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Chapter 1

INTRODUCTION

1.1 Introduction

There is an increasing need to exchange information easily without using the

conventional wired communication. For example, participants may need to exchange

contact information during a conference, students may want to download the

presentation slides during a lecture, people in a disaster recovery team may need to

retrieve and exchange information in order to manage the search and rescue

operations, and travelers may wish to exchange data about the weather, and departure

and arrival schedules in an airport. In such situations, a mobile ad hoc network

(MANET) provides a means to set up a mode of communication easily and quickly.

In a MANET, the mobile nodes may continue to move while information exchange is

taking place, therefore, the nodes must adapt to the continuous movement. Allowing

mobile nodes to dynamically establish their own network on the fly without requiring

any infrastructure-based communication, and supporting quick adaptation and ease of

configuration involves a certain amount of overhead.

1.2 Background

Mobile ad hoc networks have been popular because they are very easy to implement

without requiring base stations. The network allows nodes to seamlessly communicate

in an area with no pre-existing infrastructure. The technology to support the formation

of small networks already exists.

The mobility of nodes and the wireless medium have characteristics that are different

from the traditional wired network. Therefore, the routing protocols for MANETs are
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based on different principles. The routing protocols for wired networks are designed

to support a large number of static nodes and packets are transmitted over reliable

links. On the contrary, the size of a MANET may be small with a few nodes, but the

network topology may be very dynamic and changes constantly, and packets are

transmitted over unreliable wireless links that are more prone to errors.

There are a number of challenges that must be overcome in order to deliver

information efficiently in a MANET over unreliable links between a dynamic set of

mobile nodes, such as limited wireless transmission range, limited bandwidth, battery

power constraint, mobility-induced route changes, packet losses due to wireless

transmission errors, and misinterpretation of congestion.

In a MANET, as the packet loss rate increases due to node mobility, the packet

delivery fraction (i.e. how many packets a destination node successfully receives) and

throughput decrease. Such packet losses and performance degradation occur

continuously due to the inefficiency of the wireless medium and the weakness of the

routing and transport protocols.

In MANETs, routing protocols perform differently depending on their core

mechanisms (Liu and Kaiser, 2003). Proactive protocols discover all possible routes

to the destination before the actual transmission. All nodes exchange route

information periodically and maintain complete up-to-date network information.

On the other end of the spectrum are reactive protocols that discover routes on-

demand, i.e. only when a route is needed to communicate. The nodes do not depend

on periodic route exchanges. A route rediscovery is triggered whenever the source

node receives a link failure signal.
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A hybrid approach combines the proactive and reactive mechanisms, e.g. maintaining

routing metrics to determine the best routes based on the distance vector and updating

route information when topology changes occur.

Proactive routing protocols are not as efficient as reactive routing protocols in a large-

scaled network because it carries all routing information together with data packets.

On the other hand, reactive routing protocols cannot efficiently handle route

rediscovery in a high mobility environment. Therefore, an efficient layer protocol

(modification of each layer protocol) and cross-layer protocol (modification of layer

to layer protocols) architectures (Jurdak, 2007) are required to optimize the

throughput, delay, overhead and energy consumption of the network.

Reactive routing protocols that discover routes on-demand increase the routing

overhead and delay. Because reactive routing protocols, e.g. Ad-hoc On-demand

Distance Vector Routing Protocol (AODV) (Perkins and Das, 2003), discover a single

path between a source and destination pair, it tends to increase route discovery

frequency and overhead whenever a route failure occurs.

On the other hand, a multipath routing protocol, e.g. Ad-hoc On-demand Multipath

Distance Vector (AOMDV) routing protocol (Marina and Das, 2006), that discovers

multiple alternative paths between a source and destination pair incurs not only an

increased processing overhead and memory usage, but also higher maintenance of

unusable routes. Maintaining multiple routes also consumes scarce resources, such as

bandwidth, memory usage and power consumption.

