7 Security

Grid Computing involves all four aspects of security which are confidentiality, integrity,

authentication and non-repudiation (Coulouris et al., 2005). The security requirements

within the Grid environment should be able to support scalable, dynamic and distributed

VOs. According to Foster and Kesselman (2004), the security should support single sign on,

delegation support and interoperability with local security rules.

2.1.5 Problems of Grid Computing

Many researchers have proposed various mechanisms to address the problems related to

Grid Computing. One of the biggest challenges in Grid Computing is to design an efficient

job scheduling algorithm to cater for the heterogeneous nature of Grid. The heterogeneity

of the Grid is represented by various parameters, including resources, types of applications

and optimization objectives (Dong and Selim, 2007). This heterogeneity has resulted in

different capabilities for job processing, data access and data transfer. Besides

heterogeneity, the availability of computation resources, storage as well as network

bandwidth also affects the scheduler’s decision making.

In addition, modern scientific experiments usually have extreme performance demands and

capacity requirements. Such requirements have caused a tremendous increase in the

number of resources needed and further aggravate the potential performance degradation.

Besides, the probability of resources failures in Grid Computing is high due to the

16

heterogeneity nature and dispersion of resources across multiple VOs (Foster and

Kesselman, 2004). Furthermore, most of the scientific applications are complex and

involved many interacting activities. These applications are prone to errors and failures.

Thus, the Grid infrastructure should provide a mechanism to detect faults and recover from

faults.

The sharing of resources across different VOs has resulted in a wide variety of problems

related to security (M.Nithya and Banu, 2010). Firstly, each resource has its own policy

and procedure. The problem becomes more complicated due to different requirements from

service providers and end users. A security policy is required to address this problem

without impacting the usability of the resources or create security loop holes in the existing

systems.

Although Grid Computing enables the sharing of distributed resources to execute various

types of application, not all applications are able to utilize this advantage. The existing Grid

infrastructure only supports specific scientific applications which are executed in limited

number of locations. A technology must be defined in order to allow the applications to

run in anywhere and at any time. The next section presents how Grid Computing evolves

and an introduction to a new trend of computing.

2.1.6 Grid Evolution

Grid Computing has evolved from the earlier developments in small scale administrative

domain to a large scale multiple administrative domains connected to one another. When

Grid Computing was introduced, the infrastructure was primarily used by the research

17

communities. As the technology become mature, Grid Computing has provided significant

business values. Since the resources are distributed in different VOs, there is a need for a

common set of Application Programming Interfaces (APIs), protocols as well as services to

support the business needs. One of the popular architecture that provides the standard APIs

and protocol is the Open Grid Services Architecture (OGSA).

2.1.6.1 Open Grid Services Architecture (OGSA)

OGSA defines a standard architecture for integrating and managing services within VOs.

Foster et al. (2002) defined OGSA architecture as the standard mechanism for creating,

naming, and discovering transient Grid service instances. OGSA is built based on the

concepts and technologies from both the Grid Computing and Web Services communities.

OGSA provides location transparency and protocol bindings for service instances and

supports integration with underlying native platform facilities. This has allowed businesses

to build Grid infrastructure across the enterprise and business partners.

OGSA Grid technologies are based on SOA. Figure 2.2 shows the principal elements of

OGSA. The main elements of OGSA are Open Grid Services Infrastructure (OGSI), OGSA

services and OGSA schemas.

OGSI defines the mechanisms for creating, managing and exchanging information among

the Grid service instances. OGSI provides the specification used by the clients to deal with

the instances. OGSA services include core services, data services and computation

management services. These services provide the standard features such as service

discovery, security, messaging, data accessing, provisioning and resource management and

18

services deployment. OGSA schemas provide the standard schemas for messaging and

communication between different service components (Foster and Kesselman, 2004).

Figure 2.2: Principal elements of OGSA (adapted from Foster and Kesselman, 2004)

The use of SOA in OGSA provides a fine-grained virtualization of the available resources.

This would significantly increase the versatility of a Grid Computing. In addition, the

service-oriented Grid provides a binding element among Grid specific services at the

hardware and application services level (Stanoevska-slabeva et al., 2009).

2.1.6.2 Utility Computing

The maturity of OGSA has led to the creation of Utility Computing. Multiple services are

offered by third party providers and users can use the resources in a pay-per-use manner.

Organizations could access the Utility Computing for a specific business function. Any task

requirements that exceed the in-house infrastructure capacity could be submitted to the

Utility Computing. This saves the organization from making additional infrastructure

investments.

19

2.1.6.3 Software as Service (SaaS)

Together with Grid Computing, SaaS popularity is gaining momentum. The idea of sharing

software through the Internet is not a new phenomenon. Traditional software is developed

to run on the end user computers. With SaaS, users can access the software by using a Web

browser, Secure Shell (SSH) or through API call. Users are not required to invest in the

infrastructure or purchase a copy of the license to run the software. OGSA has the potential

to provide the necessary flexibility and scalability architecture for SaaS.

2.1.6.4 Virtualization

In line with the software development, the popularity and adoption of virtualization has

increased tremendously. Virtualization was first introduced and popularized by IBM in the

1960s for running multiple software contexts in mainframe systems. Virtualization allows

abstraction and isolation of lower level functionalities and underlying hardware (Vouk,

2008).

Multiple Virtual Machines (VMs) can run on a single physical server through hypervisor.

Hypervisor performs the abstraction of the hardware for each individual VMs. Besides,

hypervisor provides VMs with unified and consistent access to the CPU, memory, and I/O

resources on the physical machine. Since multiple VMs are executed on the same physical

machine, the resources are utilized more efficiently. This is due to the multiple core

processors where the cores are not fully utilized within a single machine environment.

Basically, there are two different types of hypervisor-based virtualizations as shown on

Figure 2.3.

20

Figure 2.3: Types of hypervisor-based virtualizations (adapted from Sridhar, 2009)

The first type of hypervisor based virtualization allows the virtualization to run directly

over the hardware. Over the past few years, processor manufacturers such as AMD and

Intel, have provided strong hardware support for virtualization. These include the Intel

Virtualization Technology (Intel® VT) and AMD-V™ Technology. This has increased the

resources performances as compared to running virtualization over an operating system.

The second type of hypervisor based virtualization allows the virtualization to run on top of

operating system. However, in such an implementation, the performance is not as good as

running the virtualization directly on the hardware. Usually, this type of implementation

requires more memory when compared to the first type of implementation.

Virtualization provides the abstractions for the fabric to be unified as a pool of resources

and the resource overlays such as application services are built on top of them (Foster et al.,

21

2008). In addition, virtualization allows the aggregation of the physical resources to

improve the resources utilization and flexibility to adapt to changing requirements and

workloads. Since virtualization allows run time configurations, the virtualization is adapted

and managed more effectively in the distributed and heterogeneous environment.

In addition, virtualization improves service availability by providing strong support during

failover. In a virtual environment, the nodes are backup and migrated without service

interruption. This directly increases the application service availability. Moreover,

virtualization also improves responsiveness as common resources are cached and provided

based on demand anytime and anywhere.

The convergence of SOA and Grid Computing has given rise to the availability of many

software applications in the form of Grid services. At the same time, Utility Computing and

SaaS have gained a lot of momentum recently. Similarly, virtualization technology is

starting to gain popularity among organizations. The convergence of above technologies

has led to a new computing trend, Cloud Computing.

2.2 Cloud Computing

Cloud Computing has been a dominant research topic for the past several years. Cloud

Computing is believed to be able to provide reliable services delivered through data centers.

Moreover, recent advances in virtualization technologies have led to the popularity of

Cloud Computing. Virtualization technology has become more adoptable with the presence

of multi-core processors. Also, virtualization can ease the deployment of applications on

multiple resources.

22

There have been many definitions for Cloud Computing. Ian Foster et al. (2008) defined

Cloud Computing as a large-scale distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted, virtualized, dynamically-scalable,

managed computing power, storage, platforms, and services are delivered on demand to

external customers over the Internet. Virtualization of the hardware or software resources

allows these resources to be added or withdrawn according to demand. These resources are

accessed by the end users through a standard interface.

Buyya et al. (2009) defined Cloud Computing as a type of parallel and distributed system

consisting of a collection of inter-connected and virtualized computers that are dynamically

provisioned and presented as one or more unified computing resources. The resources are

provisioned on demand and have to meet the service-level agreements that are established

between the service provider and consumers. These resources will be accessible as a

composite service via Web Service technologies.

Armbrust et al. (2009) from Berkeley RAD Lab defined Cloud Computing as both the

applications delivered as services over the Internet, and the hardware and system software

in the datacentre that provide those services. The services are referred as SaaS and the

datacentre hardware and software is referred as Cloud.

A Cloud environment can comprise of a single Cloud or multiple Clouds. A single Cloud

environment is classified into public Cloud and private Cloud. A public Cloud provides

service to end users via Internet as pay-as-you use manner, much like utilities. Usually, the

datacentre hardware and software is operated by third parties such as Google and Amazon.

23

Public Cloud is usually hosted away from customer premises. A private Cloud provides

services to a limited number of people behind a firewall. The datacentre hardware and

software is fully owned by a single company who has total control over the applications

running on the infrastructure. Private Cloud provides companies a high level of control

over the Cloud resources.

In a multiple Clouds environment, hybrid Clouds combine both public and private Clouds

and enable the end users to execute applications on an internal as well as external Cloud

infrastructure. Hybrid Clouds are normally used to handle workload overloading whereby

applications are deployed to the public Cloud whenever the private Cloud is overloaded.

However, hybrid Cloud is unsuited for the applications that require large amount of data

transfers to the public Cloud but only require a small amount of processing.

In summary, organizations can choose to deploy applications on public, private or hybrid

Cloud. These Clouds offer different benefits and organizations can implement the best

Cloud that fulfils their needs.

2.2.1 System Architecture

Figure 2.4 depicts the system architecture of Cloud Computing. The three layers

architecture of Cloud Computing consists of Infrastructure as a Service (IaaS), Platform as

a Service (PaaS) and Software as a Service (SaaS). Cloud Computing provides services at

these three different layers.

24

Figure 2.4: Cloud Computing System Architecture (adapted from Vecchiola et al.,

2009)

2.2.1.1 Infrastructure as Service (IaaS)

IaaS is the layer that provides basic storage, computation capabilities and network

infrastructure as standardized services. However, this layer is different from the fabric layer

of Grid infrastructure since IaaS providers offer the resources as services like utilities. In

addition, the resources are provided as a unified resource through virtualization which the

users can access through a standard interface (Foster et al., 2008). Figure 2.5 shows the

Cloud architecture in relation to Cloud services. Some examples of the IaaS are Amazon

Elastic Compute Cloud (EC2), Amazon Simple Storage Service (S3), OpenNebula and

Joyent.

25

Figure 2.5: Cloud architecture related to Cloud services (adapted from Foster et al.,

2008)

Amazon EC2 provides resizable compute capacity in the Cloud environment and provides

complete control of the computing resources to the end users. End users can rent servers for

a certain CPU speed, memory, disk capacity together with the OS and applications. By

using virtualization technologies, Amazon EC2 allows end users to reserve resources for a

specific time and only charges base on the capacity used (Amazon, 2010a).

Amazon S3 is the storage service for the Internet. Amazon S3 provides a simple Web

Services interface that can store and retrieve any amount of data, at any time and from

anywhere in the Web. The objects are redundantly stored on multiple devices across

multiple facilities in an Amazon S3 region. In addition, Amazon S3 provides checksum

verification on all network traffics to detect data packets corruption during data storage

retrieval. Amazon S3 stores any amount of data inexpensively and securely, while ensuring

that the data will always be available (Amazon, 2010b).

26

OpenNebula is an open source, virtual infrastructure manager that deploys virtualized

services on a local pool of resources and external IaaS Clouds. OpenNebula enables the

dynamic deployment and replacement of virtualized services within and across sites. By

using the driver based architecture, OpenNebula is integrated with multiple virtual machine

managers, transfer managers and external Cloud providers (Sotomayor et al., 2009).

2.2.1.2 Platform as Service (PaaS)

PaaS is an abstraction layer between the software applications (SaaS) and the virtualized

infrastructure (IaaS). PaaS provides a software platform on which users can build their

applications and host them on the PaaS provider’s infrastructure (Sridhar, 2009). This layer

provides a development framework to build, test, and deploy custom applications according

to the specifications of a particular platform. The commercial example of PaaS includes

the Google Apps Engine, Microsoft Azure and Manjrasoft Aneka (Stanoevska-slabeva et

al., 2009). However, the migration of existing applications to a PaaS environment is

difficult. This is because the applications need to follow the APIs and be written in specific

language provided by the PaaS infrastructure.

Google App Engine is the PaaS infrastructure that allows developers to build and deploy

Web applications running on Google's infrastructure. Google App Engine provides a set of

APIs that allow developers to integrate with services provided by Google such as Mail,

Datastore and Memcache. In addition, Google App Engine is scalable in terms of network

traffic as well as data storage. The applications running on Google App Engine are written

in Java or Python programming languages (Google, 2010a).

27

Windows Azure is the PaaS provided by Microsoft for developing scalable applications for

the Cloud. Windows Azure provides developers with on-demand computation resources

and storages to build, deploy and manage their Web applications through Microsoft

datacentres. The developers can create services that run on .NET framework using the

Microsoft Azure Software Development Kit (SDK). In addition, Windows Azure supports

popular standards and protocols including SOAP, REST, XML, and PHP (Windows, 2010).

Manjrasoft Aneka is a pure implementation of PaaS that provides platform and framework

for developing distributed applications on the Cloud. Aneka is based on the .NET

framework and is designed to utilize the computing power of Windows based machines.

The core value of Aneka is its service oriented runtime environment that is deployed on

both physical and virtual infrastructures and allows the execution of applications developed

with different application models (Vecchiola et al., 2009).

2.2.1.3 Software as Service (SaaS)

SaaS is the software that is owned, delivered and managed remotely by software providers

or service providers. This software is offered as services in a pay-per-use manner (Wohl,

2008). SaaS is provided through the communication networks and made accessible to users

via a Web browser. Instead of purchasing the server licenses for the software, end users can

obtain the same functions through a hosted service from service providers through network

connection. The most widely known examples are Google Apps and salesforce.com.

Google Apps is the SaaS provider that allows end users to access their software through the

Internet. The software provided by Google Apps includes Google Mail, Google Calendar,

28

Google Docs, Google Groups and Google Video (Google, 2010b). Salesforce.com is

another SaaS provider for enterprise Cloud Computing providing hosted software services

such as Sales Cloud2 and Service Cloud2 (Salesforce.com, 2010).

2.2.1.4 Benefits

As summarized, IaaS, PaaS and SaaS offer different types of services to service providers

as well as end users. In order to derive the maximum benefits from these services, service

providers, developers and end users must understand their requirements and design their

applications wisely.

The first advantage of deploying applications in Cloud Computing is to minimize the risk

of deploying a physical infrastructure. With Cloud Computing, organizations can deploy

their new software products in the Cloud to the level of success without any infrastructure

investment. If the applications proof to be successful, the organization can subscribe for

more resources. The organization does not need to worry about the scalability issue as this

is handled by the service providers. Furthermore, for specific events, organization can rent

more resources to handle workload spikes at a lower cost.

The second advantage of Cloud Computing is the reduction of execution and response time.

Cloud Computing can shorten the time taken for executing batch jobs since the jobs are

distributed across multiple resources. Also, Cloud Computing can help to optimize the

response time by minimizing the execution time for CPU intensive tasks.

29

Service providers can develop many applications as services through the standard interface

over a Cloud. Service providers can generate revenues by providing services as well as the

physical infrastructure based on the pay-per-use model. Besides, all the installations,

maintenance, upgrading and patching are performed at the datacentre. This eases the job of

service providers by eliminating the needs to visit client sites for installation, upgrading and

troubleshooting.

Cloud Computing allows start-up organizations to begin their business at a low cost by

allowing these organizations to rent the resources without paying for the full cost of

purchasing the hardware infrastructure and software licenses. Indirectly, the lower entry

cost increases the pace of innovation since more small capital companies can be involved.

2.2.2 Characteristics of Cloud Computing

Cloud Computing has some close connections to other relevant technologies such as Grid

Computing, Utility Computing, Cluster Computing and Distributed Systems (Foster et al.,

2008). Figure 2.6 shows an overview of the relationship between Cloud Computing and

other domains. The figure shows that Cloud Computing lies within Web 2.0 which supports

the SOA while Grid Computing overlaps with supercomputers, clusters as well as Clouds

and is less scalable when compared to supercomputers and Clouds.

Although Cloud Computing evolved from Grid Computing and relies on Grid Computing

as its backbone and infrastructure support, there is a set of characteristics that distinguishes

Cloud Computing from Grid Computing. Foster et al. (2008) have identified the differences

30

between Grid and Cloud Computing in various aspects such as security, programming

model, compute model, data model, application and abstraction.

Figure 2.6: Relationship of Cloud Computing and other domains (adapted from

Foster et al., 2008)

2.2.2.1 Virtualization

Cloud Computing provides different services using virtualization and storage technologies.

Zhang and Zhou (2009), defined two basic approaches to enable virtualization in Cloud

Computing which are, hardware virtualization and software virtualization. The hardware

virtualization is used to manage the hardware resources in a plug-and-play mode. Hardware

equipment is added or removed without affecting the normal operations of other equipment

in the system. Software virtualization allows the use of software image management to

enable software sharing. Software images are created from a set of software systems

including, operating system, middleware, and applications. Besides, software virtualization

also allows dynamic code assembly and execution. Code elements are dynamically

retrieved and executed based on the composition of reusable code elements and just-in-time

complier technologies.

31

2.2.2.2 Scalability

Cloud Computing is evolved from Grid Computing and Cloud Computing relies on Grid

Computing as its backbone and infrastructure support. Thus, Cloud Computing must be

scalable across different regions, hardware types as well as software configurations. Cloud

Computing can run on physical resources as well as on virtualized new resources. The

virtualized resources are adaptable to various jobs' requirements from different users. This

scalability and flexibility is driving the emergence of the Cloud Computing.

Mei, Chan and Tse (2008) classified Cloud scalability into horizontal and vertical.

Horizontal Cloud scalability is the ability to connect and integrate multiple Clouds to work

as one logical Cloud. For instance, a Cloud providing computational services can request

services from another Cloud that provides Calculation services. Vertical Cloud scalability

is the ability to improve the capacity of a Cloud by providing more resources in the Cloud.

The resources are provided dynamically on demand.

2.2.2.3 Accessibility

Cloud services are accessed using simple and pervasive methods such as standard Web

Services framework or APIs with Internet. The users do not need to remember the complex

command as required in Grid Computing. The services can be access as Utility Computing.

Through Cloud Computing, users are able to access the services anywhere, anytime, share

data and store their data safely. A more equitable pay-per-use scheme may be implemented

to charge users based on the combined resources usage.

32

2.2.2.4 On-demand Service Provisioning

Cloud computing requires a dynamic computing infrastructure. A dynamic computing

infrastructure is critical to effectively support the elastic nature of service provisioning and

de-provisioning as requested by users while maintaining high levels of reliability and

security. Thus, the resources must be able to plug into a Cloud environment dynamically.

