A PROXY-ASSISTED ROUTING FOR EFFICIENT DATA TRANSMISSION IN MOBILE AD HOC NETWORKS

MAY ZIN OO

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY UNIVERSITY OF MALAYA KUALA LUMPUR

JANUARY 2012

UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: May Zin Oo

(I.C/Passport No: OM-143806)

Registration/Matric No: WHA070002

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): A Proxy-Assisted Routing for Efficient Data Transmission in Mobile Ad Hoc Networks

Field of Study: Mobile Ad Hoc Networks

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Date

Subscribed and solemnly declared before,

Witness's Signature

Name: Dr. Mazliza Othman Designation:

ABSTRACT

A new protocol, named Proxy-Assisted Routing for efficient data Transmission (PART), that uses a cross layer approach is proposed to route packets to a destination efficiently in Mobile Ad Hoc Networks (MANETs).

PART limits the number of control packets with the aid of proxy nodes, adapts to route failures and avoids congestion quickly by broadcasting routing information within a predefined zone. It utilizes the address information of the Medium Access Control (MAC) layer to transmit unicast control messages and limit the broadcast zone. Only mobile nodes that are in this zone are allowed to broadcast routing information to reduce the control overhead and packet collision.

A middle node is selected to perform proxy duty for a TCP connection. The responsibility of a proxy node is to reply to a new route request from a source node and to request a new route to the destination when there is a link break. In order to reduce the extra routing overhead of assigning a proxy node, a unicast route reply packet is modified by adding a proxy address and a proxy hop count field in the packet header.

A destination node determines whether a proxy node is needed based on the hop count. If the hop count to the source node is longer than a pre-defined value, it initiates a procedure to appoint a proxy node. Otherwise, a proxy node is not appointed. Whenever a route failure occurs between a source and proxy node, the source node takes the responsibility of searching for a new route to the proxy node. The proxy node also does the same thing, as long as the proxy node is available.

In order to ensure the reliability of TCP, a proxy node acknowledgement (PACK) is introduced to check the correctness of data packets and informing the source node of missing packets by sending an acknowledgement to the source node in advance. By doing so, the source node does not have to wait for an end-to-end acknowledgement from a destination, resulting in increased throughput and decreased delay.

For the purpose of performance analysis, an analytical framework is proposed to compare the robustness and efficiency of PART to other routing protocols. The comparisons were done across the mobility models that are intended for MANETs. The simulation results show that PART improves the overall network performance in terms of throughput, control overhead, delay, packet losses and packet collisions at the MAC layer. Among the contributions of this research are to limit the broadcast region by using a proxy node, to repair broken routes between source-proxy and proxy-destination nodes, and the use of local acknowledgement from a proxy to a source to ensure the reliability and correctness of TCP packets.

ABSTRAK

Satu protokol baru, bernama Proxy-Assisted Routing for efficient data Transmission (PART), yang menggunakan pendekatan lapisan silang dicadangkan untuk menghalakan bingkisan ke destinasi dengan cekap dalam Mobile Ad Hoc Network (MANET).

PART mengehadkan bilangan bingkisan kawalan dengan bantuan nod proksi, menyuai terhadap kegagalan hala dan mengelakkan kesesakan dengan cepat dengan menyiarkan maklumat penghalaan dalam lingkungan zon pra-takrif. Ia menggunakan maklumat alamat di lapisan Medium Access Control (MAC) untuk menghantar utusan kawalan secara unikas dan mengehadkan zon penyiaran. Hanya nod kembara dalam zon ini dibenarkan untuk menyiarkan maklumat penghalaan untuk mengurangkan overhed kawalan dan pelanggaran bingkisan.

Satu nod tengah dipilih untuk menjalankan tugas proksi bagi satu sambungan TCP. Tanggungjawab nod proksi adalah untuk menjawab permintaan penghalaan baru dari nod sumber dan meminta hala baru ke destinasi bila terdapat hala yang terputus. Untuk mengurangkan overhed penghalaan semasa melantik nod proksi, bingkisan jawapan hala unikas diubahsuai dengan menambah medan alamat proksi dan medan bilangan lompatan proksi dalam kepala bingkisan.