The transport layer protocols, such as Transmission Control Protocol (TCP)1 (Postel,

1981) and User Datagram Protocol (UDP)2 (Postel, 1980), do not perform well over

1 TCP is a transport layer protocol that can be utilized in file transfer applications.
2 UDP is a transport layer protocol that can be utilized in voice and audio data transmission.
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the wireless medium, especially TCP. TCP’s assumption that packet losses are caused

by a congestion tends to decrease performance because most packet losses in a

MANET are due to route failures. Moreover, TCP uses the end-to-end

acknowledgement (ACK) scheme to ensure the reliability of packets, which tends to

decrease throughput when the end-to-end ACK packet losses happen due to the error-

prone wireless medium. On the other hand, if an acknowledgement is sent by every

intermediate node, as done in hop-by-hop transport protocols (Scofield, 2007) and

(Heimlicher et al, 2007), it would consume the limited bandwidth and transmission

power.

Finding intermediate nodes to deliver packets to the destinations is a primary routing

problem in MANET. Each node in the network must have a routing table that

maintains routing information to determine the next hop to forward the packet to the

intended destination. The routing protocol updates information in the routing table of

each node regarding tenable network topology changes. If the routing table becomes

inconsistent, a routing loop may occur, and thus, packets may continuously be lost. It

becomes harder to maintain the correct routing table information in a large network

with hundreds or more nodes.

1.3 Problem Statement

The challenge is to design a routing protocol that performs efficiently in a dynamic

environment where nodes may be stationary or mobile. It is sometimes impossible to

know what environment the protocol will discover itself in because the environment

may change unexpectedly and rapidly. Therefore, the routing protocol must be able to

adapt to route changes quickly in order to provide continuous transmission.
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Most routing protocols use periodic control messages to detect the changing network

topologies, which tends to increase the routing overhead as the network topology

changes happen more often, thus, increasing the network load.

In this thesis, the proposed routing protocol inherits the basic route discovery

procedure of AODV to overcome the following problems:

 Increased routing overhead and end-to-end delay due to the inability to

distinguish between route breaks and collisions

 Degraded throughput due to increased node speed and density for the large-

scaled networks

 Invoking the route discovery procedure for every route error

It is insufficient for TCP to use only the end-to-end data reliability checking for fast

recovery and delivery of data packets. Therefore, we propose that the reliability of

TCP packets is ensured by developing a mechanism that addresses the following

problems:

 The inefficiency of end-to-end checking of TCP packets

 Increased processing overhead and delay due to hop-by-hop checking of TCP

packets

1.4 Objectives of Study

The objectives of this study are:

 To design and develop a proxy-assisted routing protocol for efficient data

transmission where the broadcasting zone is defined with the assistance of a

proxy node to reduce the routing overhead, delay and collision at the MAC

layer due to the request packet broadcast.
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 To monitor the TCP packets at the proxy node and inform the source node of

missing packets based on missing sequence numbers to ensure the reliability

and fast recovery of TCP.

1.5 Hypotheses

It is expected that the proposed protocol is able to:

 support reliable data transmission with the aid of a proxy node that takes the

responsibility for redirecting to a new route as soon as possible, resulting in

increased throughput and decreased delay.

 limit the broadcast zone by considering the distance to the proxy node,

resulting in reduced routing overhead.

 improve performance compared to other protocols when tested in different

scenarios, e.g. varying node topologies, node speed, node density and mobility

models.

 increase the reliability and throughput of TCP packets by allowing the proxy

node to send a local acknowledgement.

1.6 Contributions of Study

In MANETs, 70% of route errors are due to collisions at the MAC layer. Instead of

invoking route discovery procedure for all route errors, our proposed protocol only

invokes the route discovery procedure for route breaks that are due to node

movements by defining a broadcasting zone with the assistance of a proxy node,

resulting in lower routing overhead, especially in the large scaled networks.

In MANETs, it is very important to ensure the reliability of TCP packets. TCP uses

the end-to-end checking mechanism at every sender and receiver. As the path length
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is longer and the number of collisions occurs more often, this basic end-to-end

mechanism becomes insufficient.