Basically, these resources are not permanent parts of the IT infrastructure. Besides, users

can customize their resources requirements and make resources reservations. Different

resources will be provided based on demand and users need.

2.2.2.5 QoS Guaranteed

Cloud Computing provides services to multiple users in different regions and having

different requirements. Thus, Cloud Computing must provide QoS guarantees for different

users’ requirements that are documented in the SLA. In general, SLA would include non-

functional requirements such as hardware availability, service availability, storage, network,

performance, costing etc. Furthermore, penalties are imposed in the event of any violation

of the SLA. A good Cloud Computing system will be able to meet multiple QoS

requirements.

In summary, Cloud Computing and Grid Computing share some common characteristic in

the area of architecture, objectives as well as technologies. However, there are also some

differences in various aspects such as virtualization, business model, programming model,

applications and abstractions. The next section describes the technologies used by Cloud

Computing, namely Web Services and Service Oriented Architecture (SOA).

33

2.2.3 Web Services

Web Services are emerging technology in the development of distributed applications in

Grid and Cloud Computing. Web Services are software components stored on a single

computer but is accessed via method calls by an application on another computer over a

network (Deitel and Deitel, 2009). Nowadays, there are many Web Services available

across the world that can be used in various fields such as science, engineering, business,

education, government etc. The popularity of Web Services is due to the growth of Internet

which has enabled users throughout the world to access the Web Services wherever they

are located.

Web Services provide service interfaces that enable clients to communicate with servers

without human supervision. Web Services have promoted software portability and

reusability for applications. Web Services allow complex application to be developed by

integrating with other Web Services. In addition, Web Services are independent of any

particular programming model which allows the communication between client and server

in a platform-independent manner. Hence, Web Services have become the solution for

building distributed applications.

Basically, each Web Services have a Uniform Resource Identifier (URI) which is a general

resource identifier whose value is either a Uniform Resource Locator (URL) or a Uniform

Resource Name (URN) (Deitel and Deitel, 2009). The most common value of URI is URL.

URL is a persistent reference containing the domain name of the server and the service to

which it refers.

34

Web Services communicate using XML and Hypertext Transfer Protocol (HTTP). XML is

used for data representations and message exchanges between clients and servers. XML is

adopted for its readability and ease of debugging. SOAP is used to encapsulate the

messages which are then transmitted over HTTP. In addition, each Web Services contain

service descriptions which are defined by the Web Services Description Language (WSDL).

The description describes the interface as well as others related information. WSDL defines

the XML schema such as element names, definition, types, message, interface, bindings

and others (Deitel and Deitel, 2009). The WSDL documents are accessed either directly or

indirectly using the URIs via a directory service such as UDDI.

Besides SOAP, another alternative approach is to use REpresentational State Transfer

(REST). REST is a constrained style of operation, in which client use URLs and HTTP

operation to manipulate resources that are represented in XML (Fielding, 2000). REST is

suitable for describing the architecture of distributed resource access.

2.2.3.1 XML

XML has emerged rapidly as a new approach to deliver structured data over the Web. XML

is a widely supported open technology and has become the standard format for describing

the data that is exchanged between applications over the Internet.

An XML document contains texts that represent contents and elements that specify the

document’s structure. The advantage of XML is because XML describes the data in a

standardized and structured way, making it both humans and machines readable. It is

simple enough for the machine to read and write and yet easily understandable by

35

developers to interpret and debug the codes. Furthermore, XML is simple to use and there

and many XML parsers available.

However, the more important factors are having XML adhering to a standard that allows

programs written in different languages on different platforms to communicate with each

other and a standardized method to invoke remote resources on the Web for exchanging

complex data.

2.2.3.2 SOAP

SOAP is the communication protocol used by Web Services to transmit requests and

replies between clients and servers (Deitel and Deitel, 2009). SOAP defines a scheme for

using XML to represent the contents of request and reply messages. SOAP also defines the

communication of documents and the protocol used. The current version of SOAP supports

HTTP and SMTP communications.

SOAP specifies the rules of using XML to package messages. SOAP message is packaged

into a container known as an envelope which consists of an optional header with a required

body. The header is used to establish the context for a service and audit operation and is

altered by intermediary devices for routing and security purposes. The body is used to store

the document for a particular Web Services. The body element contains the name of the

procedure as well as the URI for the relevant service description. The body element is

either request message or reply message.

36

SOAP supports synchronous and asynchronous communication. In synchronous

communication, a client invokes a request for a service and then waits for a response. A

single port is open to send and receive data. The synchronous communication is suitable for

the applications that require an immediate response. Basically, for synchronous

communications, the services requests are often process within short time duration.

However, synchronous communication is not suitable for services that require longer

processing time because synchronous communication will block the client until the output

of the Web Services is returned. In asynchronous communication, the client invokes the

service but does not wait for the response. Hence, asynchronous communication is suitable

for the services that require a significant amount of time to process the request. After

making an asynchronous request, the client can carry on with other threads of execution

without blocking.

2.2.3.3 WSDL

WSDL is an XML-based language for describing Web services. WSDL describes the point

of contact for a service provider and provides a simple way for service providers to

describe the basic format of the requests. WSDL defines XML schema to represent the

components of a service description which include definitions, types, message, interface,

binding and services (Deitel and Deitel, 2009).

WSDL service description is separated into two categories; namely, abstract description

and concrete description. An abstract description establishes the interface characteristics of

Web Services. WSDL includes a set of definitions for the types used by the service and a

description of the set of messages exchanged. Also, WSDL groups together the collection

37

of operations that belong to same Web Services. Each operation represents a specific action

performed by the service and the operation consists of a set of input and output messages

(Erl, 2005). A concrete description is used for communication. The description comprises

the binding and the service. The binding element is used to describe the requirements for a

service to establish physical connections. SOAP is the most common form of binding. The

service element specifies the name of the service and one or more endpoints where an

instance of the service may be contacted.

2.2.3.4 UDDI

Universal Description, Discovery and Integration (UDDI) is a standard for registering and

searching Web Services within directories. The main function of UDDI is to provide

discovery of services. The UDDI is a central directory service where a service provider can

publish, register, and search for Web Services and offers the service user a location to look

for appropriate service (Bellwood, 2002).

The data stored in the UDDI directory is in XML format and is divided into three main

categories; namely, white pages, yellow pages, and green pages. White pages contain

general information like name, description, address, etc. about the service providers.

Yellow pages contain general classification data on industrial categories based on standard

taxonomies. Green pages contain detailed technical information about the Web Services

(Overhage and Thomas, 2003).

Figure 2.7 depicts the communication between the Web Services and UDDI. Firstly,

service provider will publish their services using WSDL and the definitions will be stored

38

at UDDI. When the service users look up for a service, queries are sent to the UDDI to

locate the service and the query responses are returned to service users. Using the received

response, the service users will send request to the service provider in WSDL. Finally, the

service providers will response based on the service request.

Figure 2.7: Communication between Web Services and UDDI (adapted from

Diamadopoulou et al., 2008)

2.2.3.5 REST

Although most of the Web Services use SOAP as the communication protocol, there is

another alternative; namely, REST. Feng, Shen and Fan (2009) defined REST as a

coordinated set of architectural constraints that restricts the roles or features of architectural

elements and the relationships among those elements within any architecture that conforms

to that style. REST is implemented on HTTP protocol and the services using HTTP should

conform to the semantics of the Web (Fielding, 2000). REST is not an API but contains a

set of guidelines for designing applications to run over HTTP.

39

With REST, the emphasis is on the manipulation of data resources rather than on interfaces.

As long as the interfaces remain unchanged, the client and the server can interact normally.

In REST, the resource can be a physical object or an abstract concept while a representation

is any useful information about the state of a resource. Thus, REST is a new mode of

service abstraction and REST helps to understand the original look of HTTP and fully

utilize current Web features. In comparison to SOAP, REST offers a simple style of

accessing resources that works with the Web.

In summary, Web Services provide an infrastructure for maintaining a structured form of

interoperability between clients and servers. Besides, Web Services also scale well across

the Internet. Since HTTP is used to transport SOAP messages, HTTP allows the services to

be accessed by different organizations and administrative domains as most of the policies

will allow the HTTP traffic to pass through. Due to these natures, Web Services have

proven to be the solution for implementing distributed applications across heterogeneous

environments.

2.2.4 Service Oriented Architecture

The widespread use of the Internet and the introduction of XML as a structured format

have triggered the introduction of Service-Oriented Architecture (SOA) (Mansukhani,

2005). Nowadays, SOA is widely used as the architecture to integrate various independent

applications into services. SOA enables the provision of a large number of Web Services.

Many legacy applications are converted to services based on SOA to adapt to the

requirements of modern societies.

40

SOA is best described as a set of architectural concepts and principles that includes systems

development methods, techniques and related technologies that enable the implementation

of service-oriented enterprise applications (Feuerlicht, 2010). SOA transforms different

functions of a software process in a standardized way into services to support multiple

projects implementation. The difference between SOA and traditional application

architecture is that SOA emphasizes interface, protocol, communication, coordination,

working process, search, cooperation and publication (Wang and Liao, 2009).

2.2.4.1 Characteristics

SOA is an emerging model of system architecture. Some of the key characteristics of SOA

include loosely-coupled model, open standard and service composition (Erl, 2005). SOA

supports loosely-coupled interface which minimizes dependencies between services. This

allows the services to evolve independently. By implementing standardized service

abstraction layers, a loosely coupled relationship is achieved between different applications

domain.

Besides, SOA is based on open standards. SOA uses SOAP, WSDL and XML for message

representation and communication. The use of the open and standardized messaging model

eliminates the needs for underlying service logic to share systems type (Erl, 2005). In

addition, SOA composites different services and supports the construction of collaboration

service. This allows the composition of business processes into a SOA model and can lead

to highly optimized automation environments.

41

2.2.4.2 Benefits

Due to above characteristics, SOA has become an important technology in today’s software

development. Since SOA is based on open standard, SOA permits the sharing and reuse of

services across multiple projects. This has directly reduced the cost as well as time needed

to implement a new project. Moreover, SOA addresses the system integration problems by

introducing the loosely-coupled model. SOA provides the capability to reconfigure

different processes rapidly by selecting the available set of services making it highly

adaptable to changes.

The popularity of Web Services has enabled many legacy applications to participate in

SOA. With SOA, the isolated applications are interoperated without requiring the

development of expensive middleware. This saves cost and effort of integration.

Furthermore, SOA supports the composition of services. Developers can develop any

solution required by the organization by compositing the services available on the Internet.

Cloud Computing is becoming the emerging technology for business, academy as well as

end users. Since SOA allows services to be discovered, composited and executed, SOA

play a major role in supporting Cloud Computing. With SOA, all the hardware, software as

well as data resources are wrapped as services in Cloud Computing.

2.3 Research Opportunities

After the literature studies on the system architectures, characteristics and issues in Grid

and Cloud Computing, several important areas of concerns that need to be addressed are

42

identified. These problems include job scheduling, Quality of Service (QoS) and cost

management. These three issues are summarized as below.

2.3.1 Job Scheduling

Job scheduling is the one of the main research area in Grid and Cloud Computing (Buyya et

al., 2002), (Doulamis et al., 2007), (Lee and Zomaya, 2007), (Dong and Akl, 2009), (Fatos

et al., 2009), (Ferretti et al., 2010) etc. Since there is a common need in both Grid and

Cloud Computing to be able to manage large group of resources, job scheduling plays a

major role in both technologies. An efficient job scheduling technique is required to

maximize the resources utilization and minimize the total execution time.

Due to the increasing number of distributed resources and the introduction of virtualization

in Cloud Computing, designing an effective job scheduling algorithm in Cloud Computing

is very challenging. Although the job scheduling problem in Grid and Cloud Computing

has been shown to be NP-complete (Grama et al., 2003), (Armbrust et al., 2009), (Boloor et

al., 2010), (Reig et al., 2010), there are still various heuristics methods that are used in this

heterogeneous environment to optimize the performance.

2.3.2 Quality of Service

As Grid and Cloud computing have emerged as the technologies that provide services to

end users at distributed location, the ability to guarantee QoS is becoming critical. As the

service providers need to provide services to end users with different QoS requirements, the

guaranteeing of QoS in Grid and Cloud environment is becoming extremely challenging

(Diamadopoulou et al., 2008), (Li et al., 2009a), (Xu et al., 2009), (Ferretti et al., 2010) etc.

43

An efficient QoS aware resource allocation mechanism is needed to meet end users QoS

requirements.

2.3.3 Cost Management

Cloud Computing is a recent technology trend that delivers on demand IT resources on

pay-per-use basis. This pay-per-use mechanism is applied to computation, storage as well

as network bandwidth. There are various pricing schemes that can be used by the service

providers to estimate and determine the cost (Buyya et al., 2009), (Truong and Dustdar,

2010), (Yeo et al., 2010), (Chaisiri et al., 2011). Cost management serves as a basis for

managing the supply and demand of the resources. An efficient pricing mechanism will

ensure that the service providers achieve higher revenues.

In summary, the next few chapters will provide the solution that are used to address the

above issues. A job scheduling algorithm that maximizes resources utilization and

minimizes the makespan in Grid and Cloud environment is proposed. Furthermore, this

algorithm will be enhanced to maximize reliability and profit while guaranteeing the users

QoS requirements.

2.4 Chapter Summary

This chapter presented the background information of Grid Computing, Cloud Computing,

Web Services and Service Oriented Architecture (SOA). As summarized, Grid Computing

is a mature technology that used to coordinate resource sharing and problem solving in

dynamic, multi-institutional virtual organizations. Grid Computing has provided an

44

infrastructure that allows end users to perform their computation activities in multiple

heterogeneous resources.

Together with the growth of Web Services and SOA, Grid Computing is offered in the

form of Grid services that is accessed anywhere and anytime. This has led to the

introduction of Utility Computing where computer resources are accessed on a pay-per-use

basis. In line with this, there is an evolution in SaaS due to the increasing interests in

network-based subscription software model. The convergence of Grid Computing, Utility

Computing as well as SaaS has formed a new technology referred to Cloud Computing.

Cloud Computing can provide a flexible, scalable and accessible infrastructure that allow

the execution of SaaS. Cloud Computing delivers IT services as computing utilities and

these services are dynamically provisioned through virtualization.

Several problems such as job scheduling, Quality of Service (QoS) and cost management

have been identified during the studies. This thesis will provide the solution to address the

above issues. Chapter 3 will present the solution that addresses the job scheduling problem

in Grid and Cloud environment.

45

CHAPTER 3 HYBRID SCHEDULING ALGORITHM (HSA) AND

AUTOMATIC DEPLOYMENT

This chapter presents the solution that used to address the job scheduling problem in Grid

and Cloud environment. The first section details the scheduling process in Grid and Cloud

Computing and the second section presents the existing scheduling algorithms. In the third

section, the Hybrid Scheduling Algorithm (HSA) and the automatic deployment

mechanism are proposed. The final section describes the experiment setup and the

evaluations performed on the HSA and the automatic deployment mechanism.

3.1 Grid and Cloud Scheduling Process

In terms of characteristics, architecture and technologies, there are many commonalities

between Grid and Cloud Computing. One of their common needs is to be able to manage

large group of resources effectively. As such, job scheduling is one of the main research

areas in Grid and Cloud Computing. In order to coordinate the resources, an effective and

efficient job scheduling algorithm is essential. Since Cloud Computing is evolved from

Grid Computing and relies on Grid Computing as its backbone and infrastructure support, a

deep understanding of job scheduling process in Grid Computing is essential.

Job scheduling in Grid Computing is defined as the process of making scheduling decisions

involving resources over multiple administrative domains (Schopf, 2004). Job scheduling is

a process that maps and manages the execution of different jobs on distributed resources.

Job scheduling involves searching multiple administrative domains to use a single resource

or scheduling a single job to use multiple resources at a single site or multiple sites. In

46

recent years, the number of submitted jobs as well as distributed resources has increased

tremendously. In response to this, an efficient scheduling algorithm is needed to coordinate

multiple jobs onto multiple resources. A proper scheduling algorithm will have a

significant impact on the performance of the overall system.

Figure 3.1 depicts a logical Grid scheduling architecture proposed by (Zhu, 2003). When

users submit jobs to the Grid environment, the Grid scheduler processes the jobs and

selects the best resource to execute the jobs according to the jobs’ requirements as well as

the resources information collected from the Grid Information Service (GIS). GIS provides

the aggregate information about the resources in each domain as well as a list of supported

jobs. This information is very important for Grid scheduler to make a proper scheduling

decision.

Figure 3.1: A logical Grid scheduling architecture (adapted from Zhu, 2003)

47

Once the Grid scheduler has enough information about the jobs and resources, the Grid

scheduler can generate a job-to-resource mapping list. Using this list, the deployer will

dispatch the jobs to the resources accordingly. Although the scheduling process looks

simple, it is quite challenging in the Grid environment, mainly due to the heterogeneity of

the Grid. Since the resources are distributed in multiple administrative domains, Grid

scheduler often makes mapping decisions where the scheduler has no control over the local

resources. Moreover, the resources information collected from each domain is aggregated

information and is often out dated. The resources availability is unpredictable and makes

the Grid an opportunistic environment.

In general, Grid scheduling process is divided into three phases; namely, resource

discovery, resource selection and job execution. In Grid environment, resource discovery

phase discovers the availability and the status of resources that are distributed in multiple

locations efficiently. This process generates a list of potential resources. On completion of

discovery phase, the resource selection process is used to choose the best resources for each

job. Once the job-to-resource mapping list is generated, the jobs are dispatched to the

resources for execution. Figure 3.2 depicts the Grid scheduling process.

Figure 3.2: Grid scheduling process (adapted from Schopf, 2004)

48

3.1.1 Resource Discovery

An efficient resource discovery mechanism is one of the fundamental requirements for Grid

scheduling. In this phase, a potential set of resources is determined based on the jobs

submitted. The first step of resource discovery is to determine the set of resources that the

user submitting the job has access to. After which, the set of potential resources is further

filtered based on the job requirements such as processor capabilities, memory requirement,

network bandwidth, software availabilities as well as temporary storage required. The

resources information is collected from GIS. The role of GIS is to collect and predict the

current resource information. GISs are usually organized in a centralized and hierarchical

structure. The final step of resource discovery is to filter out the resources that do not meet

the minimal job requirements and generate a set of potential resources.

There are various studies on resource discovery; Ranjan, Harwood and Buyya (2008)

presented the current state of the art in Grid resource discovery and investigated on the

various decentralized resource discovery techniques using Peer-to-Peer (P2P) network

model. Figure 3.3 depicts the P2P network model.

Figure 3.3: P2P network model (adapted from Ranjan et al., 2008)

49

Forestiero and Mastroianni (2009) proposed Antares, a bio-inspired algorithm that is used

to construct a decentralized and self-organized P2P information system in computational

Grid. The algorithms make use of agents that traverse the Grid through P2P

interconnections to replicate and sort similar indexes into neighbouring Grid hosts. This

improves the rapidity and effectiveness of discovery operations.

Due to the popularity of Cloud Computing, resource discovery based on Web Services has

become very popular. Since Grid services can easily be mapped onto the Web Services,

the Grid resource discovery is treated as discovery of the Web Services. Kaur and Sengupta

(2007) presented the Web Services based resource discovery mechanism for Grid. The

UDDI database is used as the source of resource information to process the resource query.