Nod destinasi menentukan sama ada nod proksi diperlukan berdasarkan bilangan lompatan. Jika bilangan lompatan ke nod sumber lebih panjang daripada nilai pratakrif, ia memulakan prosedur untuk melantik nod proksi. Jika tidak, nod proksi tidak dilantik. Apabila kegagalan hala berlaku di antara nod sumber dan nod proksi, nod sumber memikul tanggungjawab mencari hala baru ke nod proksi. Nod proksi melakukan hal yang sama selagi mana nod proksi masih sedia ada.

Untuk memastikan kebolehpercayaan TCP, teknik perakuan nod proksi (PACK) diperkenalkan untuk menyemak ketepatan bingkisan data dan memaklumkan nod sumber mengenai sebarang bingkisan yang hilang dengan menghantar perakuan ke nod sumber lebih awal. Dengan ini, nod sumber tidak perlu menunggu perakuan hujung-ke-hujung dari destinasi.

Untuk tujuan analisis prestasi, suatu rangkakerja analitikal dicadangkan untuk membandingkan keteguhan dan kecekapan PART dengan protokol-protokol penghalaan lain. Perbandingan dilakukan merentas model mobiliti MANET. Keputusan simulasi menunjukkan PART meningkatkan prestasi keseluruhan rangkaian daripada sudut daya pemprosesan, overhed kawalan, lengah, kehilangan bingkisan dan pelanggaran bingkisan di lapisan MAC. Antara sumbangan penyelidikan ini adalah mengehadkan kawasan penyiaran dengan menggunakan nod proksi, membaiki hala rosak antara nod sumber-proksi dan nod proksi-destinasi, dan pengunaan perakuan setempat dari proksi ke sumber untuk memastikan kebolehpercayaan dan ketepatan bingkisan TCP.

DEDICATION

To my father and mother:

U Hla Myint + Daw Khin Thein Oo

The two admired persons who guide me throughout my life,

for their endless love.

To my high school teacher:

Sayar U Win Than

Who has supported and encouraged me.

To my little brother:

Thiha Soe Lin

Who loves and cares about me.

ACKNOWLEDGEMENTS

First and Foremost, my deepest gratitude goes to my supervisor, Dr. Mazliza Othman, for all her guidance without which nothing of my work would have been completed. Her encouragement has greatly inspired me to complete this work in the required time frame. It is a great privilege for me to have been associated with her and a great pleasure for me to be supervised. Her support offered to me has been invaluable not only for the completion of this thesis but for my happy life as her research assistant.

Thanks to the Ministry of Science and Technology, Myanmar for giving me a chance to continue my studies at a doctoral level in Malaysia. As well, special thanks to the people from the Embassy of Malaysia in Myanmar, especially Dr. Yan Myo Thein (Resource person and Translator) and Mr. Syahmi (Former Second Secretary) for guiding me to apply for the Scholarship and assisting me all I needed. Also my very special thanks to Mrs. Wong Lee Lan (Human Resource Division, University of Malaya) who helped me to receive the offer letter from the University of Malaya.

This thesis would not have been possible without the support of MTCP (Malaysian Technical Co-operation Program) scholarship by the Malaysian Ministry of Higher Education. Much appreciation to the PPP (Postgraduate Research Grant) and UMRG (University of Malaya Research Grant), which have provided me a financial assistance for conferences, publication fees, necessary equipments and consumables.

I am highly indebted to Assoc. Prof. Dr. Diljit Singh for his kind assistance given in many ways. I am pleased to thank to former and current department heads of Computer System and IT for their generous support. I would like to extend my gratitude to the staffs of the faculty office for their assistance.

The grateful acknowledgements should be mentioned here to Prof. Dr. Jong Sou Park (Korean Aerospace University, Korea) and U Aung Zay Ya who gave me a valuable advice to write a research proposal before I came to Malaysia. Acknowledgements are also extended to Prof. Kyaw Zwa Soe and Prof Dr. Zaw Min Naing (University of Computer Studies, Yangon) for their help and encouragements.