In this study, a proxy node is responsible for monitoring the TCP sequence number.

When the proxy node detects any missing sequence numbers, it sends a local

acknowledgement to the source node in advance of any end-to-end

acknowledgements so that the source node can retransmit the missing packets. By

doing so, the proposed mechanism provides fast retransmission of lost packets,

resulting in increased throughput and reliability.

1.7 Overview of Chapters

The rest of the thesis is organized as follows. Chapter 2 is a review of works done by

the previous researchers that attempted to solve the routing layer problems for

MANETs. Chapter 3 reviews previously proposed transport layer protocols to

enhance the performance of protocols for MANETs. The problems and solutions of

previous researchers for the transport and routing layers are discussed, followed by a

list of the problems they address.

Chapter 4 starts by listing the requirements that must be met by the PART protocol in

order to achieve the objectives listed in Section 1.4. It explains the proposed design

framework and implementation of the proposed routing layer protocol, followed by an

analysis of the experiment results.

Chapter 5 discusses the enhancement between the transport, routing and MAC layers.

The proxy local acknowledgement scheme is explained followed by a discussion of

the experiments and an analysis of the results. The experiments in mobile

environment in Chapters 4 and 5 are carried out using random node movements.
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Chapter 6 starts with an overview of mobility models followed by a discussion of the

experiments to determine the effectiveness of the proposed protocols when the

mobility models are applied.

Lastly, Chapter 7 summarizes the results obtained and discusses to what extent the

objectives listed in this chapter have been achieved. This is followed by a discussion

on the significance contribution of this research. We conclude with an outline of

future work.
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Chapter 2

LITERATURE REVIEW FOR ROUTING LAYER PROTOCOLS

2.1 Introduction

This chapter gives an overview of MANET architecture, with detailed descriptions of

the problem statement and enhancement of protocols. We propose our concepts to

transmit data efficiently in different scenarios of MANETs. The first section provides

the key issues of layer and cross layer architectures that are essential to design the

protocols in the MANETs. The second section discusses the traditional routing

protocols, such as conventional and ad hoc routing protocols. The third section

elaborates on the basic AODV (Perkins and Das, 2003) routing protocol and the

fourth section presents the layer architecture (i.e. routing layer) enhancement of

AODV, such as the reduction of the route discovery frequencies, the addition of

multiple paths and multicast techniques, to enhance the performance of the MANETs.

The fifth section explains the cross layer enhancements between AODV and other

layers to achieve a better performance. Finally, this chapter closes with a conclusion.

2.2 MANET Architecture of 5-layer Reference Model

2.2.1 Layer Architecture

The enhancements on the MANET protocols have been done by modifying a single

layer, which is called layer enhancement. For example, the enhancements of the data

inefficiency problems are performed at the transport layer, the route instability

problems at the network layer, the hidden and exposed terminal problems at the MAC

layer, and signal interference problems at the physical layer. Figure 2.1 shows the

layer architecture for MANETs and the explanations of each layer are described in the

following sub-sections.
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Figure 2.1 : Layer architecture for MANETs

2.2.1.1 Application Layer Issues

The application layer uses the services at the transport layer and supports higher-level

protocols. The file transfer and email download applications normally not only require

reliable data delivery and high throughput but also tolerate round trip delay and

packet jitter. Interactive applications, such as web browsing and remote terminal

access, must have a lower delay. TCP is a highly suitable protocol for such

applications. For streaming applications, such as video and audio, playback files need

to be accommodated without waiting for the entire download to complete. However,

such applications only require on-time delivery rather than reliability. A

conversational traffic, such as voice over IP (VoIP), requires low latency and delay.

UDP is a highly suitable protocol for such applications. Therefore, the application

layer protocols need to be designed to handle frequent disconnection and reconnection

with peer applications.