The system uses UDDI rich query model to discover Grid services. In addition, the system

consists of an extended version of WSDL to describe the Grid Services. However, the

drawback of the system is that the system uses central servers and databases which are

prone to bottlenecks and single point of failures.

Molt'o, Hern'andez and Alonso (2008) proposed a SOA based meta-scheduler Grid service

that is accessed through the network. The system is developed on top of Globus Toolkit

which uses Meta-computing Directory Service (MDS) for the resource discovery. However

the system cannot scale well. Li et al. (2008) presented ROSSE, which is a Rough sets-

based search engine for Grid service discovery that deal with the uncertain properties in

service matching. The research includes a QoS model to filter functionally matched

services with their QoS-related non-functional performance.

50

3.1.2 Resource Selection

After a potential set of resources is generated, the best resource must be selected for the

scheduled job. In order to generate the most suitable job-to-resource mapping, the detailed

information about the resource is needed. This information is used to compute the ranking

according to the objective function of the scheduler. The resource with highest ranking is

selected as the candidate for the job. The process is repeated until all the jobs are matched.

Finally, a job-to-resource mapping list is generated. The objective function of the scheduler

is discussed in section 3.2.4.

3.1.3 Job Execution

This final phase of Grid scheduling process is job execution. Once the job-to-resource

mapping is generated, the job is dispatched and submitted to the selected resources for

execution. The job submission may include transferring data and software configuration

prior to job execution. With the advancements in virtualization technologies, a customized

runtime environment is created and the computational resources are automatically deployed.

There are various studies on service deployments using virtualization technology. These

include (Lacour et al., 2005), (Sun et al., 2008), (Kecskemeti et al., 2008), (House et al.,

2008) and (Lizhe et al., 2009).

Lacour, Perez and Priol (2005) proposed a generic application description model that

translates a specific application description into a generic model that allows the automatic

deployment of the application. Currently, the model supports CCM and MPICH-G2

applications. Sun et al. (2008) and Kecskemeti et al. (2008) deployed services with virtual

appliances. Virtual appliances provide a simple and unified interface to deploy multiple,

51

interrelated software components into heterogeneous environments. House et al. (2008)

proposed an architecture for hosting services on virtual clusters that span across multiple

administrative domains. The virtual hosting infrastructure provides software deployment

across multiple service providers.

Wang et al. (2009) developed the Web Services based virtual machine provider for Grid

infrastructures called Grid Virtualization Engine (GVE). GVE implements a scalable

distributed architecture with a hierarchical flavour. Besides, GVE provides the standard

Web Services interface for users to manipulate virtual machine resources and supports

automatic service deployment.

Once the runtime environment is configured, the job is executed using a single command,

multiple scripts or services. During the job execution period, the statuses of the job as well

as the resources are monitored. If the job execution is not making sufficient progress, the

job may be rescheduled. There are various studies on rescheduling including (Reed and

Mendes, 2005), (Hussain et al., 2008), (Netto and Buyya, 2008), (Diaz, 2009), (Lee et al.,

2009) and (Zhang et al., 2009).

Reed and Mendes (2005) monitored the performance data to verify whether the contracted

specifications are satisfied. If the contract is not satisfied, the system will reschedule the

application on a new set of resources that can satisfy the original contract specifications.

Hussain et al. (2008) rescheduled threads at run time when the computer resources are

having high idle time. Netto and Buyya (2008) rescheduled co-allocation requests in the

environments where runtime estimations are inaccurate. The proposed model uses

52

processor remapping to overcome the limitations of response time guarantees and the needs

for fragmentation reduction.

Lee, Subrata and Zomaya (2009) proposed the Adaptive Dual-objective Scheduling (ADOS)

algorithm that performs the scheduling by accounting for the completion time and resource

usages. The algorithm incorporates rescheduling to deal with unforeseen performance

fluctuations. Zhang, Koelbel and Cooper (2009) focused on the workflow scheduling

mechanism. The authors proposed a light-weight hybrid scheduling mechanism and a two-

step rescheduling decision approach.

Once the job is completed, the status as well as the job output is saved at the user’s

specified location. Besides, the system will perform the clean-up tasks to remove any

temporary settings or pointer related to the job.

One of the biggest challenges in job execution phase is job failure. A Grid job cannot

execute before the deadline and is terminated due to resource failures or the presence of

local jobs. Advance reservation is one of the methods that are used to address the problem.

In this method, part or all of the resources needed are reserved in advance. The reservations

may be based on time and may include special cost. Some of the researches in resource

reservations are (Kunrath et al., 2008), (Moaddeli et al., 2008), (Rajah et al., 2009) and

(Singh et al., 2009).

Kunrath et al. (2008) proposed an algorithm that reserves a certain percentage of the

resource capabilities, rather than making a full resource reservation. Since the scheduler has

53

to deal with time and resource capabilities, variable slots are used to organize the

reservations in the schedule. Moaddeli et al. (2008) explored the trade-offs and bottlenecks

of incorporating time constrained flexible advance reservation in backfilling methods.

Rajah, Ranka and Xia (2009) designed a novel admission control and scheduling algorithm

for bulk data transfer. The algorithm combines advance reservation, multipath routing, and

bandwidth reassignment via periodic re-optimization into a cohesive optimization-based

framework. Singh, Kesselman and Deelman (2009) implemented strategies by integrating

reservations within the resource management to prove the deterministic QoS while

addressing fairness issues with regards to best effort services.

3.1.4 Differences

Although Grid and Cloud Computing share several commonalities, there are significant

differences in the job scheduling process. Since the services are pre-configured in Grid

Computing, the resources in Grid can only serve a limited number of requests. In Cloud

Computing, the resources are provided on demand. During the deployment process, the

required services are automatically configured using automatic deployment mechanism. As

a result, Cloud solves the problem of scalability.

In Grid Computing, the requests are processed immediately using the pre-configure

services. However, in Cloud Computing, extra time is required to create the environment

for executing the requests. The extra time is needed for image and services deployment.

The requests are processed after the environment is created.

54

In Grid Computing, the resource consists of physical servers that are pre-configured.

During the rescheduling process, the scheduler is required to discover the resources within

the existing pre-configured services. Due to such constraints, there are difficulties in

matching the available resources and increase the failure rate to service the requests. Such

problem are overcome using Cloud Computing where resources are provided on demand.

During the rescheduling process, the same image files as well as the services are deployed

to any available resources.

In summary, there are still many active studies in the area of job scheduling in Grid and

Cloud Computing. In the next section, the existing job scheduling algorithms are presented.

3.2 Scheduling Algorithms

Jobs scheduling plays an important role in Grid and Cloud Computing. A proper job

scheduling algorithm is able to increase resource utilizations as well as improving the

overall performance in terms of makespan, load balancing and QoS. There are various

types of scheduling algorithms in Grid and Cloud Computing. Each scheduling algorithm is

different in terms of the structure of the scheduler, type of job requests, time of the

scheduling decision, and the objective functions of the scheduling algorithm.

3.2.1 Structure of Scheduler

Scheduling structure is divided into centralized scheduling and decentralized scheduling. In

a centralized environment, a central scheduler will handle all the job requests. The central

scheduler gathers the resources information from multiple sites and makes scheduling

decisions based on the jobs and resources information. The central scheduler is easy to

55

manage and has all the information of the available resources. The only deficiency is single

point of failure due to hardware error or network connection. Figure 3.4 depicts the

centralized scheduling.

Figure 3.4: Centralized Scheduling (adapted from Hamscher et al., 2000)

In a decentralized environment, the job requests are submitted to different distributed

schedulers. Each distributed scheduler collects aggregate resources information from their

controlled sites and then exchanges the information with the adjacent schedulers. This type

of scheduler is more scalable and provides better fault-tolerance and reliability as compared

to the central scheduler. However, the distributed schedulers are difficult to manage in

terms of job synchronization since the job requests are submitted to different distributed

schedulers (Hamscher et al., 2000). Figure 3.5 depicts the decentralized scheduling.

56

Figure 3.5: Decentralized Scheduling (adapted from Hamscher et al., 2000)

Zikos and Karatza (2008) proposed a hierarchical structure that combines the benefits of

the centralized and decentralized schedulers. In a hierarchical model, the central scheduler

handles all the job requests and collects aggregate resources information from each site at a

fixed interval. Then, the central scheduler dispatches the jobs in groups to different sites.

The local schedulers at each site will assign the local resources to the jobs.

3.2.2 Job

A job is a set of atomic tasks to be executed on a set of resources. Each task may compose

of atomic sub tasks (Baker et al., 2002). Before making any scheduling decision, it is

essential for the scheduler to take into account the attributes and requirements of the job.

The attributes of the job include the number of instructions or job length, communication

volume and the subtask relationship. Some of the job requirements are: memory, storage,

bandwidth, platform, software and QoS. The job attributes and the requirements are

gathered in a process known as application profiling.

57

3.2.2.1 Job Length

One of the attributes that is used to estimate the length of a job is to calculate the total

number of instructions needed to execute a job. The information is collected either using

software or hardware. Zhang et al. (2007) proposed a mechanism that uses the processor

hardware counter to provide detail information such as control flow prediction, execution

rate and memory access behaviours. This information is useful in profiling the application

execution behaviour and the length of a job. The drawback of this approach is the extra

processor overhead needed to gather the instructions information. Besides, different

mechanisms are needed for the processor hardware counter when running on different

computer architecture.

3.2.2.2 Communication Volume

Communication profiling is very important especially in data intensive distributed

applications. Communication profiling provides the statistical information such as

communication volume and communication activity of the application. With this

information, Grid scheduler can predict the communication time required for different

applications.

3.2.2.3 Subtask Relationship

Parameter sweep job and workflow job are two popular application models in distributed

system. Parameter sweep job comprises a set of computational tasks that are mostly

independent. These tasks are executed independently and simultaneously. This type of

application model exist in many fields of science and engineering, including computational

fluid dynamics, bioinformatics, discrete-event simulation, computational biology,

58

astronomy and computer graphics (Foster and Kesselman, 2004). Due to its nature,

parameter sweep job is distributed to multiple computing resources and is suitable for use

in a distributed environment.

Workflow job comprises of multiple dependent tasks that are to be executed in a predefined

order. The overall task is partitioned into sub tasks that linked to each other in order of

precedence. A task cannot begin until its entire parent sub-task is completed. The

dependencies are crucial to the design of a job scheduling algorithm.

 The workflow job is represented as a Directed Acyclic Graph (DAG) where a node

represents a task and a directed edge represents the precedence between its two vertices.

Figure 3.6 depicts the DAG. The workflow job may include the transfer of a huge amount

of data among each sub-task (Deelman et al., 2009).

Figure 3.6: Directed Acyclic Graph (DAG)

59

3.2.2.4 Hardware Requirement

Different applications require different types of hardware resources such as the number of

processors required, the number of cores per processor, the processor speed, the amount of

Random-Access Memory (RAM) required, the minimum storage capacity measure in

Gigabytes (GB) and the amount of graphical memory. In addition, some applications may

require a minimum amount of bandwidth for transferring data.

3.2.2.5 Software Requirement

The software requirements include the platform, operating system as well as the

applications needed to execute the job. The platform includes Windows, Macintosh, UNIX

and others. The operating system includes Windows family, OS X, Solaris, Linux and

others. Also, while applications only run on a specified version of the operating systems,

others may require the presence of Java runtime environment or .NET framework.

3.2.3 Time of Scheduling

When a scheduler receives a job request, there are three different mechanisms to schedule

the job request namely, static scheduling, dynamic scheduling and hybrid scheduling.

3.2.3.1 Static Scheduling

In static scheduling, the scheduler analyses the resource information, tasks attributes and

users’ requirements before making a scheduling decision. Once the task has been assigned

to the resource, the placement of task is fixed. Static scheduling is easier to program and

manage. However, a drawback of static scheduling is that static scheduling is not adaptive.

Once the task placement is made, the scheduling decision is fixed regardless of the future

60

changes to the underlying resources performances that have significant impact on the

earlier scheduling decision. The static scheduling algorithms are studied in (Braun et al.,

2001), (Baskiyar and Dickinson, 2005), (Vahdat-Nejad and Monsefi, 2008) and (Gallet et

al., 2009).

Braun et al. (2001) examined eleven heuristics approaches to optimally map tasks onto the

distributed resources in the heterogeneous computing environments. The problem of

allocating the tasks to resources in Grid or Cloud Computing is NP-complete. Heuristics

approaches are used to improve the scheduling decision as they are more adaptive to the

Grid infrastructure where both resources and application are heterogeneous and dynamic.

The popular approaches are Min-Min and Max-Min.

In Min-Min, all the tasks in the queue are grouped in a set and then sorted by placing the

task in the queue according to the job length with the shortest at the head of the queue.

Subsequently, each task is assigned to the resources that can complete the task with the

minimum completion time. This process continues until all the tasks in the set are assigned

to the resources.

The Max-Min method is very similar to Min-Min except that the tasks are sorted with the

longest job length placed first in the queue. Then, the task is assigned to the resources that

return the minimum completion time.

Baskiyar and Dickinson (2005) proposed a static scheduling with insertion-based

scheduling and multiple task duplication to schedule directed a-cyclic weighted task graphs

61

on a set of heterogeneous processors. Vahdat-Nejad and Monsefi (2008) presented a static

distributed scheduling algorithm for scheduling parallel jobs in a computational grid. The

global scheduling algorithm is responsible for allocating the submitted job to a cluster.

Fuzzy logic is used to assign different weights for bandwidth, job communication

requirements and job size. Gallet, Marchal and Vivien (2009) proposed a static scheduling

approach to schedule workflow jobs in the Grid Environment with heterogeneous resources.

The algorithm finds the optimal allocation by using a mixed linear programming approach.

3.2.3.2 Dynamic Scheduling

Dynamic scheduling allocates tasks to resources on the fly. This method is used when it is

difficult to estimate job execution time and the job requests are arriving dynamically.

Dynamic scheduling is more flexible since the placement of task is not fixed. Dynamic

scheduling allows the reallocation of task to different resources during task execution.

However, dynamic scheduling is more complex than static scheduling. If the dynamic

scheduling is not properly designed, the scheduling may lead to system performance

degradation and unnecessary job migrations. The dynamic scheduling algorithms are

studied in (Viswanathan et al., 2007), (Lee and Zomaya, 2007), (Doulamis et al., 2007) and

(Prodan and Wieczorek, 2010).

Viswanathan et al. (2007) proposed a Resource-Aware Dynamic Incremental Scheduling

(RADIS) to handle large volumes of computationally intensive arbitrarily divisible loads.

The algorithm considers dynamic arrival of loads with deadline constraints. A "pull-based"

scheduling strategy with an admission control policy is implemented to satisfy the jobs'

deadline requirements. Lee and Zomaya (2007) proposed two novel scheduling algorithms

62

namely the Shared-Input-data-based Listing (SIL) algorithm and the Multiple Queues with

Duplication (MQD) algorithm for parameter sweep job. The algorithms make scheduling

decisions without requiring the full accurate performance prediction information.

Doulamis et al. (2007) proposed a scheduling algorithm for fair scheduling. The algorithm

uses a max-min fair sharing approach for providing fair access to users. When there is

congestion, each user is given a certain weighting of the computation resources. Prodan and

Wieczorek (2010) proposed a general bi-criteria scheduling heuristic called dynamic

constraint algorithm (DCA). The algorithm consists of two phases that address the

optimization problem of two independent criteria and is based on dynamic programming.

3.2.3.3 Hybrid Scheduling

Hybrid scheduling takes advantages of the static scheduling and dynamic scheduling. In

hybrid scheduling, the scheduler will apply static scheduling when there is sufficient

resources and task information. However, the placement of task is not fixed during

execution. The scheduler will reallocate the task whenever there are changes in the

resources performance. The hybrid scheduling algorithms are studied in (Korkhov et al.,

2009) and (Zhu and Guo, 2009).

Korkhov et al. (2009) proposed an Adaptive Workload Load Balancing (AWLB) algorithm

for parallel applications running on heterogeneous resources and User-Level Scheduling

(ULS) environment. This algorithm minimizes the execution time of the parallel

applications with divisible workload running on heterogeneous Grid resources. Zhu and

Guo (2009) proposed a Hybrid Adaptive Genetic Algorithm (HAGA) to solve the

63

scheduling of dependent tasks in Grid. The algorithm improves the local search ability by

adjusting the crossover and mutation probability adaptively and nonlinearly. Also, the

algorithm improves the accuracy of convergence as well as the speed.

3.2.4 Objective Function

Each scheduler has its own objective function which is classified into application-centric

and resource-centric (Zhu, 2003). Application-centric scheduler aims to optimize the

performance of each individual application. Most of these schedulers try to minimize the

makespan which is the time spent from the beginning of the first task in a job to the end of

the last task of the job. These schedulers include (Dong and Selim, 2007), (Lee and

Zomaya, 2007), (Gao et al., 2007), (Wu et al., 2007), (Rasooli et al., 2008), (Ding et al.,

2009), (Falzon and Li, 2009) and (Machtans et al., 2009).

Besides makespan, the cost that an application needs to pay for resources utilization is

another popular metric used by the scheduling algorithms. These schedulers include (Buyya

et al., 2002), (Fard and Deldari, 2008), (Aoun and Gagnaire, 2009), (Arfa and Broeckhove,

2009), (Lu and Ma, 2009) and (Ranaldo and Zimeo, 2009). The cost function is an

important metric for Cloud computing since the Cloud implements the pay-per-use model.

Buyya et al. (2009) proposed a market-oriented resource pricing and allocation strategies to

encompass customer-driven service management in Cloud environment.

Resource-centric scheduler aims to optimize the performance of the resources. The

objective of these schedulers is to maximize resource utilization. Low utilization means a

resource is going idle and wasted. Garg, Venugopal and Buyya, (2008) proposed a double

64

auction based meta-scheduler that uses valuation metrics to map user applications to

resources. This scheduler provides load balancing across various resources. When the

resources are fully utilized, both users as well as resource providers are able to gain the

maximum benefits.

In addition, the resource-centric scheduler is very important in Cloud Computing since the

service providers will be able to maximize their profits by maximizing the resources

utilization. Table 3.1 shows the pricing of using Amazon Elastic Compute Cloud (Amazon

EC2) with on demand instances. An efficient resource-centric scheduler allows the service

providers to handle more requests and directly increases their profit.

Table 3.1 Pricing of Amazon EC2 on demand instances (adapted from Amazon,

2010a)

In Cloud Computing, most of the applications are provided in Web Services. Thus, QoS

requirements have become another metric in determining the resource allocation. The

service providers need to aggregate the resources to provide an acceptable QoS to end users.

65

QoS is of particular concern to service providers as QoS directly affects end users’

satisfaction and loyalty. Some of the active research studies of QoS in Grid and Cloud

Computing include (Subrata et al., 2008), (Li et al., 2009a), (Li, 2009), (Sadhasivam et al.,

2009) and (Xu et al., 2009). The details of QoS studies in Grid and Cloud Computing are

discussed in chapter 5.

3.2.5 Gap Analysis

In summary, each scheduling algorithm has its strength and weaknesses. In order to have a

better scheduling decision, the ability to determine the type of job requests and the

resources available is essential. Furthermore, the major issues of job scheduling in Grid and

Cloud Computing are mainly due to the heterogeneity and dynamic nature of the

technologies.