I would like to thank to my special friend, Dr. Cho Cho Wai (Talyor's University), who has guided me to the right way throughout my PhD life. My special friend, Ma Thandar, has helped me, since I stepped into the Malaysia until now. Their love and kindness are very rich vitamin for me. As well, my truly thanks to Dr. Khine (UM Hospital), Aunty Nyo, U Nyan Tun and Ma Myo for their carefulness and love. Also, very much special thanks to Dr. Tin Win (Monash University) for guiding me to write a journal article and cooking very special traditional foods.

A very big thank must go to my classmates since childhood from Myanmar, Malaysia and Singapore for showing me a magnificent meaning of friendships at every crossroad. Their warmth and empathy will never be forgotten.

Last, but not least, I cannot fully express my gratitude to my big brother, Mr. Ko Ko Oo, for everything that he has given me. His unconditional support, encouragement, kindness and love give me the strength to finish this work. Also, I would like to express my deep appreciation to Mr. Kyaw Thu Soe, for caring me as a sister. For those whom I may have forgotten to mention, I would like to say "THANK YOU".

TABLE OF CONTENTS

DECLARATION	ii
ABSTRACT	iii
ABSTRAK	iv
DEDICATION	v
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xii
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS AND ACRONYM	xvi

CHAPTER 1: INTRODUCTION

1.1 Introduction	1
1.2 Background	1
1.3 Problem Statement	4
1.4 Objectives of Study	5
1.5 Hypotheses	6
1.6 Contributions of Study	6
1.7 Overview of Chapters	7

CHAPTER 2: LITERATURE REVIEW FOR ROUTING LAYER PROTOCOLS

2.1 Introduction	9
2.2 MANET Architecture of 5-layer Reference Model	9
2.2.1 Layer Architecture	9
2.2.1.1 Application Layer Issues	10
2.2.1.2 Transport Layer Issues	10
2.2.1.3 Network Layer Issues	11
2.2.1.4 MAC Layer Issues	11
2.2.1.5 Physical Layer Issues	13
2.2.2 Cross-layer Architecture	13
2.3 Overview of Basic Routing Protocols	14
2.3.1 Conventional Routing Protocols	15
2.3.2 MANET Routing Protocols	16
2.3.2.1 Proactive Routing Protocols	16
2.3.2.2 Reactive Routing Protocols	17

2.3.2.3 Hybrid Routing Protocols	19
2.4 AODV Routing Protocol	20
2.4.1 AODV Basic	20
2.4.2 Destination Sequence Number	22
2.4.3 Message Formats	23
2.4.4 Routing Table	25
2.4.5 Route Discovery Procedure	26
2.4.6 Route Maintenance	28
2.5 Layer Approach for the Optimization of AODV	29
2.5.1 Self-selecting Route Discovery Procedure	30
2.5.2 Location-assisted Route Discovery Procedure	31
2.5.3 Probabilistic-based Route Discovery Procedure	32
2.5.4 Hop Count based Route Discovery Procedure	33
2.5.5 Node Selection based Route Discovery Procedure	34
2.5.6 Combining Proactive and Reactive Route Discovery Procedure	34
2.5.7 Multipath Routing Approach	36
2.5.8 Multicast Routing Approach	39
2.5.9 Proxy-assistance Approach	39
2.6 Cross-layer Approach for the Optimization of AODV	41
2.6.1 SHAODV	42
2.6.2 AODV-2T	42
2.6.3 AODV-ERRA & ERU	43
2.6.4 AODV-PLRR	43
2.7 Chapter Summary	44

CHAPTER 3: LITERATURE REVIEW FOR TRANSPORT LAYER PROTOCOLS

3.1 Introduction	46
3.2 Enhancements of Traditional TCP	48
3.2.1 TCP-Reno	48
3.2.2 TCP-New Reno	48
3.2.3 TCP-Vegas	49
3.2.4 TCP-Westwood	50
3.3 Layer Approach for Enhancements of TCP	51
3.3.1 Fixed RTO	52
3.3.2 TCP-DOOR	52
3.3.3 COPAS	53
3.3.4 Link RED	53
3.3.5 Neighborhood RED	53
3.4 Cross-layer Approach for Enhancements of TCP	54