2.2.1.2 Transport Layer Issues

The main objective is to transport messages successfully from the source to the

destination. TCP (Transport Layer Protocol) (Postel, 1981) and UDP (User Datagram

Transport
Application

Network
Medium Access Control

Physical
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Protocol) (Postel, 1980) are two well-known protocols to meet this goal. TCP ensures

end-to-end data delivery and reliability, whereas UDP supports an unreliable

connectionless transport. As TCP was initially designed for wired communications, its

performance may degrade in wireless networks. In general, control information is

embedded in the messages to support flow and error controls. A long message may

need to be broken down into shorter messages, called segments, which is a term used

to refer to packets at the transport layer. To use TCP efficiently in wireless networks,

many enhancements of TCP have been proposed.

2.2.1.3 Network Layer Issues

The main objective of the network layer is to deliver the data packets to the transport

layer. In wireless networks, due to the mobility of nodes and the lack of infrastructure,

a route that is believed to be optimal at a given point in time might not work at all a

few moments later. Therefore, it is important that routing protocols adapt the failed

routes, detect neighbor nodes and update routing tables efficiently after a route failure.

The main goal of a routing strategy is to provide efficient routes quickly as soon as

the route failures are detected.

2.2.1.4 MAC Layer Issues

To route the packets through numerous communication channels, a mechanism is

required for node-to-node delivery. The responsibility of a MAC or link layer

protocol is to detect whether a channel is available to send packets across a

communication link. The nature of the wireless channel gives rise to the problems of

packet collision or channel long idle due to hidden nodes in the wireless

environments. The hidden terminal and exposed terminal problems (Chane et al.,

1997) are well-known, especially for the MANETs. Let us consider the hidden
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terminal problem in Figure 2.2(a). Node B is within the transmission range of nodes A

and C, but nodes A and C cannot hear each other. While node A is transmitting to

node B, node C also transmits to node B because it cannot detect the transmission

between node A and node B, thus causing a packet collision at node B.

(a) Hidden terminal problem

(b) Exposed terminal problem

Figure 2.2 : Illustration of MAC layer problems

Let us consider the exposed terminal problem in Figure 2.2(b). Node B is transmitting

to node A. Since node C is within node B’s range, it senses the medium using the

carrier sense mechanism and decides to defer its own transmission. However, this is

an unacceptable situation because there could be no collision at node A. Therefore,

the MAC layer protocols must be able to detect the occurrence of collisions, partially

support reliable data transport over the shared wireless medium and prevent the

hidden or exposed terminal problems. Examples of the most useful link layer protocol

are Ethernet, IEEE 802.11, Point-to-Point protocol and Asynchronous Transfer Mode

(ATM).
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2.2.1.5 Physical Layer Issues

The physical layer is responsible for transmitting packets across a communication

link. Its main purpose is to ensure that the transmission parameters, such as a wireless

channel, propagation model, antenna and signal power, are set appropriately to

achieve low bit error rate. The MANETs inherit the conventional problems of

wireless communication and networking. The absence of wires between a source and

destination renders the transmitted signal much more susceptible to interferences and

background noises. Moreover, the broadcast nature of MANET increases signal

flooding. Therefore, the physical layer must resist the interference of outside signal

and be designed for robustness.

Finally, the five layers discussed above are common to the Open Systems

Interconnection (OSI) layer. There are seven OSI layers and the other two layers,

namely session and presentation layers sit on top of the transport layer. In MANETs,

each layer protocol is created to fulfill the design goal.

2.2.2 Cross-layer Architecture

In the cross layer architecture, protocols seek to provide the upper layers and lower

layers with a reliable communication. The physical layer could adapt transmission

power, transmission rate and coding to meet application requirements. The MAC

layer must quickly inform the routing layer of link breaks so that the routing layer can

discover another route as soon as possible. The transport layer protocols use the

assistance of the routing layer or the MAC layer to distinguish between packet losses

due to congestion and route breaks. As shown in Figure 2.3, for the enhancement of

each layer, the assistance of other layers is taken by operating together with transport

and network, transport and MAC, transport and physical, network and MAC, etc.
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On the other hand, Conti et al. (2004) pointed out that the cross-layer designs can

produce unintended interactions among protocols, such as adaptation loops, that result

in performance degradation. Moreover, the cross layer architecture can produce

spaghetti-like codes that may not be efficient because every modification must be

propagated across all protocols.