In order to support a mixture of Grid and Cloud infrastructure, hybrid scheduling algorithm

is used as the algorithm has the ability to implement static scheduling and dynamic

scheduling. A Hybrid Scheduling Algorithm (HSA) which incorporates some the solutions

to overcome the above issues, is proposed. HSA is reported to be able to maximize

resources utilization and minimizes makespan in Grid and Cloud environment. In the next

section, the proposed job scheduling algorithm is detailed.

3.3 Hybrid Scheduling Algorithm (HSA)

HSA contains a Cloud model, C, which consists of a number of sites that connected to one

another through Wide Area Network (WAN).

66

C = {S1, S2, …, Sm}, 1 ≤ i ≤ m and i, m ∈ℕ (3.1))

Each site, Si, consists of different number of computational resources. Si is the i
th

 site in the

Cloud model. Each site is under the control of different administrative domains and is

considered as different private Cloud in this model.

Si = {ri,1, ri,2, …, ri,n}, 1 ≤ i ≤ n and i, n ∈ℕ (3.2))

The computation resources at each site are heterogeneous and consist of physical servers,

compute clusters and desktop computers. The physical server is divided into application

server and virtual server. The application server is preinstalled with an operating system

and system software. The application server is able to execute a limited number of jobs

depending on the pre-configured system software.

The virtual server provides a virtual environment that is used for creating a customized

virtual machine according to the users’ requests. The virtual server is able to execute all the

jobs since the services are provided using an automatic deployment mechanism. The

compute clusters consist of a group of computers that are connected to each other. Usually,

the cluster consists of an administration front node and many cluster nodes. The

administration front node handles the job requests and distributes the tasks to the cluster

nodes. The desktop computer is the low-end personal computer used for daily activities by

end users. The automatic deployment mechanism is required to deploy the job at each

desktop computer.

67

Each resource may consist of different number of processors, processors of different speed

or cores, amount of memory and storage space. At each site, there is a data repository

which is connected to the computational resources through a high bandwidth Local Area

Network (LAN). The data repository stores the operating system images, various types of

application software, registry files and contains a Web Services repository. The Web

Services repository consists of a number of Web Services package files and the Web

Services provided by each site. The Web Services, Wi, is represented as below.

Wi = {fi,1, fi,2, …, fi,n}, 1 ≤ i ≤ n and i, n ∈ℕ (3.3))

The application model, A, consists of a number of independent jobs, Ji

A= {J1, J2, …, Jm}, 1 ≤ i ≤ m and i, m ∈ℕ (3.4))

Each job model, Ji, consists of a number of n independent tasks. The tasks are submitted in

the form of Web Services requests. Each request is equivalent to one single task. The tasks

are classified as parametric tasks where all the tasks in the same job will execute the same

Web Services with different parameter values. For example, a parametric task consists of

two tasks with different parameter values such as Task(100) and Task(1000). Task(1000)

will require a much longer time to execute as compared to Task(100). The execution time

of the tasks is dependent on the parameter values in the parametric tasks.

Ji = {Ti,1, Ti,2, …, Ti,n}, 1 ≤ i ≤ n and i, n ∈ℕ (3.5))

68

In this research, a HSA which maximizes the resource utilization and minimizes the total

makespan is proposed. The hierarchical structure is implemented with the system having

one centralized meta-scheduler and multiple distributed local schedulers. The meta-

scheduler is responsible for accepting all the job requests and schedules the job request to

each site based on the aggregate information collected from each site. The information

collected from each site includes the number of computation resources available and a list

of Web Services provided, Wi.

Firstly, the meta-scheduler considers all the sites that provide the Web Services as required

by the job request. Then, the meta-scheduler will send the job requests to the site with the

maximum number of available computation resources. The meta-scheduler does not use

any prediction and the scheduling is performed in an on-line mode. The dynamic

scheduling is applied because the meta-scheduler does not have the latest updated resources

information for each individual site and by scheduling job on-the-fly, the scheduling

process speeds up. To overcome the potential of a single point of failure in a centralized

meta-scheduler, a backup meta-scheduler is implemented. Whenever a failure is detected in

the primary meta-scheduler, a backup meta-scheduler with the same image and state as the

primary meta-scheduler is created through virtualization. The image files as well as the

registry are retrieved from the data repository. Figure 3.7 depicts the system architecture of

the proposed scheduling algorithm.

69

Figure 3.7: System architecture of proposed algorithm

As shown in figure 3.7, end users first submit job requests to a centralize User Interface (UI)

server or meta-scheduler. The meta-scheduler then schedule the job requests to each site

accordingly. Once the local scheduler receives the job request, the scheduler will perform

static scheduling in making scheduling decision since the local scheduler has the updated

resources information for its site. Firstly, the local scheduler sorts the unscheduled tasks for

each job in descending order according to the parameter values. Since each job consists of

several independent tasks that access the same Web Services, the parameter value used is

gauged against the job length. A simple run is performed to determine the effect of

incrementing or decrementing the parameter value on the job length, measured in terms of

execution time. The sorted job requests list for Ji is defined as

70

Li = {li,1, li,2, …, li,n}, 1 ≤ i ≤ n and i, n ∈ℕ

where li,1 is the parameter value for each task Tj in Job Ji

(3.6))

meani = ∑
 i,j / n, where meani is the mean value for Li (3.7))

Subsequently, the local scheduler generates a potential resource list for providing the Web

Services. The potential resources are selected from the physical servers and the clusters but

exclude the desktop computers since the desktop computers do not provide the Web

Services. The detailed information such as number of processors (np), number of cores (nc)

and processor speed (ps) are collected from each potential resource. These resources are

classified as primary resource and are sorted. The sorted primary resource, Pi for Ji, is

defined as

Pi = {pi,1, pi,2, …, pi,n}, 1 ≤ i ≤ n and i, n ∈ℕ

pi,j = { np(ri,j), nc(ri,j), ps(ri,j) }

(3.8))

Besides the potential resources, the local scheduler also generates a desktop resources list.

The desktop resources are derived from the entire available desktop computers. These

resources are classified as secondary resource. The sorted secondary resource, Qi for Ji, is

defined as

Qi = {qi,1, qi,2, …, qi,n}, 1 ≤ i ≤ n and i, n ∈ℕ

qi,j = { np(ri,j), nc(ri,j), ps(ri,j) }

pi,j ∩qi,j = ∅

(3.9))

71

In order to allocate tasks to the resources in Qi, an automatic deployment strategy is

required. The details of the automatic deployment strategy are discussed in section 3.4.

Once Li, Pi and Qi are generated, the mean value, meani is computed. This value is used to

determine whether the task Ti,j is assigned to the resources in Pi or Qi based on the pseudo

code below:

if li,j > meani * z then

 allocate Ti,j to Pi that returns the minimum completion time

else

 allocate Ti,j to Qi that returns the minimum completion time

end if

The task completion time for Ti,j is given as Ci,j. The objective function of HSA is to

maximize resource utilization and minimize makespan. The makespan is the maximum task

completion time of all the completed tasks and is defined as,

M = maximum(Ci,j) (3.10))

An optimum threshold value, z, is used to decide whether a task Ti,j is assigned to the

primary resources or secondary resources. Table 3.2 shows the results of the makespan (in

seconds) of HSA running on different z values. Figure 3.8 shows the average makespan (in

seconds) of HSA running on different z values.

72

Table 3.2 Makespan (seconds) of HSA for random job arrival and random

parameter values using different z values

Test Job Description z 1 2 3 4 5 Average

1

Random job arrival
and random
parameter values
(Group by Web
Services) - HSA

1.1 8027.20 8133.02 8038.32 8099.42 8175.71 8094.73

2

Random job arrival
and random
parameter values
(Group by Web
Services) - HSA

1.0 6775.57 6915.70 6886.68 6891.34 6890.57 6871.97

3

Random job arrival
and random
parameter values
(Group by Web
Services) - HSA

0.9 7371.88 7146.47 7285.13 7281.64 7169.59 7250.94

4

Random job arrival
and random
parameter values
(Group by Web
Services) - HSA

0.8 7766.88 7650.55 7562.51 7705.45 7571.69 7651.42

5

Random job arrival
and random
parameter values
(Group by Web
Services) - HSA

0.7 8122.32 8156.73 8111.51 8166.72 8131.97 8137.85

Figure 3.8: Makespan (seconds) of HSA for random job arrival and random

parameter values using different z values

6800

7000

7200

7400

7600

7800

8000

8200

8400

0.6 0.7 0.8 0.9 1.0 1.1 1.2

M
ak

es
p

an
 (

s)

z value

73

Table 3.2 shows that HSA returns the minimum makespan when the z value is 1.0. This is

further depicted in Figure 3.8. This is the optimum threshold value used for the experiment.

The z value is identified by running the same set of experiment at various times with an

increment or decrement of 0.1. The optimal z value is the threshold value that generates a

schedule list with the shortest makespan. Figure 3.9 depicts the proposed HSA scheduling

algorithm.

Input:

Ji, the job request that consists of n independent task Ti,j

pm or qn ∈Si, , where Si is a set of resources in site i

Output

A schedule of Ti,j into pm or qn

// group the tasks according to Web Services at each interval

∀ Job request, Ji, in waiting queue

Sort the task Ti,j in descending order based on parameter value

Generate a sorted job requests list for Ji, Li

 Compute meani from Li

 ∀ servers and c usters in site I // generate the primary resource list

 Select potential resources and generate sorted primary resource list, Pi

 ∀ desktop computers in site I // generate the secondary resource list
 Select available desktop computers and generate sorted secondary resource

list, Qi

// compare the multiplication of z and mean with the parameter value to

// determine whether to schedule the task to primary or secondary resource

∀ Task, Ti,j
 if li,j > meani * z

 allocate Ti,j to pm that returns the minimum completion time

 Otherwise

 allocate Ti,j to qn that returns the minimum completion time

 Repeat the experiment with different z value, with z ± 0.1

 to get the minimum makespan

Figure 3.9: Proposed HSA

74

3.4 Automatic Deployment Mechanism

Figure 3.10 shows the main components of the HSA and automatic deployment. As

discussed in previous section, the UI provides an interface to support job submission. The

meta-scheduler performs scheduling of jobs to multiple sites while the local scheduler

schedules the tasks according to each individual resource at each site. Besides, the resource

manager provides all the resource information for each site. Once the local scheduler has

the job information and resource information, the scheduler generates a job-to-resource

mapping list. Finally, the deployer dispatches the tasks to each individual resource for

execution.

Figure 3.10: Main components of HSA and automatic deployment

Since the resources in Cloud environment are heterogeneous, different deployment

methods are required to deploy the tasks to each individual resource. In order to execute the

Web Services running on the physical server with preinstalled operating system and Web

server, a direct invocation of the Web Services is required. Since the execution of the

75

services required a significant amount of time to process, the asynchronous communication

invocation is used to allow other threads to continue execution without blocking.

There are two stages involve in order to execute the Web Services running on the virtual

server. The first stage is to create a virtual infrastructure. A virtual infrastructure is

configured to allow the sharing of multiple virtual servers at each site. Each virtual

infrastructure contains a resource manager that decides the number of virtual server to be

created with the required software applications and platforms. Once the virtual

infrastructure is created, the second stage is to create the virtual server. At this stage, the

required image files as well as the Web Services are gathered and configured to generate

the relevant virtual server according to the job request. The Web Services are then invoked

using asynchronous communication.

In order to execute the Web Services running on Clusters, the cluster plug-in must be

installed on the Web server and running on the administrator node. Once the cluster is

created, the instances are created for each specific cluster nodes. In this research, the

Glassfish Web server is installed on Rocks cluster.

As discussed in previous section, the automatic services deployment mechanism is used to

deploy the Web Services to the secondary resource which consists of desktop computers.

The automatic services deployment uses two approaches to deploy the Web Services

running on desktop computer. The first approach deploys the services to the .NET

framework resources. The deployer first retrieves the service .asmx file from the Web

Services repository and deploys the service on the resource. An agent in the resource

76

creates a Web Services end point with IP address and port number that map to the .asmx

file. Http.sys architecture is used as the low-level HTTP protocol stacks for the service

deployment. Http.sys architecture is a kernel-mode component that offers HTTP services to

all applications on the computer. When http.sys receives a request, http.sys can forward it

directly to the correct work process. Http.sys is capable of caching responses directly

within the kernel. This improves the overall throughput and performance. Once the Web

Services are deployed the asynchronous communication invocation is used to execute the

Web Services. Figure 3.11 shows the Http.sys architecture.

Figure 3.11: Http.sys architecture

The second approach is implemented on the Java 2 Platform Enterprise Edition (J2EE)

environment. In this approach, the manager first retrieves the JAR file from the Web

Services repository and deploys the service on the resource. The JAX-WS 2.0 Endpoint

Class is used to create the Web Services end point. The JAR file contains the Web Services

descriptions and implementation. The Web Services bind to an end point with a WSDL

address. Since the execution of the services requires a significant amount of time to process,

the asynchronous communication invocation is again used to invoke the services. Once the

job is completed, the output is stored in the UI server and the user is notified.

77

The automatic Web Services deployment architecture is implemented on .NET and J2EE

environment. Since the Web Services resolve the interoperability problem, Web Services

can be deployed to run on different platforms.

3.5 Experiment Setup

A testbed which implements the above components in Grid and Cloud environment is

deployed to carry out testing and evaluations of the proposed algorithm. The testbed allows

the registration of different types of Web Services as well as new resources. Parametric

type of Web Services is selected for the experiment, in which the execution times of these

services are affected by the parameter values. In addition, most of these Web Services

consists of the Monte Carlo implementation. The Monte Carlo method generates random

sampling and is compute intensive when the sample size is huge. Furthermore, the testbed

also supports the implementation of the MIN-MIN and MAX-MIN heuristics scheduling

algorithm. The test case of the implementation correctness of the proposed HSA and

automatic deployment algorithm, MIN-MIN and MAX-MIN is described in Appendix A.1.

To evaluate the performance of the proposed algorithm, a predefined set of resource and

job parameters used is shown in Table 3.3. A set of comparisons, in similar settings as

Table 3.3 is performed to evaluate the proposed algorithm as compared to MIN-MIN and

MAX-MIN scheduling algorithm. The performance metric used for the comparison is

makespan. Several test cases which include 1) Random job arrival with random job

parameter values; 2) Random job arrival with big gap job parameter values; 3) Random job

arrival with Poisson distribution parameter values are conducted. The time interval use for

78

the experiment is twenty seconds per interval for local scheduler. The size of the job length

is based on the parameter values. For the propose verifying the scheduling algorithm, the

experiments are conducted using different fixed value of z for the same test case.

Table 3.3 A predefined set of resources and job parameters

Description Value Range

Number of sites 3 – 5

Number of hosts per site 20 – 50

Number of CPU 1 – 4

Number of core per CPU 1 – 8

CPU speed 0.8 – 3.2 GHz

Number of tasks 300 – 500

Execution time of task (second) 1 – 1000

Type of Web Services 1 – 10

3.6 Results and Analysis

Table 3.4 – 3.6 show the results of the makespan (in seconds) for different test cases using

the three different algorithms.

Table 3.4 Makespan (seconds) of different algorithms for random job arrival and

random parameter values

Test Job Description 1 2 3 4 5 Average

1
Random job arrival and random parameter
values (Group by Web Services) - MIN-MIN

7302.86 7102.39 7196.85 7335.69 7292.59 7246.08

2
Random job arrival and random parameter
values (Group by Web Services) - MAX-MIN

6851.26 6931.62 6974.93 6946.60 6938.74 6928.63

3
Random job arrival and random parameter
values (Group by Web Services) - HSA (z=1.1)

8027.20 8133.02 8038.32 8099.42 8175.71 8094.73

4
Random job arrival and random parameter
values (Group by Web Services) - HSA (z=1)

6775.57 6915.70 6886.68 6891.34 6890.57 6871.97

5
Random job arrival and random parameter
values (Group by Web Services) - HSA (z=0.9)

7371.88 7146.47 7285.13 7281.64 7169.59 7250.94

79

6
Random job arrival and random parameter
values (Group by Web Services) - HSA (z=0.8)

7766.88 7650.55 7562.51 7705.45 7571.69 7651.42

Table 3.5 Makespan (seconds) of different algorithms for random job arrival and

big gap parameter values

Test Job Description 1 2 3 4 5 Average

1
Random job arrival and big gap parameter
values (Group by Web Services) - MIN-MIN

10142.81 10100.90 10233.82 10187.81 10393.51 10211.77

2
Random job arrival and big gap parameter
values (Group by Web Services) - MAX-MIN

9210.69 9160.25 9266.51 9100.62 9322.25 9212.06

3
Random job arrival and big gap parameter
values (Group by Web Services) - HSA (z=1.7)

11357.10 11441.58 11587.69 11414.98 11263.90 11413.05

4
Random job arrival and big gap parameter
values (Group by Web Services) - HSA (z=1.6)

9080.02 9086.91 9098.26 8988.36 8972.82 9045.27

5
Random job arrival and big gap parameter
values (Group by Web Services) - HSA (z=1.5)

9899.65 9873.44 9651.76 9892.85 9905.43 9844.63

6
Random job arrival and big gap parameter
values (Group by Web Services) - HSA (z=1)

11251.15 11286.79 11164.52 11290.21 11297.55 11258.04

Table 3.6 Makespan (seconds) of different algorithms for random job arrival and

Poisson distribution parameter values

Test Job Description 1 2 3 4 5 Average

1
Random job arrival and Poisson distribution
parameter values (Group by Web Services) -
MIN-MIN

5680.52 5683.58 5626.12 5637.25 5637.57 5653.01

2
Random job arrival and Poisson distribution
parameter values (Group by Web Services) -
MAX-MIN

5151.47 5153.45 5112.64 5000.93 5019.27 5087.55

3
Random job arrival and Poisson distribution
parameter values (Group by Web Services) -
HSA (z=1)

6256.13 6321.85 6280.41 6278.34 6251.25 6277.60

4
Random job arrival and Poisson distribution
parameter values (Group by Web Services) -
HSA (z=0.8)

5039.44 5095.96 5089.63 5035.08 5016.86 5055.39

5
Random job arrival and Poisson distribution
parameter values (Group by Web Services) -
HSA (z=0.7)

6149.34 6178.30 6130.86 6144.84 6183.42 6157.35

6
Random job arrival and Poisson distribution
parameter values (Group by Web Services) –
HSA (z=0.5)

6422.74 6461.84 6437.99 6366.85 6395.84 6417.05

80

Table 3.4 shows that when the z value is 1, HSA outperforms MIN-MIN and MAX-MIN

scheduling algorithms. However when the z value is 1.1, the average makespan value is

higher as compared to MIN-MIN and MAX-MIN scheduling algorithms. The results also

showed that that the minimum average makespan is achieved when the z value is 1, as

compared to z value is 0.9 or 1.1.

Table 3.5 shows that when the big gap parameter values are used for the experiment, HSA

outperforms MIN-MIN and MAX-MIN scheduling algorithms with the best timing

obtained when the z value is 1.6. The z values in this experiment are larger than the values

used for the random parameter values. The proposed HSA yielded a larger makespan over

MIN-MIN and MAX-MIN scheduling algorithms when the z value is equal to 1 or 1.7.