3.4.1 TCP-F	54
3.4.2 TCP-ELFN	55
3.4.3 Ad Hoc TCP (ATCP)	55
3.4.4 TCP-Bus	57
3.4.5 Split TCP	57
3.4.6 Hop-by-hop Transport Protocol	58
3.5 Chapter Summary	59

CHAPTER 4: RESEARCH METHODOLOGY: THE CROSS LAYER ENHANCEMENT BETWEEN THE ROUTING AND MAC LAYERS

4.1 Introduction	61
4.2 Components of PART Protocol	61
4.2.1 Packet Types	61
4.2.2 Routing Table	64
4.3 Overview of PART Protocol	65
4.4 Route Discovery Procedure and Functionalities of Nodes	66
4.4.1 Cross-layer Information for Unicast P-INFORM	71
4.5 Limitation of the Broadcast Zone	71
4.6 Repairing Routes at the Proxy Node	73
4.7 Detection of Proxy Failure Conditions	75
4.8 The Implementation of PART Protocol	76
4.8.1 Introduction to Network Simulator (NS)	77
4.8.2 Components of NS	78
4.8.3 Basic Protocol Implementation in NS	79
4.8.4 Necessary Changes	81
4.8.4.1 Packet Type Declaration	81
4.8.4.2 Tcl Library	82
4.8.4.3 Tracing Support	82
4.8.4.4. Priority Queue	85
4.8.4.5 Makefile	85
4.8.5 Packet Header Declaration	86
4.8.6 Routing Table Implementation	87
4.8.7 PART Agent	89
4.8.7.1 Tcl Hooks	90
4.8.7.2 Cross-layer Communication	90
4.9 Statistical Analysis	91
4.10 Experiments on the Effects of Node Movements	92
4.10.1 Source Node Movement	94
4.10.2 Proxy Node Movement	97

4.10.3 Destination Node Movement	101
4.10.4 Random Movement of Nodes	105
4.11 Performance Evaluations in the Large-scaled Networks	106
4.11.1 Packet Loss Rate Measurement	108
4.11.2 Average Delay Measurement	110
4.11.3 Normalized Routing Load Measurement	112
4.11.4 Throughput Measurement	115
4.12 Chapter Summary	117

CHAPTER 5: RESEARCH METHODOLOGY: THE CROSS LAYER ENHANCEMENT BETWEEN THE TRANSPORT, ROUTING AND MAC LAYERS

5.1 Introduction	118
5.2 Local Acknowledgement Scheme of a Proxy Node	119
5.2.1 TCP Packet Header	119
5.2.2 Proxy Selection	120
5.2.3 Sequence Number Checking at Proxy Node	120
5.2.4 Cross-layer Information for Unicast PACK	123
5.2.5 One-hop Broadcast	124
5.2.6 Monitoring ACK Packet from the Destination	125
5.2.7 Functions of TCP Data Source	125
5.3 Implementation of PACK over TCP	127
5.3.1 Local Acknowledgement Mechanism	128
5.4 Experimental Analysis	132
5.4.1 Chain Topology in Static Network	132
5.4.1.1 Throughput Measurements across Variants of TCP	133
5.4.1.2 Average Delay Measurements across Variants of TCP	139
5.4.1.3 Packet Delivery Fraction Measurements across Variants of TCP	140
5.4.2 Grid Topology in Static Network	142
5.4.2.1 Throughput Measurements across Variants of TCP	143
5.4.2.2 Average Delay Measurements across Variants of TCP	146
5.4.2.3 Packet Loss Rate Measurements across Variants of TCP	146
5.4.3 Random Topology in Mobile Network	147
5.4.3.1 Throughput Measurements across Variants of TCP	148
5.4.3.2 Average Delay Measurements across Variants of TCP	154
5.4.3.3 Routing Overhead Measurements across Variants of TCP	154
5.5 Chapter Summary	156