Figure 2.3 : Cross layer architecture for MANETs

The next section gives an overview of ad hoc routing protocols and the basic

implementation of AODV. Later, the enhancements of layer architecture of AODV

and cross layer enhancements of AODV between the routing and other layers are

reviewed.

2.3 Overview of Basic Routing Protocols

In MANETs, providing efficient routes is one of the most critical challenges for the

routing operation. Due to the lack of infrastructure support, MANETs require the

assistance of intermediate nodes to send data packets to the destinations successfully.

The role of intermediate nodes is very essential to route data packets successfully. The



15

movement of nodes also affects the overall network performance. Therefore, routing

protocols are needed to adapt to route changes and mobility.

2.3.1 Conventional Routing Protocols

Conventional routing protocols, such as the distance vector and link state, are

invented based on the static topology of the wired networks. The protocols work fine

in very low mobility scenarios for MANETs. However, the nodes in MANETs may

move freely at various speeds and directions, thus they are difficult to control with the

conventional routing protocols. Many ad hoc routing protocols are proposed to handle

the network topology changes very well under such scenarios. The basic operations of

conventional protocols are explained briefly as follows.

a) Distance Vector Routing

Instead of broadcasting route information to all nodes in the network, the distance

vector routing (Tanenbaum, 1996) only broadcasts an estimated shortest distance to

the neighbors by monitoring the costs of the outgoing links. The nodes that receive

this information update their routing tables using the shortest path algorithm.

b) Link State Routing

Each node in the network maintains a complete view of the topology with a cost for

each link and broadcasts the information to all other nodes periodically to keep

consistent routes (Tanenbaum, 1996). Based on this information, each node in the

network chooses the next hop using a shortest path algorithm for the intended

destination.

c) Source Routing

Each packet carries the complete path to the destination. A source node determines

the route that is used to transmit data packets. Source routing (Perlman, 1992) avoids
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the formation of routing loops. It may have an additional overhead for each packet

while transmitting packets.

2.3.2 MANET Routing Protocols

Now that the basics of conventional routing protocols have been explained, in this

section, we move on to explain the basics of MANET routing. There are three

categories of routing protocols based on the route discovery and route update

mechanism: table driven (proactive), on-demand (reactive) and a hybrid of proactive

and reactive protocols.

2.3.2.1 Proactive Routing Protocols

Proactive routing protocols attempt to maintain up-to-date routes by broadcasting

control messages throughout the network periodically. These messages incur a higher

overhead and may contribute to congestion. Well-known examples of proactive

routing protocols are destination-sequence distance vector (DSDV) (Perkins and

Watson, 1994) and optimized link state routing (OLSR) (Clausen and Jacquest, 2003).

DSDV is a proactive, hop-by-hop distance vector routing protocol. In DSDV, each

node maintains the number of hops to each destination in its routing table. Each node

broadcasts its routing table information periodically throughout the network by using

monotonically increased sequence numbers. The sequence number not only prevents

the occurrence of stale routes, but also avoids the formation of routing loops. If a node

does not receive a periodic message from its neighbor for a while, it assumes that the

link is broken. The route update algorithm is very simple and guarantees loop free

routes by transmitting a smaller update message periodically. Therefore, the entire

routing table needs not be transmitted when network topology changes occur.
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OLSR is a carefully designed protocol that works in a distributed manner and does not

depend on any central entity. Each node chooses its neighbor nodes as multipoint

relays (MPR) that are responsible for forwarding control traffic by flooding. MPRs

provide the shortest path to a destination by declaring and exchanging the link

information periodically for their MPR’s selectors. By doing so, the nodes maintain

the network topology information. The MPR can reduce the number of nodes that

broadcast the routing information throughout the network. To forward data traffic, a

node selects its one hop symmetric neighbors, referred to as MPRset that covers two

hops away nodes. According to HELLO messages, the information of symmetric

neighbors is used to calculate the MPRset. When a node receives a packet, it forwards

it if a sender has already selected a MPR node. Otherwise, the node discards it.