Table 3.6 shows that for the random arrival tasks with Poisson distribution parameter

values, HSA achieves better result over MIN-MIN and MAX-MIN when the z value is

equal to 0.8 but worse for other z values. This indicates that the z value is very important in

determining the effectiveness of HSA.

Figure 3.12 shows the makespan (in seconds) for different experimental cases using the

three different algorithms. Table 3.7 tabulates the results of the makespan (in seconds) and

the percentage of improvements for the three different algorithms. It is observed that HSA

has made between 5% - 11% improvements over the MIN-MIN scheduling algorithm while

making only shows a slightly improvement over MAX-MIN scheduling algorithm.

81

Figure 3.12: Makespan (seconds) of different algorithms for different experimental

cases

Table 3.7 Makespan (seconds) of different algorithms for different experimental

cases and percentage of improvement

Test Job Description

MIN-

MIN

MAX-

MIN HSA z

%

improvement

of HSA as

compared to

MIN-MIN

%

improvement

of HSA as

compared to

MAX-MIN

1

Random job arrival with

random parameter values

(Group by Web Services)

7246.08 6928.63 6871.97 1.0 5.2 0.8

2

Random job arrival and

big gap parameter values

(Group by Web Services)

10211.77 9212.06 9045.27 1.6 11.4 1.8

3

Random job arrival and

poisson distribution

parameter values (Group

by Web Services)

5653.01 5087.55 5055.39 0.8 10.6 0.6

According to the experimental results, the superior performance of HSA is achieved

through the proper selection of the mean value at each interval and the z value that decides

4500

5500

6500

7500

8500

9500

10500

Random job arrival and
random parameter values

(Group by Web Service)

Random job arrival and big
gap parameter values (Group

by Web Service)

Random job arrival and
Poisson distribution

parameter values (Group by
Web Service)

MIN-MIN

MAX-MIN

Hybrid
Scheduling

M
ak

es
p

an
 (

s)

82

whether to schedule tasks to the primary resources or secondary resources. The ability to

adjust the mean value at each interval provides more effective scheduling decisions due to

the heterogeneity and dynamic nature of Grid and Cloud Computing.

In MIN-MIN and MAX-MIN scheduling algorithms, all the resources are considered as

primary resource and the Web Services must be preconfigured. In contrast, HSA classifies

the resources into primary resources and secondary resources. With the implementation of

automatic deployment mechanism, HSA is able to automate the Web Services deployment

process to any type of resources. This provides more flexibility as compared to MIN-MIN

and MAX-MIN scheduling algorithms.

3.7 Chapter Summary

This chapter presented the solution that used to address the job scheduling problem in Grid

and Cloud environment. A Hybrid Scheduling Algorithm (HSA) with automatic

deployment mechanism is proposed to maximize resources utilization and minimizes

makespan. In HSA, a meta-scheduler is responsible for accepting all the job requests and

scheduling the job requests to multiple sites. The meta-scheduler does not use any

prediction information and the scheduling is performed in an on-line mode. When the local

scheduler receives the job request, the scheduler performs static scheduling in making

scheduling decision. Parametric type of Web Services is used for the experiment, in which

the execution time of these services is dependent on the parameter values. Besides, the

resources are classified into primary resources and secondary resources. The primary

resources consist of servers and the clusters while the secondary resources consist of

83

desktop computers. The local scheduler performs the scheduling decision based on the job

and resource information with the objective of minimizing makespan.

In addition, an automatic deployment mechanism is proposed to automate the process of

Web Services deployment to the secondary resources. Automatic deployment mechanism

allows the Web Services to be deployed dynamically to the resources without the needs of

Web server. Furthermore, this mechanism is a light weight approach that is usable for

deploying any type of Web Services to the .NET framework resources or J2EE

environment. The proposed algorithm is then compared to the MIN-MIN and MAX-MIN

scheduling algorithms. Experimental results show that HSA and automatic deployment

mechanism minimize the makespan by 1% – 11%.

The advantages of using HSA and automatic deployment mechanism are that the algorithm

supports new types of Web Services. HSA is suitable when there are insufficient historical

records to perform benchmarking. Besides, the automatic mechanism allows the Web

Services to be executed on the desktop computers. However, the drawback of this

algorithm is that all the Web Services have to be grouped at each interval before making

scheduling decision. This is because different Web Services have different parameter

values and the mean value is not meaningful when computed using different Web Services.

Another drawback of HSA is that different experiments have to be conducted for similar

settings to get the optimal z value to minimize the makespan. This is because different

experimental sets require different z values.

84

In the next chapter, an enhancement of HSA, Adaptive Scheduling Algorithm (ASA) is

proposed. ASA dynamically determines the z value at each interval. In addition, the

application and resource benchmarking is introduced to address the issue of Web Services

grouping.

85

CHAPTER 4 ADAPTIVE SCHEDULING ALGORITHM (ASA)

This chapter presents the enhancement of HSA using benchmarking and adaptive

mechanism. The first section describes about the job length estimation using application

benchmarking. This is followed by the discussion of resources benchmarking. The third

section proposes the enhancement of HSA which is ASA. The final section describes the

experiment setup and evaluates the performance of ASA.

4.1 Application Benchmarking

Computational Grid comprises a large number of heterogeneous resources located at

different administrative domains. Each resource has a variety of capabilities and supports

different type of applications. One of the key challenges in Grid environment is to select

adequate resources to satisfy the job requirements. To address the above challenge,

adequate resource information and job attributes are required. The accuracy of these

information guarantees that the job submitted is deployed to the most appropriate resources.

Benchmarking is one of the methods that is used to extract the job attributes and the

performance of a resource for different type of jobs.

Benchmarks are standardized programs or detailed specifications of programs designed to

investigate well-defined performance properties of computer systems according to a widely

accepted set of methods and procedures (Weicker, 2002). Benchmarking has played an

important role in conducting the performance analysis of optimization algorithms in Grid

and Cloud Computing. Benchmarking is used to compare the performance of the algorithm

86

for well-known NP-hard optimization problems. In addition, benchmarking is used as a

means for the evaluation of scheduling algorithm.

Grid benchmarking is defined as the use of benchmark programs for the fair, concise, and

affordable performance characterization of different aspects of a Grid infrastructure

(Dikaiakos, 2007). Grid architecture can benefit substantially from using standard means

for measurement and for comparison of design alternatives. Dikaiakos (2007) and Snavely

et al. (2003) presented the importance of benchmarking in the evaluation of the

computational resources in Grid environment.

A Grid benchmark is generated by combining three characteristics; namely, computing

consistency, heterogeneity of resources and heterogeneity of jobs (Fatos et al., 2009). The

computing consistency measures the performance of the resources in handling different

type of jobs. A resource is consistent when the resource runs faster than other resources for

all the jobs. Inconsistency means that a resource is faster for some jobs and slower for some

others. The heterogeneity of resources and jobs represents the actual Grid and Cloud

environment.

With these characteristics, benchmarking can assess the performance of Grid and Cloud by

using different parameters such as instance size, type of jobs and type of resources. The

instance size specifies the number of instance and the size of each instance to run for

benchmarking. Also, different types of jobs are used to generate different workloads to

evaluate the scheduling algorithms for different Grid and Cloud environment. In addition,

87

different type of resources with different capabilities, platforms and software are used in

the benchmark evaluations.

4.1.1 Related Works

With the widespread use of the Grid systems, a number of research groups are focusing on

different aspects of Grid benchmarking, proposing benchmark specifications,

benchmarking suites, and benchmarking tools for Grid. NAS Grid Benchmark (NGB) is

one of the first proposed Grid benchmark. NGB is designed to serve as a uniform tool for

testing the functionalities and efficiencies of the Grid environment. The NGB specifications

define a set of computationally intensive, synthetic Grid benchmarks. The job turnaround

time is proposed as the performance metric for the benchmarking (Frumkin and Van der

Wijngaart, 2001).

As the Grid environment is rapidly expanding in size and complexity, the task of

benchmarking and testing becomes more unmanageable. Tsouloupas and Dikaiakos (2007)

proposed an integrated tool named GridBench to facilitate Grid benchmarking. GridBench

supports the testing, benchmarking and ranking of Grid resources. In addition, GridBench

supports the definition, deployment and execution of parameterized tests and benchmarks

on the Grid. At the same time, GridBench allows the validation, archival, retrieval, and

analysis of test results.

Fatos et al. (2009) proposed a static benchmarking for Grid scheduling. The benchmarking

is generated using a discrete event-based Grid simulator, namely HyperSim-G, with

different instance sizes, type of jobs and type of resources. The objective of this benchmark

88

for Grid scheduling is to reveal the performance of algorithms and the heuristic methods

utilised. The static benchmark is useful because the experimental study can be repeated as

many times as needed to obtain relevant statistical results.

Clematis et al. (2010) proposed a two-level benchmarking methodology to facilitate the

ranking of Grid resources and the submission of jobs. The Grid benchmark is divided into

two categories which are micro-benchmark and application-specific benchmark. The

micro-benchmark profiles resources by computing the number of floating point operations

per second to represent CPU performance, the latency and the bandwidth to evaluate the

interconnection performance. The application-specific benchmark measures the

performance of the resources with different type of job behaviours. This benchmark is able

to analyse the behaviour of resources for a class of jobs and is very useful for frequently

used applications.

Besides the research studies on benchmarking on resources and jobs, some research groups

are focused on the benchmarking the Grid services. As Grid move towards SOA, the

performance of Grid such as resource management and job monitoring is getting critical

and can affect the overall quality of a Grid environment. A badly designed Grid Service

may lead to low availability and adding overhead to the job makespan. Furthermore, new

benchmarks are required to measure Grid-service dependability. Grid-service benchmarks

are important tools for assessing the performance of Grid services and comparing different

service configurations. Plale et al. (2004) proposed a micro-kernel benchmark to measure

the response time and throughput of GIS.

89

In summary, the application benchmark is able to provide the performance of the resources

running on different type of jobs. Since the scheduling decision depends largely on the

accuracy of this performance information, application benchmark is a very important

process to aid the scheduling decision.

4.1.2 Implementation of Application Benchmarking

In relation to the above, this research uses the application-specific benchmark to measure

the performance of resources with different type of jobs. This approach is implemented

because most of the Web Services is frequently executed in a private Cloud environment.

The application-specific benchmark is used to estimate the job length for different Web

Services running on different resources. In chapter 3, the parameter value is used as the job

length for each job request. Although the parameter value is used to determine the job

length for the same Web Services, it is unable to differentiate the job length for different

Web Services. To address the above problem, benchmarking is used to estimate the job

length. The benchmarking is implemented using the Cloud testbed and running on

combinations of different resources and jobs. The testbed is used as the empirical study of

various parameter values.

With application-specific benchmark, the job length is estimated by running the same Web

Services with different parameter values on the same resources. Then, curve fitting is used

to construct a mathematical function that has the best fit from the historical records. The

curve may be linear, exponential or polynomial. The mathematical function is then used to

estimate the job length of the same Web Services with different parameter values. The

characteristics of the Web Services are evaluated through application benchmarking.

90

In order to estimate the job length running on different resources, the same set of Web

Services with same parameter value are used on different set of resources. The parameter

value is used as the job length in the experiment. When the value is bigger, the execution

time will be longer. The CPU speed is used as the metric to differentiate the resources

performance since the Web Services used in the experiments are compute intensive. Then,

a ratio is derived using the historical records and the job length is estimated when the Web

Services are executed on the resources with different CPU speed. The assumption of the

application-specific benchmark used in this research is that the performance of the

resources is largely dependent on the CPU.

Table 4.1 – 4.3 show the benchmark results for job execution time when running the same

type of Web Services with different parameter values on resource A, resource B and

resource C. The parameter value is used to identify the job length. The higher value of the

parameter value means that the length of the job is longer and require more time to execute.

Resource A is a workstation with Intel Core2 Duo E6550 and CPU speed 2.33 GHz.

Resource B is a server with Intel Xeon E5320 and CPU speed 1.86 GHz. Resource B

consists of two CPUs with quad cores for each CPU. The resource is running on .NET

framework. Resource C is the cluster with two child nodes. Each child node is running on

Intel Xeon W3520 and CPU speed 2.67GHz. Resource A and Resource B are running

on .NET framework while Resource C is running on J2EE environment. Five experiments

will be conducted for each test.

91

Table 4.1 Benchmark results: average execution time of service 1 running on

resource A

Test

Job Parameter

Value

Execution Time Average

Execution

Time 1 2 3 4 5

1 500000 2.1 2.1 2.2 2.0 2.0 2.08

2 1000000 4.1 4.1 4.2 3.9 4.0 4.06

3 3000000 6.9 7.0 7.2 7.1 7.0 7.04

4 5000000 18.3 18.5 18.3 18.3 18.2 18.32

5 10000000 36.8 36.5 36.4 36.4 36.7 36.56

6 30000000 102.5 101.8 102.6 102.3 102.7 102.38

7 50000000 181.0 181.5 181.1 180.4 180.9 180.98

8 100000000 356.9 359.7 359.1 362.4 357.1 359.04

9 300000000 1046.2 1046.9 1044.7 1045.2 1047.8 1046.16

10 500000000 1804.0 1810.5 1806.7 1805.2 1808.6 1807.00

Table 4.2 Benchmark results: average execution time of service 1 running on

resource B

Test

Job Parameter

Value

Execution Time Average

Execution

Time 1 2 3 4 5

1 500000 2.1 2.1 2.0 2.0 2.0 2.04

2 1000000 2.3 2.4 2.2 2.5 2.3 2.34

3 3000000 6.8 6.8 6.7 6.9 6.9 6.82

4 5000000 9.2 9.4 9.2 9.3 9.3 9.28

5 10000000 19.1 18.9 18.8 19.2 18.9 18.98

6 30000000 41.6 41.3 41.5 41.6 41.5 41.50

7 50000000 72.5 73.1 73.2 73.6 73.9 73.26

8 100000000 152.9 153.4 152.4 152.6 152.7 152.80

9 300000000 412.6 413.3 413.5 412.7 412.9 413.00

10 500000000 720.0 731.0 732.3 725.0 727.0 727.06

Table 4.3 Benchmark results: average execution time of service 1 running on

resource C

Test

Job Parameter

Value

Execution Time Average

Execution

Time 1 2 3 4 5

2 1000000 6.8 6.8 6.7 6.8 6.8 6.78

3 3000000 7.5 7.6 7.5 7.6 7.5 7.54

4 5000000 9.9 9.7 9.8 9.8 9.8 9.80

5 10000000 20.6 21.3 20.3 20.7 21.1 20.80

92

6 30000000 56.2 54.1 52.9 53.8 54.8 54.36

7 50000000 93.7 92.8 93.2 93.4 93.5 93.32

8 100000000 190.2 184.4 189.8 192.7 194.2 190.26

9 300000000 512.4 507.6 508.6 509.3 510.3 509.64

10 500000000 919.7 925.6 932.2 923.7 928.4 925.92

Figure 4.1 – 4.3 depict the relationship between the parameter value and the makespan.

From the figures, both the parameter value and makespan are linearly proportional to one

another. A linear trend line is added to the graph and the mathematic equation is formed.

From the equation, the execution time for the same Web Services with different parameter

values is estimated. The estimation of the execution time gets more accurate when more

historical records are made available.

Figure 4.1 Benchmark result: average execution time of service 1 running on

resource A

y = 4E-06x - 2.1123

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 200000000 400000000 600000000

Benchmark Result: Average Execution Time
of Service 1 running on Resource A

Job Parameter Values

Ex
e

cu
ti

o
n

 T
im

e
(s

)

93

Figure 4.2 Benchmark result: average execution time of service 1 running on

resource B

Figure 4.3 Benchmark result: average execution time of service 1 running on

resource C

y = 1E-06x + 1.5651

0

100

200

300

400

500

600

700

800

0 200000000 400000000 600000000

Benchmark Result: Average Execution Time
of Service 1 running on Resource B

Ex
e

cu
ti

o
n

 T
im

e
(s

)

Job Parameter Values

y = 2E-06x + 0.9412

0

100

200

300

400

500

600

700

800

900

1000

0 200000000 400000000 600000000

Benchmark Result: Average Execution Time
of Service 1 running on Resource C

Ex
e

cu
ti

o
n

 T
im

e
(s

)

Job Parameter Values

94

4.2 Resource Benchmarking

Nowadays, computers are getting powerful and with most of them having multiple CPUs

and CPUs with multiples cores. At the same time, the applications are becoming more

complex and places greater demand on the system performance. As such, the CPU,

memory, cache and IO play important roles in determining the execution time of the

application. Thus, there is a need to understand the performance differences of the above

requirements running on different resources.

There are many studies being done on the general purpose processors such as those from

Intel and AMD, to compare the resources performances on different computer architectures.

For this purpose, the industries and academies have developed many different benchmark

suites. Some of them are: PerformanceTest 7.0 (PassMark, 2010), CPU2006 (SPEC, 2010)

and PCMark05 (FutureMark, 2010). Most of these benchmark suites comprised of a

number of application programs and each of the benchmark consists of hundreds of billions

of dynamic instructions. Besides, each benchmark suite uses a different mechanism to

measure the performance of the CPU, memory, graphics memory, hard disk and system.

4.2.1 Related Works

PerformanceTest 7.0 (2010) is created by PassMark to benchmark the computer systems

using a variety of different speed tests. The result of the benchmark is expressed as a rating

that is used to compare the performance of different computer systems. The higher the

rating, the better the computer system performs. Various performance benchmarking are

conducted using PerformanceTest 7.0. These include CPU test, graphic test, disk I/O test

and memory test. The most important test in PerformanceTest 7.0 is the CPU test.

95

PerformanceTest 7.0 performs one simultaneous CPU test for every logical CPU, physical

CPU core or physical CPU package. In order to get the CPU benchmark rating, eight

different tests that includes mathematical operation test, floating point number test, prime

number test, data compression and encryption test, image rotation test and string sorting

test are carried out. In addition, the benchmarking also includes the Streaming Single

Instruction Multiple Data Extensions (SSE) and 3DNow test. Both tests allow the 128-bit

and 64-bit floating point mathematical and logical operations. PerformanceTest 7.0 is used

by (Martinovic et al., 2010) to measure the performance of the virtual machine running on

different operating systems.

CPU2006 (2010) is a single-threaded compute-intensive benchmark developed by Standard

Performance Evaluation Corporation (SPEC). This benchmark suite is used by compiler

writers and processor architects to evaluate the performance of the computer systems.

CPU2006 is the improved benchmark version of CPU2000 (Henning, 2000). CPU2006

covers more emerging applications to increase the variety and representation within the

suite. Most of these applications have larger resource requirements and are more complex

as when compared to the applications supported in CPU2000. Joshi et al., (2006) studied

the evolution of CPU2000 and postulates a representative subset of programs from the

benchmark suite. Kejariwal et al. (2008) presented an analysis of the behaviour and

performance of different programs on CPU2006 and compares them to the programs of

CPU2000 using a state-of-the-art production compiler and architecture.

CPU2006 focuses on compute intensive performance. This includes the benchmark on CPU,

memory architecture and compiler. The CINT2006 suite measures compute-intensive

96

integer performance while the CFP2006 suite measures compute-intensive floating point

performance. Li et al. (2009b) conducted the performance evaluation and analysis of

CPU2006 benchmark suite. The analysis is done on hardware configuration and

optimization technologies.