CHAPTER 6: ANALYTICAL STUDIES OF THE INTERACTION BETWEEN MOBILITY MODELS AND ROUTING PROTOCOLS

6.1 Introduction	157
6.2 Overview of Mobility Models	158
6.2.1 Random Waypoint Mobility Model (RWP)	158
6.2.2 Manhattan Grid Mobility Model (MG)	159
6.2.2 Gauss-Markov Mobility Model	160
6.2.3 Reference Point Group Mobility Model (RPGM)	160
6.3 Generation of Mobility Models with NS-2	161
6.4 Analytical Framework for Network Performance Tests	162
6.5 Comparison of Mobility Models' Properties	163
6.6 Interaction between Routing Protocols and Mobility Models	168
6.6.1 Performance Evaluations of Routing Protocols in RWP Model	169
6.6.2 Performance Evaluations of Routing Protocols in MG Model	173
6.6.3 Performance Evaluations of Routing Protocols in RPGM Model	177
6.7 Chapter Summary	179

CHAPTER 7: CONCLUSION AND FUTURE DIRECTION

7.1 Conclusion	180
7.2 Significance of Contribution	182
7.3 Future Direction	183

BIBLIOGRAPHY

184

LIST OF FIGURES

Figure 2.1	Layer architecture for MANETs	10
Figure 2.2	Illustration of MAC layer problems	12
Figure 2.3	Cross layer architecture for MANETs	14
Figure 2.4	Count-to-infinity problem of traditional routing protocols	21
Figure 2.5	AODV message formats	24
Figure 2.6	Route discovery procedure of AODV	26
Figure 2.7	Route maintenance procedure of AODV	29
Figure 2.8	Optimization of AODV with the layer approach	30
Figure 2.9	Optimization of AODV with the cross layer approach	42
Figure 3.1	Congestion control algorithm of TCP	47
Figure 3.2	Congestion control algorithm of TCP-Reno	48
Figure 3.3	Congestion control algorithm of TCP-New Reno	49
Figure 3.4	Layer TCP enhancements for MANETs	51
Figure 3.5	Cross layer TCP enhancements for MANETs	54
Figure 3.6	State transition diagram for ATCP at the sender	56
Figure 3.7	TCP-Split	58
D ¹ 4.1		(2)
Figure 4.1	Formats of control packets for PAR I	62
Figure 4.2	Routing table of PARI	64
Figure 4.3 Γ^{2}	RREQ-NOTing packet broadcasting and routing table updating	68 70
Figure 4.4 Γ	Proxy assignation with reply packet (RREP-NOflag)	/0
Figure 4.5	Limitation of broadcasting zone with hop count consideration	72
Figure 4.6	Error handling at proxy node	74
Figure 4.7	User's view and basic architecture of network simulator	78
Figure 4.8	Network components of NS	78
Figure 4.9	A basic mobile node structure of NS	80
Figure 4.10	Possibilities of proxy nodes for a given topology	93
Figure 4.11	Source node movement	94
Figure 4.12	Throughput measurement for source node movement	95
Figure 4.13	Movements of proxy nodes	98
Figure 4.14	Throughput measurement for movements of proxy nodes	98
Figure 4.15	Destination node movement	101
Figure 4.16	Throughput measurement for destination node movement	102
Figure 4.17	Random movements of nodes	105
Figure 4.18	Throughput measurement for random movements of nodes	106
Figure 4.19	Packet loss rate measurement in random topology	108
Figure 4.20	Average delay measurement in random topology	110
Figure 4.21	NRL measurement in random topology	112

Figure 4.22	Throughput me	asurement in random topology	115
0		······································	