For route maintenance, periodic hello messages are used for link sensing, neighbor

detection and MPR selection process. The link sensing indicates whether it is

symmetric, asymmetric or lost. The neighbor detection indicates either symmetric,

MPR or not a neighbor. If the link to the neighbor is symmetric, it is chosen as MPR.

After receiving a HELLO message, a node builds its routing table. When a duplicate

packet is received with the same sequence number, it is discarded. A routing table is

updated either when a neighbor has changed or a route to the destination has expired.

2.3.2.2 Reactive Routing Protocols

Reactive routing protocols establish routes only when they are needed. When a source

node requires to transfer packets to a destination, it initiates a route discovery

procedure by broadcasting a route request (RREQ) packet. Once a destination node

receives an RREQ, it sends a unicast route reply (RREP) packet. To update a routing

table, on-demand routing protocols need not use periodic control messages.
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Depending on the RREQ and RREP packets, nodes in the network receive up-to-date

route information. The drawback is that the reactive routing protocols increase route

discovery frequencies whenever a route break occurs. Dynamic source routing (DSR)

(Johnson et al., 2007) and Ad-hoc on-demand distance vector (AODV) are well-

known examples of reactive routing protocols. Although both protocols share the

same on-demand behavior, the natures of the protocols are different from each other.

In DSR, each node is initialized by broadcasting a route request packet when there is

no route available in its route cache. Upon receiving this request, each node

broadcasts it by attaching its address and forwards the request packet to reach the

destination. The destination node replies to the earliest request to the source node.

This approach is known as a source routing. Each node not only quickly supports a

route when a route break occurs but also tolerates the topological changes due to the

monitoring of route discovery. For route maintenance, each node always monitors the

links to forward the packets. If a node cannot forward a packet, it sends a route error

packet to its upstream nodes towards the source.

AODV is based on DSDV and DSR routing protocols. Each node has a routing table

that maintains information about destinations, such as next hop and hop count (i.e. the

distance from the current node to the destination node). AODV also uses a sequence

number generated by a destination node to indicate fresh-enough routes. Unlike DSR,

it only counts the number of hops. It builds the reversed routes to the source node by

looking at the information of the route request packets.

The responsibility of intermediate nodes is to check for fresh routes according to the

hop count and destination sequence number, and forwards the packets that they

receive from their neighbors to the respective destinations. AODV utilizes HELLO

packets for route maintenance. If a node does not receive a HELLO packet within a
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certain time, or it receives a route break signal that is reported by the link layer, it

sends a route error packet by either unicast or broadcast, depending on the precursor

lists (i.e. active nodes towards the destination) in its routing table. AODV inherits the

periodic broadcasting and sequence numbering techniques of DSDV.

Although a route discovery procedure of AODV and DSR is similar, there are a few

differences. Each DSR packet carries the complete routing information, whereas

AODV packet carries the destination address only. On the other hand, DSR’s route

reply packet carries all addresses of nodes along a path, whereas AODV’s route reply

packet carries only the destination address and sequence number. AODV avoids the

stale route cache problem of DSR, and it adapts the topology changes quickly by

resuming route discovery procedure from the very beginning.

2.3.2.3 Hybrid Routing Protocols

A hybrid routing protocol (Pearlman and Samar, 2002) combines the features of

proactive and reactive routing algorithms. Hybrid protocols divide the network into

areas called zones. The proactive routing protocols work within the inner zone, and

the reactive routing protocols work in the outer zone. These zones may be overlapping

or non-overlapping depending on the zone management algorithm.

The responsibility of proactive and reactive protocols is to establish and maintain

routes to the destinations located inside or outside zones. The zone-based routing

protocol (ZRP) (Pearlman and Samar, 2002) and sharp hybrid routing protocol

(SHARP) (Ramasubramanian, 2003) are examples of hybrid routing protocols.