PCMark05 (2010) is another benchmark suite created by FutureMark. PCMark05 supports

both system level and component level benchmarking. System benchmarking evaluates the

overall performance of the computer system. Component benchmarking, by contrast,

measures the performance of individual components such as CPU, memory, graphics and

etc. Like other benchmark tools, PCMark05 comprises of separate test suites for CPU,

Memory, Graphics and hard disk. In addition, PCMark05 includes a system test suite that

generates an overall system benchmark score.

In summary, resource benchmark is another important process to improve the scheduling

process. The combination of application benchmark and resource benchmark is able to

provide more accurate job and resource information to the scheduler and directly improve

the scheduling decision. PerformanceTest 7.0 is selected as the benchmark tool to evaluate

the resource performance. This is because PerformanceTest 7.0 can benchmark a resource

using a variety of different speed tests. Besides, PerformanceTest 7.0 consists of built-in

baseline results that enable the comparison with other resources.

4.2.2 Implementation of Resource Benchmarking

The PerformanceTest 7.0 benchmark suite is used as a micro-benchmark to profile

resources capabilities such as CPU and memory. Table 4.4 shows the CPU marks obtained

97

for some of the single CPU and multiple CPUs computer system. The higher the CPU mark

obtained, the better is the computer system performance.

Table 4.4 CPU mark for single CPU and multiple CPUs (PassMark, 2010)

CPU Name CPU Mark

[Quad CPU] AMD Opteron 6168 23784

[8-Way] Six-Core AMD Opteron 8435 22745

[Quad CPU] Intel Xeon X7460 @ 2.66GHz 18304

[Dual CPU] Intel Xeon X5680 @ 3.33GHz 17377

[Quad CPU] Intel Xeon X7350 @ 2.93GHz 16715

[Dual CPU] Intel Xeon X5670 @ 2.93GHz 15320

[Dual CPU] AMD Opteron 6174 15017

[Dual CPU] Intel Xeon X5660 @ 2.80GHz 14486

[Dual CPU] Intel Xeon W5580 @ 3.20GHz 13009

[Dual CPU] Intel Xeon X5650 @ 2.67GHz 13007

[Dual CPU] Intel Xeon W5590 @ 3.33GHz 12740

[Quad CPU] Quad-Core AMD Opteron 8386 SE 12335

[Dual CPU] Intel Xeon X5677 @ 3.47GHz 12117

[Quad CPU] Quad-Core AMD Opteron 8360 SE 11912

[Dual CPU] Intel Xeon X5560 @ 2.80GHz 11658

Intel Xeon E5630 @ 2.53GHz 5006

Intel Xeon X5482 @ 3.20GHz 5006

Intel Core2 Extreme X9770 @ 3.20GHz 4998

Intel Xeon X3440 @ 2.53GHz 4990

[Dual CPU] Intel Xeon X5260 @ 3.33GHz 4979

AMD Phenom II X6 1035T 4964

Intel Xeon W3530 @ 2.80GHz 4964

[Dual CPU] Quad-Core AMD Opteron 2354 4930

Intel Xeon W3520 @ 2.67GHz 4889

Intel Xeon X5460 @ 3.16GHz 4877

[Dual CPU] Quad-Core AMD Opteron 2350 4841

Intel Core i7 X 940 @ 2.13GHz 4774

Table 4.5 shows the average execution time by running the same Web Services with two

different parameter values on different computer systems with the CPU marks collected

using PerformanceTest 7.0.

98

Table 4.5 Benchmark results: average execution time of service 1 running on

different resources

 Average Execution Time

CPU Mark Parameter = 50000000 Parameter = 100000000

315 460.97 895.42

410 415.77 835.77

492 290.20 583.64

524 267.07 534.71

1451 181.13 360.60

4733 74.37 153.57

Figure 4.4 depicts that the relationship between the CPU mark and the execution time.

From the figure, the average execution time is inversely proportional to the CPU mark. A

trend line is added to the graph and a mathematical equation is formed. From the equation,

the estimated execution time for the same Web Services running on different resources is

computed. The estimated execution time gets more accurate when more historical records

are available.

Figure 4.4 Benchmark result: average execution time of service 1 running on

different resources

y = 17345x-0.641
y = 31616x-0.627

0

100

200

300

400

500

600

700

800

900

1000

0 2000 4000 6000

Parameter=50000000

Parameter=100000000

Ex
ec

u
ti

o
n

 T
im

e
(s

)

CPU Mark

Benchmark Result: Average execution

99

The job length is estimated using a combination of application benchmark and resource

benchmark. Several test cases which include 1) Random job arrival with random job length;

2) Random job arrival with big gap job length; 3) Random job arrival with job length in

Poisson distribution are used to compare the effect of running HSA with and without

benchmarking. The same set of experiment settings as in Table 3.2 is used.

Figure 4.5 shows the makespan (in seconds) for HSA with and without benchmarking

running on different test cases. Table 4.6 shows the results of the makespan in (second) and

percentage of improvement of HSA with benchmarking as compared to HSA with grouping

for different test cases

Figure 4.5 Makespan (second) of HSA with and without benchmarking for

different experimental cases

4000

5000

6000

7000

8000

9000

10000

Random job
arrival and

random
parameter values

Random job
arrival and big
gap parameter

values

Random job
arrival and

Poisson
distribution

parameter values

Hybrid Scheduling
(Grouping)

Hybrid Scheduling
(Benchmarking)

M
ak

es
p

an
 (

s)

100

Table 4.6 Makespan and percentage of improvement of HSA with benchmarking

as compared to HSA with grouping for different test cases

Test Job Description

HSA

(Grouping)

HSA

(Benchmarking)

% improvement of

HSA (Benchmarking)

as compared to HSA

(Grouping)

1

Random job arrival and

random parameter

values

6871.97

6706.72

2.4

2

Random job arrival and

big gap parameter

values

9045.27

8925.34

1.3

3

Random job arrival and

Poisson distribution

parameter values

5055.39

4832.76

4.4

It is observed from Table 4.6 that HSA with benchmarking performs better than HSA

without benchmarking. The improvement of 1% - 4% in terms of makespan indicates the

efficiency of benchmarking. The use of benchmarking in job length estimation allows the

scheduler to perform sorting at each interval without the needs to group the Web Services.

In addition, the job length estimation provides more accurate tasks information to the

scheduler. In turn, the scheduler is able to provide better scheduling decision using the

application and resource benchmarking as compared to Web Services grouping.

4.3 Adaptive Scheduling Algorithm (ASA)

One of the drawbacks of HSA is that the z value is predefined for each experimental testing.

Many testing are required in order to get the optimal z value to minimize the makespan.

101

Besides, the z value is fixed throughout the experiment testing which mean that the same z

value is used at each different interval.

In order to resolve the above issue, an Adaptive Scheduling Algorithm (ASA) is proposed.

ASA enhances HSA by using a combination of resource benchmark and application

benchmark to estimate the job length and uses a dynamic threshold value, z, at each

interval to make scheduling decision to dispatch task either to primary or secondary

resources. At each interval, the mean value is computed and the heuristic method is used to

get the best z value to achieve the optimal makespan.

Figure 4.6 depicts the main components of ASA. The benchmarker is added to provide the

application-specific benchmark and micro-benchmark or resource benchmark. The micro-

benchmark is used to profile resources capabilities while the application-specific

benchmark measures the performance of resources when executing different types of jobs.

The combination of micro-benchmark and application benchmark provides the estimation

of job length.

Figure 4.6 Main components of ASA

102

In chapter 3, HSA has to group the Web Services at each interval before making the

scheduling decision. ASA enhances the HSA by accepting any Web Services request at

each interval. Thus, the job request has been redefined as Ii, where Ii consists of a set of

different task at interval i. Each task can belong to different Web Services.

Ii = {Ti,1, Ti,2, …, Ti,n}, 0 ≤ i ≤ n and i, n ∈ℕ (4.1) (

The estimated execution time for each task at time interval i is computed by using the

benchmark results collected from the application specific benchmark and micro-benchmark.

The estimated execution time for task Ti,j is given as ei,j. A sorted list, Ki, is then generated

by sorting the estimated execution time for each task at interval i.

Ki = {ei,j, ei,(j+1), …, ei,n}, where ei,j > ei,n and j<n (4.2) (

The process continues with the generation of sorted primary resource, Pi for each Ti, and

sorted secondary resource, Qi for each Ti. The process is followed by the computation of

the mean value.

meani = ∑ e
 i,j / n, where meani is the mean value for Ki (4.3))

The mean value, meani, is used to determine whether the task, Ti,j, is assign to the resources

in Pi or Qi based on the pseudo code below:

if li,j > meani * z then

 allocate Ti,j to Pi that returns the minimum completion time

else

 allocate Ti,j to Qi that returns the minimum completion time

end if

103

ASA enhances HSA by introducing the dynamic value z for each interval. The best z value

is used to generate a schedule list with shortest makespan. Figure 4.7 depicts the proposed

scheduling algorithm.

Input:

Ii, a set of different task request at interval i

pm or qn ∈Si, , where Si is a set of resources in site i

Output

A schedule of Ti,j into pm or qn

// estimate the task length at each interval

∀ task request, Ii, in waiting queue
 estimate the execution time, ei,j

Sort the task Ti,j in descending order based on the estimated execution time, ei,j

Generate a sorted task requests list Ki

 Compute meani from Ki

 ∀ servers and c usters in site I // generate the primary resource list
 Select potential resources and generate sorted primary resource list, Pi

 ∀ desktop computers in site I I // generate the secondary resource list
 Select available desktop computers and generate sorted secondary resource

list, Qi

// compare the multiplication of z and mean with the parameter value to

// determine whether to schedule the task to primary or secondary resource

∀ Task, Ti,j
 if li,j > meani * z

 allocate Ti,j to pm that returns the minimum completion time

 Otherwise

 allocate Ti,j to qn that returns the minimum completion time

 Repeat the experiment for each interval,

 With the dynamic value, z ± 0.1 to get the minimum makespan

Figure 4.7 Proposed ASA

4.4 Experiment Setup

An experimental testbed with the implementation of the same components as chapter 3 is

developed to execute the testing of services in Grid and Cloud environment. An extra

104

component, the Benchmarker which is used to estimate job length for each task is added to

the testbed. The same set of Web Services and resources is used. The test cases used to

verify the correctness of the proposed ASA, MIN-MIN with benchmarking and MAX-MIN

implementations are presented in Appendix A.2.

To evaluate the performance of the proposed algorithm, the same set of resources and job

parameters are used and is shown in Table 4.7. A set of evaluations with similar settings as

Table 4.7 is carried out to compare the performance of the proposed ASA against MIN-

MIN and MAX-MIN scheduling algorithm. The performance metric used for the

comparison is makespan.

Table 4.7 A predefined set of resources and job parameters

Description Value Range

Number of sites 3 – 5

Number of hosts per site 20 – 50

Number of CPU 1 – 4

Number of core per CPU 1 – 8

CPU speed 0.8 – 3.2 GHz

Number of tasks 300 – 500

Execution time of task (second) 1 – 1000

Type of Web Services 1 – 10

Several test cases which include 1) Random job arrival with random job length; 2) Random

job arrival with big gap job length; 3) Random job arrival with job length in Poisson

distribution; 4) Poisson arrival with random job length; 5) Poisson arrival with big gap job

length; 6) Poisson arrival with job length in Poisson distribution are used for the

experiment.

105

4.5 Result and Analysis

Table 4.8 – 4.13 show the results of the makespan (in seconds) for different experimental

cases using different scheduling algorithms. Figure 4.8 shows the results from Table 4.8 –

4.13 in graphical form.

Table 4.8 Makespan (seconds) of different algorithms for random job arrival and

random job length

Test Job Description 1 2 3 4 5 Average

1
Random job arrival and random job length
(Benchmarking) - MIN-MIN

7455.17 7565.56 7572.55 7505.72 7503.62 7520.52

2
Random job arrival and random job length
(Benchmarking) - MAX-MIN

6801.52 6841.72 6823.08 6823.17 6829.77 6823.85

3
Random job arrival and random job length
(Benchmarking) - HSA (z=1.1)

6898.87 6875.72 6945.32 6892.96 6881.42 6898.86

4
Random job arrival and random job length
(Benchmarking) - HSA (z=1)

6734.28 6691.77 6727.13 6708.31 6672.12 6706.72

5
Random job arrival and random job length
(Benchmarking) - HSA (z=0.9)

6923.35 6889.43 6819.14 6914.30 6876.18 6884.48

6
Random job arrival and random job length
(Benchmarking) - ASA

6415.67 6405.90 6462.27 6494.87 6460.11 6447.76

Table 4.9 Makespan (seconds) of different algorithms for random job arrival and

big gap job length

Test Job Description 1 2 3 4 5 Average

1
Random job arrival and big gap job length
(Benchmarking) - MIN-MIN

10523.12 10542.85 10610.48 10465.15 10413.07 10510.93

2
Random job arrival and big gap job length
(Benchmarking) - MAX-MIN

9102.12 9188.43 9082.90 9124.49 9153.91 9130.37

3
Random job arrival and big gap job length
(Benchmarking) - HSA (z=1.5)

10071.43 9999.51 9975.81 10118.77 9956.48 10024.40

4
Random job arrival and big gap job length
(Benchmarking) - HSA (z=1.4)

8791.15 9033.57 8784.83 9040.88 8976.26 8925.34

5
Random job arrival and big gap job length
(Benchmarking) - HSA (z=1.3)

9292.49 9228.70 9144.49 9229.45 9123.67 9203.76

6
Random job arrival and big gap job length
(Benchmarking) - ASA

8707.17 8626.44 8606.46 8682.07 8612.51 8646.93

Table 4.10 Makespan (seconds) of different algorithms for random job arrival and

job length in Poisson distribution

Test Job Description 1 2 3 4 5 Average

1
Random job arrival and job length in Poisson
Distribution (Benchmarking) - MIN-MIN

5602.55 5615.41 5572.31 5578.81 5592.01 5592.22

106

2
Random job arrival and job length in Poisson
Distribution (Benchmarking) - MAX-MIN

4988.60 4976.24 4946.25 4985.78 4952.73 4969.92

3
Random job arrival and job length in Poisson
Distribution (Benchmarking) - HSA (z=1)

4948.82 4991.30 4972.15 4941.71 4970.90 4964.98

4
Random job arrival and job length in Poisson
Distribution (Benchmarking) - HSA (z=0.9)

4793.36 4820.59 4850.89 4817.96 4881.01 4832.76

5
Random job arrival and and job length in
Poisson Distribution (Benchmarking) - HSA
(z=1)

4906.10 4972.96 4923.15 4989.31 4945.24 4947.35

6
Random job arrival and job length in Poisson
Distribution (Benchmarking) - ASA

4691.94 4697.17 4708.84 4651.38 4753.50 4700.57

Table 4.11 Makespan (seconds) of different algorithms for Poisson arrival (λ=50)

and random job length

Test Job Description 1 2 3 4 5 Average

1
Poisson job arrival (λ=50) and random job length
(Benchmarking) - MIN-MIN

6919.68 6816.69 7024.63 6947.40 6856.05 6912.89

2
Poisson job arrival (λ=50) and random job length
(Benchmarking) - MAX-MIN

6070.11 6058.11 6048.28 6007.66 6036.97 6044.23

3
Poisson job arrival (λ=50) and random job length
(Benchmarking) - HSA (z=1.2)

6527.63 6573.01 6548.98 6481.88 6489.22 6524.14

4
Poisson job arrival (λ=50) and random job length
(Benchmarking) - HSA (z=1.1)

5943.49 5893.41 5834.64 5903.22 5892.53 5893.46

5
Poisson job arrival (λ=50) and random job length
(Benchmarking) - HSA (z=1)

6157.79 6158.02 6064.13 6086.96 6176.36 6128.65

6
Poisson job arrival (λ=50) and random job length
(Benchmarking) - ASA

5711.10 5733.70 5683.70 5788.55 5697.66 5722.94

Table 4.12 Makespan (seconds) of different algorithms for Poisson arrival (λ=50)

and big gap job length

Test Job Description 1 2 3 4 5 Average

1
Poisson job arrival (λ=50) and big gap job length
(Benchmarking) - MIN-MIN

11331.86 11115.91 11098.14 11353.72 11224.34 11224.79

2
Poisson job arrival (λ=50) and big gap job length
(Benchmarking) - MAX-MIN

10234.83 10964.71 10038.74 9995.73 10942.95 10435.39

3
Poisson job arrival (λ=50) and big gap job length
(Benchmarking) - HSA (z=1.4)

10544.57 10703.82 10567.45 10417.34 10641.86 10575.01

4
Poisson job arrival (λ=50) and big gap job length
(Benchmarking) - HSA (z=1.3)

9924.75 9988.45 9986.87 9980.12 9995.02 9975.04

5
Poisson job arrival (λ=50) and big gap job length
(Benchmarking) - HSA (z=1.2)

10414.41 10378.90 10299.76 10035.94 10415.50 10308.90

6
Poisson job arrival (λ=50) and big gap job length
(Benchmarking) - ASA

9833.84 9858.60 9872.14 9880.36 9809.01 9850.79

107

Table 4.13 Makespan (seconds) of different algorithms for Poisson arrival (λ=50)

and job length in Poisson distribution (λ1=40000000, λ2=4000, λ3=50000)

Test Job Description 1 2 3 4 5 Average

1
Poisson job arrival (λ=50) and job length in Poisson
Distribution (λ1=40000000, λ2=4000, λ3=50000)
(Benchmarking) - MIN-MIN

5473.76 5517.44 5450.79 5554.15 5470.79 5493.39

2
Poisson job arrival (λ=50) and job length in Poisson
Distribution (λ1=40000000, λ2=4000, λ3=50000)
(Benchmarking) - MAX-MIN

4836.20 4826.70 4858.98 4889.84 4889.32 4860.21

3
Poisson job arrival (λ=50) and job length in Poisson
Distribution (λ1=40000000, λ2=4000, λ3=50000)
(Benchmarking) - HSA (z=1)

5003.34 5016.55 5010.42 5009.08 4965.55 5000.99

4
Poisson job arrival (λ=50) and job length in Poisson
Distribution (λ1=40000000, λ2=4000, λ3=50000)
(Benchmarking) - HSA (z=1.1)

4755.77 4749.37 4726.71 4761.11 4772.14 4753.02

5
Poisson job arrival (λ=50) and and job length in
Poisson Distribution (λ1=40000000, λ2=4000,
λ3=50000) (Benchmarking) - HSA (z=0.9)

4863.31 4799.67 4832.08 4829.31 4851.44 4835.16

6
Poisson job arrival (λ=50) and job length in Poisson
Distribution (λ1=40000000, λ2=4000, λ3=50000)
(Benchmarking) - ASA

4516.07 4609.82 4554.55 4598.30 4567.62 4569.27

Figure 4.8 Makespan (seconds) of different algorithms with benchmarking for

different experimental cases

4000

5000

6000

7000

8000

9000

10000

11000

12000

Random job
arrival and
random job

length
(Benchmarking)

Random job
arrival and big
gap job length

(Benchmarking)

Random job
arrival and job

length in
Poisson

Distribution
(Benchmarking)

Poisson job
arrival (λ=50)

and random job
length

(Benchmarking)

Poisson job
arrival (λ=50)

and big gap job
length

(Benchmarking)

Poisson job
arrival (λ=50)

and job length
in Poisson

Distribution

MIN-MIN
(Benchmarking)

MAX-MIN
(Benchmarking)

Hybrid Scheduling
(Benchmarking)

Adaptive
Scheduling

M
ak

es
p

an
 (

s)

108

Table 4.8 - Table 4.10 shows that ASA yields the best results compared to the other

scheduling algorithms, for different types of job length distributions and random arrival

time. It is also observed from Table 4.11 – 4.13 that ASA outperforms MIN-MIN with

benchmarking, MAX-MIN with benchmarking and HSA with benchmarking by a

significant margin for different types of job length distributions when the jobs arrival is

Poisson.