Figure 5.1	TCP header format	120
Figure 5.2	Sequence number checking algorithm	122
Figure 5.3	Control packets for updating missing sequence numbers	124
Figure 5.4	TCP packet transmission and acknowledgement mechanisms	127
Figure 5.5	Analysis of hop distance changes	132
Figure 5.6	Throughput measurement across TCP-Tahoe	133
Figure 5.7	Throughput measurement across TCP-New Reno	134
Figure 5.8	Throughput measurement across TCP-Vegas	135
Figure 5.9	Throughput measurement across TCP-Westwood	136
Figure 5.10	Average delay measurement across TCP variants	139
Figure 5.11	PDF measurement across TCP variants	140
Figure 5.12	5×5 grid topology	142
Figure 5.13	7×7 grid topology	142
Figure 5.14	Throughput measurement across TCP-Tahoe	143
Figure 5.15	Throughput measurement across TCP-New Reno	143
Figure 5.16	Throughput measurement across TCP-Vegas	144
Figure 5.17	Throughput measurement across TCP-Westwood	144
Figure 5.18	Average delay measurement across TCP variants	146
Figure 5.19	Packet loss rate measurement across TCP variants	147
Figure 5.20	Throughput measurement across TCP-Tahoe	148
Figure 5.21	Throughput measurement across TCP-New Reno	150
Figure 5.22	Throughput measurement across TCP-Vegas	151
Figure 5.23	Throughput measurement across TCP-Westwood	152
Figure 5.24	Average delay measurement across TCP variants	154
Figure 5.25	Routing overhead measurement across TCP variants	155
Figure 6.1	Movement patterns of RWP model	159
Figure 6.2	Movement patterns of MG model	160
Figure 6.3	Movement patterns of RPGM model	161
Figure 6.4	Analytical framework for overall network performance	163
Figure 6.5	Average delay measurement in RWP model	170
Figure 6.6	NRL measurement in RWP model	170
Figure 6.7	Packet loss rate measurement in RWP model	171
Figure 6.8	Throughput measurement in RWP model	172
Figure 6.9	Average delay measurement in MG model	174
Figure 6.10	NRL measurement in MG model	174
Figure 6.11	Throughput measurement in MG model	175
Figure 6.12	Throughput measurement in RPGM model	177
Figure 6.13	Average delay measurement in RPGM model	177

LIST OF TABLES

Table 4.1	New trace format explanation	84
Table 4.2	Performance measurement for source node movement	95
Table 4.3	Throughput measurement across source node movement	95
Table 4.4	Average end-to-end delay measurement across	
	source node movement	96
Table 4.5	Dropped packets measurement across source node movement	96
Table 4.6	Packet losses measurement across source node movement	96
Table 4.7	PDF measurement across source node movement	97
Table 4.8	NRL measurement across source node movement	97
Table 4.9	Performance measurement for proxy node movement	99
Table 4.10	Throughput measurement across proxy node movement	99
Table 4.11	Average end-to-end delay measurement across	
	proxy node movement	99
Table 4.12	Dropped packets measurement across proxy node movement	100
Table 4.13	Packet losses measurement across proxy node movement	100
Table 4.14	PDF measurement across proxy node movement	100
Table 4.15	NRL measurement across proxy node movement	101
Table 4.16	Performance measurement for destination node movement	102
Table 4.17	Throughput measurement across destination node movement	103
Table 4.18	Average end-to-end delay measurement across	
	destination node movement	103
Table 4.19	Dropped packets measurement across destination node movement	103
Table 4.20	Packet losses measurement across destination node movement	104
Table 4.21	PDF measurement across destination node movement	104
Table 4.22	NRL measurement across destination node movement	104
Table 4.23	Throughput measurement across random node movement	106
Table 4.24	Parameters for large-scaled networks	107
Table 4.25	Packet losses measurement in large-scaled networks	109
Table 4.26	Average end-to-end delay measurement in large-scaled networks	111
Table 4.27	NRL measurement in large-scaled networks	114
Table 4.28	Throughput measurement in large-scaled networks	116
Table 5.1	Throughput measurement of TCP-Tahoe across a chain topology	
	in a static network	137
Table 5.2	Throughput measurement of TCP-New Reno across a chain topolo	gy
	in a static network	137
Table 5.3	Throughput measurement of TCP-Vegas across a chain topology	
	in a static network	138

Table 5.4	Throughput measurement of TCP-Westwood across a chain topology	
	in a static network	138
Table 5.5	PDF measurement of TCP Variants across a chain topology	
	in a static network	141
Table 5.6	Throughput measurement of TCP Variants across a grid topology	
	in a static network	145
Table 5.7	Number of collisions at the MAC layer	149
Table 5.8	Number of route breaks at the MAC layer	149
Table 5.9	Number of collisions of TCP Variants in a mobile network	150
Table 5.10	Number of route breaks of TCP Variants in a mobile network	151
Table 5.11	Throughput measurement of TCP Variants across	
	a random topology in a mobile network	153
Table 6.1	Performance comparison of the mobility models	167
Table 6.2	Simulation parameters for the performance tests	169
Table 6.3	Performance comparisons of routing protocols in RWP model	173
Table 6.4	Performance comparisons of routing protocols in MG model	176
Table 6.5	Performance comparisons of routing protocols in RPGM model	178