Table 4.14 shows the results of the makespan (in seconds) and the percentage of

improvement. It is observed that ASA outperforms MIN-MIN with benchmarking by

between 12% - 17% in terms of makespan. Table 4.14 also shows that the improvement of

ASA as compared to MAX-MIN with benchmarking is by between 5% - 6% in terms of

makespan. The superior performance of ASA is attributed to the ability to determine the

mean value to use at each interval and to dynamically generate the z value that controls the

decision to schedule tasks to primary resources or secondary resources.

Table 4.14 Makespan (seconds) and percentage of improvement of ASA as

compared to three different scheduling algorithms with benchmarking for

different test cases

Test

Job

Description

MIN-MIN

(Benchmarking)

MAX-MIN

(Benchmarking)

HSA

(Benchmarking) ASA

% improvement

of ASA as

compared to

MIN-MIN

(Benchmarking)

% improvement

of ASA as

compared to

MAX-MIN

(Benchmarking)

%

improvement

of ASA as

compared to

HSA

(Benchmarkin

g)

1

Random job

arrival and

random job

length

(Benchmarki

ng)

7520.52 6823.85 6706.72 6447.76 14.3 5.5 3.9

2

Random job

arrival and

big gap job

length

(Benchmarki

ng)

10510.93 9130.37 8925.34 8646.93 17.7 5.3 3.1

3

Random job

arrival and

job length in

Poisson

5592.22 4969.92 4832.76 4700.57 15.9 5.4 2.7

109

Distribution

(Benchmarki

ng)

4

Poisson job

arrival

(λ=50) and

random job

length

(Benchmarki

ng)

6912.89 6044.23 5893.46 5722.94 17.2 5.3 2.9

5

Poisson job

arrival

(λ=50) and

big gap job

length

(Benchmarki

ng)

11224.79 10435.39 9975.04 9850.79 12.2 5.6 1.2

6

Poisson job

arrival

(λ=50) and

job length in

Poisson

Distribution

5493.39 4860.21 4753.02 4569.27 16.8 6.0 3.9

From Table 4.14, ASA only shows a slight improvement of 1% - 4% over HSA with

benchmarking. However, the dynamic z value provides the ability to adapt to different

situations. A fixed z value is no longer required to be predefined for each experiment.

Using a z value that changes dynamically at each interval makes the adaptive mechanism

more feasible and practical for a heterogeneous environment and delivers better schedules

as compared to HSA.

4.6 Chapter Summary

This chapter presents Adaptive Scheduling Algorithm (ASA) which enhances the HSA

through benchmarking as well as the adaptive mechanism. In ASA, a two level

benchmarking is used to benchmark the job requests at each interval. The algorithm uses

the application specific benchmark and resource benchmark to estimate the job length.

Then, an adaptive mechanism is applied to the scheduling decision at each interval where a

dynamic value z, is used to identify whether the job is assigned to primary or secondary

resources.

110

ASA is then compared to the scheduling algorithms such as MIN-MIN with benchmarking,

MAX-MIN with benchmarking and HSA with benchmarking. The experimental results

show that ASA minimizes the makespan by 5% - 17%. In addition, ASA also reduces the

makespan by 1 - 4% when compared to HSA with benchmarking. Although this is a small

improvement, the dynamic nature of ASA does not require a fix z value for different test

cases. Hence, this mechanism is more feasible as compared to HSA. ASA is adaptable to

different test cases and provides a better scheduling decision in the Grid and Cloud

environment. In summary, ASA is able to maximize resource utilization and minimize

makespan.

Besides the job scheduling problems discuss above, Quality of Service (QoS) is becoming a

big concern in the Grid and Cloud environment. Thus, in the next chapter, the QoS issues

in the Grid and Cloud environment are discussed. Also, an enhanced ASA is proposed to

maximize reliability and profit while guaranteeing the users QoS requirements.

111

CHAPTER 5 ADAPTIVE QoS SCHEDULING ALGORITHM

(AQoSSA)

This chapter presents the solution that guarantees end users QoS requirements and provides

cost management for service providers in Grid and Cloud environment. The first section

details QoS in Grid and Cloud Computing. In the second section, the Service Level

Agreement (SLA) is presented. The third section presents the AQoSSA and the

rescheduling mechanism. The final section describes the experiment setup and evaluates

the performance of AQoSSA.

5.1 QoS in Grid and Cloud Computing

Grid and Cloud Computing have emerged as the new computing paradigms that enable

resources sharing and dynamic allocation of resources for various applications. These

technologies involved various resources distributed in multiple domains. As these

technologies provide services to many users from distributed locations, the ability to

guarantee QoS is becoming critical. Besides the growth in the number of users, different

users having different QoS requirements make the guaranteeing of QoS in Grid and Cloud

extremely challenging.

Service providers are not only providing the functional requirements of the services to the

end users, they need to satisfy the non-functional requirements of the services. To be

successful in Grid and Cloud, the ability to deliver guaranteed QoS services is crucial. In

order to guarantee QoS in Grid and Cloud Computing, various important QoS requirements

112

such as availability, scalability, deadline, cost and security are identified and discussed

below.

5.1.1 Availability

In a dynamic Grid and Cloud environment, the most important criterion for QoS is the

availability of service. Availability is the probability that a service is available at a

particular moment. Availability can be formulated as

Ai = ti / T (5.1))

where, ti is the total uptime of service i and T is the total time of evaluation. If the value is

one, the service is always available. The availability of a service can be affected by

resources going offline due to hardware failure, software update or rebooting.

5.1.2 Scalability

Since service providers serve many users, the service providers must have the ease to scale

upwards or downwards the resource infrastructure to facilitate the varying number of users

and users’ requirements. This is to ensure the QoS requirements are met as well as to

provide better resource optimization. Based on the Horizontal Cloud and Vertical Cloud

approaches proposed by (Mei et al., 2008), the resources can be scaled and provided

dynamically on demand. In Cloud computing, virtualization technology is one of the

important technologies that provides scalability and optimal use of resources. With

scalability, end users have higher chances of accessing services deployed in Grid and Cloud

environment at any time and from anywhere.

113

However, scalability is turning out to be a very challenging issue for service providers. If

the Grid or Cloud over provide resources, the over-provisioning leads to under-utilization

during periods of low demand. On the other hand, in the event of under-provisioning, some

of the end users’ requests will be rejected. Furthermore, Cloud computing has to be highly

elastic in scalability where resources can be scaled up or down within a given time.

5.1.3 Deadline

The deadline or response time is a particular point in time which is usually provided by an

end user to specify the required job completion time. Being measurable, this parameter is

usually explicitly specified in the SLA. The deadline parameter is usually used in Tail-

Distribution based SLA (TD-SLA) since this QoS parameter is measurable in terms of the

number of job completions within a given deadline. Usually, for TD-SLA, the terms of the

SLA are considered to have been complied when the deadline is within a specified

percentage range from the contracted deadline. For example, the deadline is D and an over

run of 5% is acceptable per the SLA. The service provider will have to pay a penalty if the

execution time exceeds 1.05D.

5.1.4 Cost

Grid and Cloud Computing offer the end users the means to utilize the computational

resources as well as the applications on a pay-per-use basis. In general, two different cost

plans are available, namely, the on-demand plan and the reservation plan. The on-demand

plan allows end users to secure the right amount of resources dynamically at any time while

the reservation plan requires the end users to reserve the resources within a specific time

slot. Usually, the reservation plan is priced cheaper than the on-demand plan. It is easier for

114

the service providers to cater for sufficient resources under the reservation plan since the

required resources are made known at the time of reservation. However, for the on-demand

plan, it is difficult for the service providers to estimate the amount of resources required

giving rise to under-provisioning or over-provisioning. Thus, the cost of on-demand plan is

usually higher than the reservation plan.

Chaisiri et al. (2011) proposed an Optimal Cloud Resource Provisioning (OCRP) algorithm

to make provision for resources offered by multiple Cloud service providers. The algorithm

is able to provide computing resources in multiple provisioning stages as well as offering

different provision plans. Truong and Dustdara (2010) proposed a service cost model for

estimating, monitoring and analysing the costs associated with applications in Cloud

Computing under different scenarios.

In Grid and Cloud Computing, users only have to pay for the services that are used. This

on-demand access significantly reduces the end users infrastructure cost as well as speeds

up the job processing. Usually, to reduce cost, some end-users are willing to settle for a

lower response time. As such, some end users will select the reservation plan over the on-

demand plan.

Most service providers offer different levels of services at different prices to meet the

varied demands and needs of the end users. The main objective of most service providers is

to maximize their profits through the optimal usage of their resource infrastructures. The

profit is computed based on the total money earned from each services running for a given

period of time after apportioning the penalty incurred for violation of the SLA. Thus, a

115

service provider must offer competitive and attractive terms and prices for the services

provided while minimizing any penalties for failures to uphold the terms and conditions in

the SLAs. This has led to many research studies and mechanisms on cost management.

Hyun Jin et al. (2010) used the profit model that includes revenue and cost functions to

compute the total profit gained. Maci et al. (2010) defined different QoS categories, namely,

Gold, Silver and Bronze to differentiate the level of services provided. The Gold category

is given the highest priority as compared to Silver and Bronze categories. Each category

will have a different cost and price associated with it. Yeoa et al. (2010) proposed an

autonomic pricing mechanism that dynamically changes the pricing parameters’ values to

meet the user requirements and maximize profit. Lee et al. (2010) proposed a pricing model

using processor-sharing and applying the model to composite services with dependency

considerations.

5.1.5 Security

Security and privacy are some of the primary concerns in Grid and Cloud Computing.

Since Grid and Cloud computing environments are multi-domains, different security,

privacy and trust requirements are implemented. Service providers and end users must

share the responsibilities for the security and privacy in this environment. The service

providers must guarantee that the security features are trustable to the end users. The

solution provided by service providers must be efficient and effective against security and

privacy risks. It is critical to have the mechanisms to ensure that only authorized entities

can gain access to their data. Takabi et al. (2010) explored the lapses in Cloud security and

privacy and suggested the solutions to create a trustworthy Cloud Computing environment.

116

Once the QoS requirements are identified, the requirements must be documented and

agreed upon by the service providers and the end users in the form of an SLA. The next

section will discuss SLA which defines the scope of the services provided and provisioning

of resources.

5.2 Service Level Agreement

In Grid and Cloud Computing, the interaction between end users and service providers is

negotiated and contracted through the Service Level Agreement (SLA). SLA is a document

that includes a description of the agreed services, service level objectives, guarantees and

actions and remedies for all cases of violations (Andrieux et al., 2005). SLA is a formal

contract between the service provider and the end user that specifies the required and

acceptable QoS metric levels as well as penalties in the event of service violations. An

effective SLA will ensure that the service providers and users interests are protected within

the agreed terms and conditions framework.

In general the SLA can be divided into Hard SLA and Soft SLA (Hyun Jin et al., 2010). In

a Hard SLA, the contract is violated as soon as the QoS requirement is not met while a Soft

SLA has a varied level of violation that corresponds to agreed levels of service. The soft

SLA specifies the percentage of SLA violations that can be tolerated within a predefined

time interval before the service provider is legally culpable to pay for failing to deliver the

prescribed services. Hence, a good SLA enactment strategy is necessary to avoid costly

penalties for violating the terms and conditions spelt out on the SLA.

117

Service providers use SLAs to define trust, the level of QoS provided as well as service

charges. A service provider can optimize the resource usages based on the agreed terms and

conditions in a SLA. In order to comply with the SLA, a service provider must be capable

of monitoring the infrastructure resources. In addition, a service provider must be able to

predict the service performances as well as the number of end users to assure the QoS while

avoiding over-provisioning. However, due to the heterogeneous services and resources, a

dynamic provisioning of resources to meet SLA is very challenging.

End users make use of the SLA to obtain the needed level of QoS and to maintain the

acceptable provisioning of the required services. The end users pay only for the use of

resources and services within the SLA framework. Usually, the end users are more

concerned about the response time and the service output.

The SLA is usually formulated through a process of negotiation between the service

providers and the end users. Currently, the most common negotiation method is through

direct interaction between end users and service providers. The service providers will

define all the SLA criteria with pricings while the end users will review all the SLA terms

and conditions. If agreeable, the SLA is accepted and contracted. Otherwise, renegotiation

or termination is initiated.

In the current marketplace, service providers offer multiple services to many end users at

different locations making SLAs in Grid and Cloud Computing all the more important.

There are currently many research studies that are looking into SLAs in relation to Grid and

Cloud Computing. Ferretti et al. (2010) proposed the design of a middleware architecture

118

that enables SLA-driven dynamic configuration, management and optimization of Cloud

resources and services to meet the QoS requirements. Alhamad et al. (2010) proposed a

conceptual SLA framework for Cloud Computing environment. Different SLA metrics are

defined for different service layers. Fito et al. (2010) proposed a Cloud Hosting Provider

that uses outsourcing technique to provide scalability, high availability and maximizing the

revenue earned by service provider through the analysis of SLA and the employment of an

economic model.

Reig et al. (2010) proposed a prediction system to determine the minimum amount of

resources required to be committed to meet a job deadline. The authors used an analytical

predictor and self-adjusting predictor to predict job resource requirements which the CPU

share and the amount of memory required to execute a job within its deadline. This helps

the service providers to fully utilize the resources while avoiding any SLA violations.

Boloor et al. (2010) proposed a heuristics based request scheduling to minimize the overall

penalty charged for SLA violations. Usually, the SLA has some additional time allowances

above the deadline before a penalty is incurred.

In summary, the ability to deliver guaranteed QoS service in Grid and Cloud environment

is crucial. Since the service providers offer services on a pay-per-use model, a profit model

that is based on resource usage is more appropriate as compared to rental model where

resource is charge based on daily or monthly term.

119

5.3 Adaptive Quality of Service Scheduling Algorithm (AQoSSA)

After reviewing various QoS requirements as well as SLAs, the AQoSSA is proposed. A

profit model is proposed in AQoSSA to measure the profit generated by the service

providers. Subsequently, AQoSSA will schedule the jobs base on the QoS requirements

specified in SLA. The objective function of AQoSSA is to maximize the reliability and

profitability of the service providers while guaranteeing the user QoS requirements.

5.3.1 Profit Model

In arriving at AQoSSA, the revenue generated by running the services on different

resources is first identified. Amazon EC2 and Windows Azure offer different pricing

schemes for the end users. In this research, the unit of revenue is measured by using the

CPU benchmark of the resources. Table 5.1 shows the average execution time for different

resources running on different parameter values. The parameter values used are based on

the same Web Services that has been benchmarked in Chapter 4. The parameter value and

the average execution time are linearly proportional to one another when running on the

same resources.

Table 5.1 Average Execution Time (second)

RID CPU Benchmark

Parameter Values

5000000 10000000 50000000 100000000 500000000

1 315 45.43 90.03 460.97 892.33 4471.10

2 410 42.30 83.57 415.77 834.13 4154.20

3 492 30.47 59.17 290.20 581.97 2895.47

4 524 26.67 53.00 267.07 534.27 2690.20

5 1451 18.23 36.47 181.13 360.50 1807.07

6 4089 9.83 22.53 94.53 188.13 925.83

7 4733 9.37 19.27 74.37 152.93 727.77

120

Using the CPU benchmark as a measure of revenue, the revenue is defined as

revenue = (CPUBenchmark / 10000) * ExecutionTime (5.2))

Table 5.2 shows the revenue for different resources running on different input. The

Resource ID 6 generates the highest revenue for the largest input. This fact shows that the

highest CPU benchmark does not necessary will generate the highest revenue.

Table 5.2 Revenue (unit)

RID CPU Benchmark

Revenue

5000000 10000000 50000000 100000000 500000000

1 315 1.43 2.84 14.52 28.11 140.84

2 410 1.73 3.43 17.05 34.20 170.32

3 492 1.50 2.91 14.28 28.63 142.46

4 524 1.40 2.78 13.99 28.00 140.97

5 1451 2.65 5.29 26.28 52.31 262.21

6 4089 4.02 9.21 38.65 76.93 378.57

7 4733 4.43 9.12 35.20 72.38 344.45

Hence, the grouping of resources is proposed to derive a relationship between the CPU

benchmark and revenue. Table 5.3 shows the mean CPU Benchmark and the relative value

of CPU Benchmark from the mean. The mean CPU Benchmark is 1716.3 and the standard

deviation of the CPU Benchmark is 1888.17. It is observed from Table 5.3, the resources

can be divided into three groups.

121

Table 5.3 Mean CPU Benchmark and relative value of CPU Benchmark from

mean

RID CPU Benchmark Mean | CPU Benchmark – mean |

1 315 1716.3 1401.3

2 410 1716.3 1306.3

3 492 1716.3 1224.3

4 524 1716.3 1192.3

5 1451 1716.3 265.3

6 4089 1716.3 2372.7

7 4733 1716.3 3016.7

Figure 5.1 shows the revenue vs CPU Benchmark. It is also observed that from Figure 5.1,

the resources can be divided into 3 groups using the k-mean method.

Figure 5.1: Revenue vs. CPU Benchmark

Table 5.4 shows the modified revenue derived from the average CPU Benchmark after k-

mean grouping. As shown in Table 5.4, after the grouping, group 3 with highest CPU

benchmark generates more revenue as compared to the groups with lower CPU benchmark.

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000

Input = 5000000

Input = 10000000

Input = 50000000

Input = 100000000

Input = 500000000

Revenue vs CPU Benchmark

R
ev

en
u

e
(u

n
it

)

122

Table 5.4 Modified Revenue (unit)

Group RID
CPU

Benchmark

Average
CPU

Benchmark Revenue

1

1 315

435.25 1.58 3.11 15.60 30.93 154.63
2 410
3 492
4 524

2 5 1451 1451.00 2.65 5.29 26.28 52.31 262.21

3
6 4089

4411.00 4.23 9.22 37.25 75.22 364.70
7 4733

After the resource grouping is completed, the revenue function of the resource is derived. If

RPi is a set of revenue per second for resources in i
th

 site, then

RPi = { rpi,1, rpi,2, …, rpi,n} 1 ≤ i ≤ n and i, n ∈ℕ (5.3))

rpi,n = AVE(CB i,n) / 10000 (5.4))

where AVE(CB i,n) is the average CPU Benchmark for resource n in i
th

 site that is grouped

using the k-mean.