LIST OF SYMBOLS AND ABBREVIATIONS

AAODV	Adaptive AODV
ABL	AODV Adaptive Backup with Local Repair Route
ABR	Associatively Based Routing
ABR	Adaptive Backup Routing
ACK	Acknowledgement
ADV	Adaptive Proactive
AGAR	Adaptive Gossip-based Ad Hoc Routing
AIR	Applicative Indirect Routing
AODV	Ad-hoc On-demand Distance Vector
AODV-2T	AODV-Two Level Thresholds
AODV-BR	AODV Backup Routing
AOMDV	Ad-hoc On-demand Multipath Distance Vector
ATCP	Ad hoc TCP
ATM	Asynchronous Transfer Mode
BRRP	Backup Route Reply
BUS	Buffering Capacity and Sequence Information
CBR	Constant Bit Rate
CBK	Call Back
CMU	Carnegie Mellon University
COPAS	Contention-based Path Selection
CWND	Congestion Window
CWILD	
DCF	Distributed Coordination Function
DFRP	Direct Forwarding Routing Protocol
DOA	DSR over AODV
DOOR	Detection of Out-of-Order and Response
DSDV	Destination Sequence Distance Vector
DSR	Dynamic Source Routing
ECN	Explicit Congestion Notification
ELFN	Explicit Link Failure Notification
ERDN	Explicit Route Disconnection Notification
ERP	Early Route Update
ERRA	Early Route Rearrangement
ERSN	Explicit Route Successful Notification
	1

FPR	Fixed Probabilistic Route discovery
FTP	File Transfer Protocol
Geo-AODV	GPS-enhanced AODV
GPS	Global Positioning System
НС	Hop Count
HTTP	Hypertext Transfer Protocol
IETF	Internet Engineering Task Force
LACK	Local Acknowledgement
MAC	Media Access Control
MACT	Multicast Activation
MANET	Mobile Ad Hoc Network
MAODV	Multicast AODV
MG	Manhattan Grid
MHGR-P	Multihop Hello Guided Routing with Proactive
MHGR-R	Multihop Hello Guided Routing with Reactive
MHGR-U	Unified MHGR
MMS	Maximum Segment Size
MNH	Multiple Next Hop
MPR	Multipoint Relays
NRL	Normalized Routing Load
NS	Network Simulator
OAODV	Optimized Ad-hoc On-demand Distance Vector
OGPR	On-demand Geographic Path-based Routing
OHPACK	One Hop Broadcast PACK
OLSR	Optimized Link State Routing
OSI	Open Systems Interconnection
OTcl	Object-oriented Tool Command Language
PACK	Proxy Acknowledgement
PART	Proxy-Assisted Routing for Efficient Data Transmission
PDF	Packet Delivery Fraction
РНС	Proxy Hop Count
PLR	Packet Loss Rate
PLRR	Preemptive Local Route Repair

PN	Pivoting Node
PRDS	Priority Route Discovery Strategy
RED	Random Early Detection
RFN	Route Reestablishment Notification
RPGM	Reference Point Group Mobility Model
RREP	Route Reply
RREO	Route Request
RERR	Route Error
RT	Routing Table
RTE	Routing Table Entry
RTO	Retransmission Timeout
RTT	Round Trip time
RWP	Random Waypoint
SACK	Selective Acknowledgements
SHAODV	Self-Healing AODV
SHARP	Sharn Hybrid Routing Protocol
SMTP	Simple Mail Transfer Protocol
SNIT	Sequence number
SNR	Signal to Noise Ratio
SPC	Statistic Process Control
ТСР	Transmission Control Protocol
TCP-F	TCP-Feedback
THP	Three-hop Horizon Pruning
UDP	User Datagram Protocol
VINT	Virtual Internet Testbed
VoIP	Voice over IP
WWW	World Wide Web
ZRP	Zone-based Routing Protocol