In AQoSSA, each task from equation 4.1 is associated with a Class of Service (CoS), k, and

a deadline, D(Ti,j,k), that is estimated base on the waiting time, execution time and CoS.

Ii = {Ti,1,k, Ti,2,k, …, Ti,n,k}, 0 ≤ i ≤ n and i, n, k ∈ℕ (5.5))

where k represents the classes of services (Gold, Silver and Bronze) which is 1,2 or 3 in

this research.

123

The revenue function, Rev(Ti,j,k , t) is given as

Rev(Ti,j,k , t)=

{

 ,

 D(Ti,j,k) - ,

 D(Ti,j,k),

 D(Ti,j,k)

D(Ti,j,k) D(Ti,j,k)

 D(Ti,j,k)

(5.6))

where t is the execution time and is the percentage of time where the SLA violations can

be tolerated before the service providers incur any penalty. The value, is different for

each CoS and the higher the priority of CoS, the lower the value.

The Total Profit for all the tasks, T is given as

Profit(T) = ∑ ev , , , t

(5.7))

5.3.2 AQoSSA Components and Algorithms

Fig 5.2 depicts the main components of the AQoSSA. The SLA negotiator module is added

to negotiate the SLA agreement between service providers and end users. Once an end user

submits a job request with its associated CoS, the service provider estimates the deadline

and specifies the penalties in case of violations. The SLA negotiator ensures that an

agreement is reached between service providers and end users before a job is accepted.

124

Figure 5.2: Main components of AQoSSA

AQoSSA applies the ASA mechanism with dynamic z value at each interval and schedules

the task according to the CoS. The Gold service with CoS value equals to one will be

scheduled first followed by Silver and Bronze service. AQoSSA is able to reschedule a task

with lower priority when the task is waiting in the queue but the deadline is not expired.

Rescheduling allows the higher priority task with immediate deadline to execute first.

Figure 5.3 shows the proposed AQoSSA.

Input:

Ii, a set of different task request at interval i

pm or qn ∈Si, , where Si is a set of resources in site i

Output

A schedule of Ti,j,k into pm or qn

// estimate the task length at each interval and sort the tasks according to Class of Service

∀ task request, Ii, in waiting queue
 Sort the task Ti,j,k based on CoS
 estimate the execution time, ei,j,k

 Sort the task Ti,j,k in descending order based on the estimated execution time

 Generate a sorted task requests list Ki

125

 Compute meani from Ki

 ∀ servers and c usters in site I // generate the primary resource list
 Select potential resources and generate sorted primary resource list, Pi

 ∀ desktop computers in site I // generate the secondary resource list
 Select available desktop computers and generate sorted secondary resource

list, Qi

// compare the multiplication of z and mean with the parameter value to

// determine whether to schedule the task to primary or secondary resource

∀ Task, Ti,j
 if li,j,k > meani * z

 allocate Ti,j,k to pm that return maximum profit

 Otherwise

 allocate Ti,j,k to qn that return maximum profit

 // reschedule the tasks when CoS is equal to 3 and the deadline is not expired

 if the deadline of the new task is expired

 ∀ tasks in waiting queue with ower priority than new task
 reschedule waiting task to allow new task to meet the deadline

 Repeat the experiment for each interval,

 With the dynamic value, z ± 0.1 to get the maximum number of tasks

 that meet the deadline

Figure 5.3: Proposed AQoSSA

5.4 Experiment Setup

An experimental testbed with the implementation of the same components as Chapter 4 is

developed to execute the testing of services in Grid and Cloud environment. An extra

component, the SLA negotiator which is used to negotiate the SLA agreement between

service providers and end users is added to the testbed. The test cases used to verify the

correctness in implementing the proposed AQoSSA, MIN-MIN QoS and MAX-MIN QoS

are presented in Appendix A.3.

126

The resources and parameters used to evaluate the performance of the proposed algorithm

are the same set of resources and job parameters used in Chapter 4 and are shown again in

Table 5.5. A set of evaluations is carried out to compare the performance of the proposed

AQoSSA against MIN-MIN QoS and MAX-MIN QoS. The performance metric used for

the comparison is the total number of job completed and the revenue. Several test cases: 1)

Random job arrival with random job length; 2) Random job arrival with big gap job length;

3) Random job arrival with job length in Poisson distribution are used for the experiment.

Table 5.5 A predefined set of resources and job parameters

Description Value Range

Number of sites 3 – 5

Number of hosts per site 20 – 50

Number of CPU 1 – 4

Number of core per CPU 1 – 8

CPU speed 0.8 – 3.2 GHz

Number of tasks 500

Execution time of task (second) 1 – 1000

Type of Web Services 1 – 10
Class of Service (1 – Highest Priority) 1 – 3

5.5 Result and Analysis

Table 5.6 shows the reliability (in percentage) for different test cases using the three

different algorithms. Figure 5.4 displays the results from Table 5.6 in graphical form. The

reliability is computed as:

reliability (%) = (total number of job completed / total number of job) * 100% (5.8))

127

Table 5.6 Reliability (%) for different algorithms

MIN-MIN QoS MAX-MIN QoS AQoSSA

Number of
Job

Completed

Number
of Job

Violated
Reliability

%

Number of
Job

Completed

Number
of Job

Violated
Reliability

%

Number of
Job

Completed

Number of
Job

Violated
Reliability

%

Random job
arrival and
random job
length
(Benchmarking)

464 36 92.8 469 31 93.8 493 7 98.6

Random job
arrival and big
gap job length
(Benchmarking)

458 42 91.6 465 35 93.0 484 16 96.8

Random job
arrival and job
length in Poisson
Distribution
(Benchmarking)

462 38 92.4 472 28 94.4 490 10 98.0

Figure 5.4: Reliability (%) for different algorithms

A total of 500 jobs are used for the testing. The results showed that the reliability of MIN-

MIN QoS and MAX-MIN QoS scheduling algorithm is around 92% - 94% as shown in

Table 5.6. Whereas, the number of jobs completed using AQoSSA is more than 480. This

translates to achieving a reliability of more than 96% for AQoSSA.

90
91
92
93
94
95
96
97
98
99

100

Random job arrival and
random job length

(Benchmarking)

Random job arrival and big
gap job length

(Benchmarking)

Random job arrival and job
length in Poisson Distribution

(Benchmarking)

MIN-MIN QoS

MAX-MIN QoS

AQoSSA

R
el

ia
b

ili
ty

 (
%

)

128

Table 5.7 tabulates the result of the reliability (in percentage) and the percentage of

improvements. The experimental results shown in Table 5.7 inferred that AQoSSA yield

the best results as compared to the other scheduling algorithms in terms of reliability. It is

observed that the improvement of AQoSSA over MIN-MIN QoS is around 5% in terms of

reliability. It is also observed that AQoSSA performs better than MIN-MIN QoS by

between 3% - 4% in terms of reliability for different test cases. Hence, AQoSSA provides

better scheduling decision in reducing the number of jobs violated the SLA. The

implementation of the rescheduling mechanism allows most of the jobs to complete within

the deadline.

Table 5.7 Reliability (%) for different algorithms and percentage of improvement

of AQoSSA as compared to other algorithms

MIN-MIN

QoS
MAX-MIN

QoS AQoSSA

% improvement
of AQoSSA over
MIN-MIN (QoS)

% improvement
of AQoSSA over
MAX-MIN (QoS)

Random job arrival and random
job length (Benchmarking)

92.8 93.8 98.6 5.8 4.8

Random job arrival and big gap
job length (Benchmarking)

91.6 93.0 96.8 5.2 3.8

Random job arrival and job length
in Poisson Distribution
(Benchmarking)

92.4 94.4 98.0 5.6 3.6

Table 5.8 shows the total profit (unit) for different experimental cases using the different

algorithms. The total profit is computed using the equation 5.7. It is observed that from

Table 5.8, the total penalty of the MIN-MIN QoS scheduling algorithm is the highest when

compared to MAX-MIN QoS scheduling algorithm and AQoSSA. AQOSSA achieves the

highest revenue and lowest penalty when compared to MIN-MIN QoS and MAX-MIN QoS

129

scheduling algorithm because the total number of job completed within the deadline is the

highest and the total number of job violated the SLA is the lowest.

Table 5.8 Total profit (unit) for different algorithms

MIN-MIN QoS MAX-MIN QoS AQoSSA

Total
Revenue

Total
Penalty

Total
Profit

Total
Revenue

Total
Penalty

Total
Profit

Total
Revenue

Total
Penalty

Total
Profit

Random job arrival
and random job length
(Benchmarking)

13511 1145 12366 15764 910 14854 17311 150 17161

Random job arrival
and big gap job length
(Benchmarking)

16775 1975 14800 20584 1890 18694 22175 390 21785

Random job arrival
and job length in
Poisson Distribution
(Benchmarking)

9858 1055 8803 11950 1055 10895 12204 135 12069

Figure 5.5 displays the results from Table 5.8 in a graphical form and Table 5.9 shows the

profit and the percentage of improvement for different experimental cases using the three

algorithms. The experimental results in Table 5.9 show that AQoSSA outperforms MIN-

MIN QoS and MAX-MIN QoS by a significant margin for different test cases in terms of

profitability. Compared to other approaches, AQoSSA makes between 10% - 47%

improvements as AQoSSA is able to maximize the number of jobs completed while

minimizing the number of occurrences of jobs that fail to adhere to the SLA. In other words,

AQoSSA maximizes the revenue gain and minimizes the total cost penalty. In summary,

AQoSSA is able to maximize the reliability and the total profit while meeting the end users

QoS requirements.

130

Figure 5.5: Total profit of different algorithms

Table 5.9 Total profit of different algorithms and percentage of improvement of

AQoSSA as compared to other algorithms

MIN-
MIN

(QoS)

MAX-
MIN

(QoS) AQoSSA

% improvement
of AQoSSA over
MIN-MIN (QoS)

% improvement
of AQoSSA over
MAX-MIN (QoS)

Random job arrival and random job
length (Benchmarking)

12366 14854 17161 38.8 15.5

Random job arrival and big gap job
length (Benchmarking)

14800 18694 21785 47.2 16.5

Random job arrival and job length in
Poisson Distribution (Benchmarking)

8803 10895 12069 37.1 10.8

5.6 Chapter Summary

This chapter presented the solution that guarantees end users QoS requirements and

provides cost management for service providers in Grid and Cloud environment. AQoSSA

is proposed as the enhancement of ASA to support users QoS requirements. In AQoSSA,

8000

10000

12000

14000

16000

18000

20000

22000

24000

Random job arrival and
random job length

(Benchmarking)

Random job arrival and big
gap job length

(Benchmarking)

Random job arrival and job
length in Poisson Distribution

(Benchmarking)

MIN-MIN (QoS)

MAX-MIN (QoS)

AQoSSA

P
ro

fi
t

(u
n

it
)

131

the resources are divided into groups using k-mean and then the revenue obtained from

leasing the resources is computed from the mean CPU benchmark for each group. The

tasks are sorted according to the CoS and the adaptive mechanism is applied to the

scheduling decision. AQoSSA minimizes the total number of jobs that violate the SLA by

using a rescheduling mechanism.

When AQoSSA is compared to scheduling algorithms that utilizes MIN-MIN QoS and

MAX-MIN QoS, there is a 3% - 6% improvement in reliability. In terms of overall

profitability, the implementation of AQoSSA yielded a significant improvement of 10% -

47% over the other two approaches.

In summary, AQoSSA has significantly outperformed MIN-MIN QoS and MAX-MIN QoS

algorithms in reliability and profitability while guaranteeing the end users QoS

requirements.

132

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS

This chapter summarizes this thesis and provides suggestions for future research. The first

section details the summary of this thesis contribution and discusses on some of the related

technical matters. This is followed by a discussion on future work.

This thesis began with the investigation of the underlying concepts, characteristics, system

architectures and problems in Grid and Cloud Computing. Next, the Web Services and

Service Oriented Architecture (SOA) are discussed. Subsequently, the job scheduling

process and the existing job scheduling algorithms for Grid and Cloud Computing are

explored.

Following the studies, a Hybrid Scheduling Algorithm (HSA) with automatic deployment

mechanism is proposed to maximize resources utilization and minimize the makespan in

the Grid and Cloud environment. Next, the Adaptive Scheduling Algorithm (ASA) with

benchmarking is proposed. ASA enhances HSA through the use of benchmarking as well

as the use of an adaptive mechanism. ASA is able to provide a more dynamic scheduling

decision making process as compared to HSA. Finally, the Adaptive QoS Scheduling

Algorithm (AQoSSA) with rescheduling mechanism is proposed to enhance the ASA to

meet users QoS requirements. AQoSSA is able to maximize reliability and profit while

guaranteeing the users QoS requirements.

In order to evaluate the proposed algorithms and mechanisms, a Grid and Cloud testbed is

developed. The experimental results show that the proposed algorithms maximize resources

133

utilization and minimize makespan in Grid and Cloud environment. Furthermore, the

proposed AQoSSA also maximizes reliability and profit while guaranteeing the users QoS

requirements.

6.1 Thesis Contributions

In this thesis, the following three novel algorithms have been proposed and developed:

 Hybrid Scheduling Algorithm (HSA) with automatic deployment mechanism.

 Adaptive Scheduling Algorithm (ASA) with benchmarking.

 Adaptive Quality of Service Scheduling Algorithm (AQoSSA) with rescheduling

mechanism.

All the proposed algorithms and mechanisms are evaluated via the Grid and Cloud testbed

using different job length and job arrival distributions. In general, the experimental results

show that these algorithms and mechanisms made significant improvements in arriving at

the job scheduling decisions.

6.1.1 HSA with Automatic Deployment

The proposed HSA is running on a hierarchical structure where the system consists of one

centralize meta-scheduler and multiple distributed local schedulers. The dynamic

scheduling is used at the centralized meta-scheduler to support on-line mode while the

static scheduling is implemented at multiple distributed local schedulers for off-line mode.

In addition, a backup meta-scheduler is implemented to overcome the potential of a single

failure in a centralized meta-scheduler. HSA implements the automatic deployment

mechanism to automate the process of services deployment to the resources. HSA uses a

134

fix threshold value, z, to make scheduling decision either to dispatch task to primary or

secondary resources. Experimental results show that the HSA and automatic deployment

mechanism minimize the makespan by 1% – 11% as compared to MIN-MIN and MAX-

MIN scheduling algorithms. In summary, HSA is able to maximize resources utilization

and minimizes makespan in Grid and Cloud environment.

6.1.2 ASA with Benchmarking

The HSA is further improved by incorporating benchmarking and adaptive mechanism.

ASA, the enhancement of HSA uses a combination of resource benchmark and application

benchmark to estimate the job length. Besides, ASA computes the mean value and uses a

dynamic threshold value, z, at each interval to make scheduling decision to dispatch task

either to primary or secondary resources. ASA is able to adapt to different experimental

settings since the value z is dynamic. The experimental results show that ASA with

benchmarking minimize the makespan by 5% – 17% as compared to MIN-MIN and MAX-

MIN scheduling algorithms with benchmarking. ASA enhances the HSA by 1% - 4% in the

area of minimizing the makespan. In summary, ASA is able to maximize resources

utilization and minimizes makespan in Grid and Cloud environment.

6.1.3 AQoSSA with Rescheduling

AQoSSA is the enhancement of the ASA to maximize reliability and profit while satisfying

the users QoS requirements. AQoSSA verifies the users QoS requirements such as Class of

Service (CoS) and deadline specified in the SLA and runs the rescheduling mechanism

when necessary. Experimental results show that AQoSSA maximizes the reliability by 3%

- 6% and increases the total profit margin by 10% - 47% over the commonly use MIN-MIN

135

QoS and MAX-MIN QoS scheduling algorithms. In summary, the use of AQoSSA made

significant contribution to the performance improvements with its ability to maximize

reliability and profit while guaranteeing the users QoS requirements.

6.1.4 Grid and Cloud Testbed

A Grid and Cloud testbed is developed to evaluate the proposed algorithms and

mechanisms. The testbed implements all the modules of the proposed algorithms. The

components of the testbed include the User Interface (UI), meta-scheduler, local-scheduler,

resource manager, benchmarker, deployer and the SLA negotiator.

The UI supports batch job submission at each interval. The meta-scheduler schedules jobs

to multiple sites while the local scheduler schedules the tasks at each site according to each

locally available individual resource. A resource manager provides the resource

information for each site.

The deployer is developed to provide the automatic deployment of Web Services to the

resources without pre-installed Web server. The automatic deployment mechanism is

implemented on .NET and J2EE environment. The benchmarker component estimates a job

length and provides the micro-benchmark that used to profile resources capabilities and the

application-specific benchmark that measures the performance of resources when executing

different types of jobs. Both the micro-benchmark and application benchmark provide the

estimation of job length.

136

The SLA negotiator is developed to negotiate the SLA agreement between service

providers and end users. The SLA negotiator ensures that an agreement is reached between

service providers and end users before a job is accepted.

Once the Grid and Cloud testbed has been developed, the proposed algorithms are

evaluated using different job length and job arrival distributions. Various configurations are

used in the setup and the testing results can be stored for future analysis.

6.1.5 Summary

In summary, this thesis has contributed in several technological areas. Firstly, the job

scheduling process in Grid and Cloud Computing are explored. The various types of

existing scheduling algorithms are studied and the problems related to the job scheduling

process are identified.

Secondly, three novel job scheduling algorithms in Grid and Cloud environment have been

proposed and implemented. These algorithms are capable of maximizing the resources

utilization and minimize makespan in the Grid and Cloud environment. In addition, these

algorithms are shown to be able to maximize reliability and profit while guaranteeing the

users QoS requirements.

Finally, a Grid and Cloud testbed is implemented. The Grid and Cloud testbed is used as

the simulation platform to evaluate the performance of the proposed algorithms. Different

setup configurations are used and the results are then thoroughly analysed. The

experimental results show that the HSA and ASA outperform MIN-MIN and MAX-MIN

137

by between 1% - 10% and 5% - 17% respectively in terms of makespan. AQoSSA

outperforms MIN-MIN QoS and MAX-MIN QoS by between 3% - 6% in terms of

reliability and 10% - 47% in terms of profit while guaranteeing the QoS requirements.

6.2 Suggestions for Future Work

The growing interests in Grid and Cloud Computing have led to many new approaches to

manage the architecture. There are many issues related to this new computing environment

which open up new areas for further research. One of the major issues is the energy aware

resource allocation.

As the number of computing resources increase every year, the energy consumption used

for computation is climbing. This increasing energy consumption has contributed to the

pace of global warming. With the environmental concerns, Green Computing is gaining

much popularity and has attracted many research studies. Green computing refers to

environmentally sustainable computing which studies and practices virtually all computing

efficiently and effectively with little or no impact on the environment (Lo and Qian, 2010).

Energy aware resource allocation is one of the mechanisms that have the ability to reduce

energy consumption in computing resources. Usually, in existing data centres, there are

many servers used for different services but the resources are operating at low utilization

levels. The under-utilized hardware continues to contribute to the energy consumption.

With the rising cost of energy, the energy aware resource allocation mechanism can be

proposed to provide power savings in the Grid and Cloud environment.

138

In summary, Grid and Cloud Computing have emerged as the new paradigm for the

provisioning of computing resources. The growing interests in these technologies will

create a lot of research opportunities and the benefits of Grid and Cloud will become more

apparent.