Our research inherits the basic route discovery procedure of AODV because of its

quick adaption. Therefore, the brief functions of AODV and its enhancements related

to our work are described. Route changes occur frequently due to the movement of
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nodes, network congestion and contention. Discovering an efficient route between a

pair of mobile nodes is an essential operation in order to transfer data packets to a

destination successfully. Moreover, establishing a route requires some exchange of

control packets that can be quite high in MANETs due to the rapid topology changes.

AODV is selected as a basic protocol because it can quickly adapt to route changes

whenever a route break occurs by using its route discovery procedure. Although the

network-wide broadcasting of AODV causes large overhead, AODV reduces the

delay and routing overhead when node mobility increases.

2.4 AODV Routing Protocol

This section discusses the details of AODV, such as message formats, routing table,

route discovery procedure and so on.

2.4.1 AODV Basic

AODV is a distance vector-based protocol. Initial distance vector protocols suffer

from a problem called count-to-infinity (Hedrick, 1988) due to incomplete advertised

information. This problem is described below.

Initially, each node has routes to the other nodes, and the link cost is "1". In Figure

2.4(a), node A has a route to node B with 1 hop count and node B has routes to nodes

C and A with 1 hop count. Node C also has a route to node B and node D with 1 hop

count, and to node A with 2 hop counts. In Figure 2.4(b), when a link between node A

and B breaks, node B is responsible for re-computing a new route. However, node B

does not know that a successor of node C to node A is itself, resulting in a count-to-

infinity problem. Sooner or later, in Figure 2.4(c), node B knows that node C has a

route to node A with 2 hops and sends a data packet to node C. At that time, node B
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updates its routing table for node A according to the node C’s information (i.e. C+1)

and sends packets to node C.

(a) Link cost or hop count of initial state (b) Route failure between node A and B

(c) Node B tries to connect to A via C (d) Node C tries to connect to A via D

(e) Node C tries to send packet to B and D

Figure 2.4 : Count-to-infinity problem of traditional routing protocols

When node C receives the packets, it counts the shortest path to node A and finds that

it must go through node D. Thus, in Figure 2.4(d), node C updates its routing table

according to the node D’s information. In Figure 2.4(e), node C then sends the packet

to node B and node D. All nodes suppose that all neighbors have a shortest path to the

node A and update their routing tables. The counting situation for node A never stops

until there is no allocated memory for the routes.
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updates its routing table for node A according to the node C’s information (i.e. C+1)

and sends packets to node C.

(a) Link cost or hop count of initial state (b) Route failure between node A and B

(c) Node B tries to connect to A via C (d) Node C tries to connect to A via D

(e) Node C tries to send packet to B and D

Figure 2.4 : Count-to-infinity problem of traditional routing protocols
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according to the node D’s information. In Figure 2.4(e), node C then sends the packet

to node B and node D. All nodes suppose that all neighbors have a shortest path to the
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The simple split horizon scheme is the first attempt to solve this problem. It omits

routes learned from one neighbor in updates sent to that neighbor as well as the split

horizon with poisoned reverse that includes such routes in updates, but sets their

metrics to infinity (Hedrick, 1988). With poison reverse, when a node detects an

unreachable route, it removes the route immediately from the routing table. In this

way, looping events can be avoided. However, this scheme is not good enough to

establish a typical wireless network. Therefore, a distance vector-based protocol

called AODV was proposed to build an efficient routing protocol for the MANETs.

AODV was designed to avoid the following issues.

 Huge amount of control overheads

 Huge amount of processing overheads

 Formation of loops

AODV attempts to minimize the overhead by utilizing only on demand messaging

instead of sending route updates periodically. Consequently, AODV messages are

simple to compute, with low processing overheads. By utilizing a destination

sequence number, AODV stringently prevents the formation of routing loops. The

features of AODV and its fundamental components are described in the following

sections.

2.4.2 Destination Sequence Number

AODV utilizes a technique based on destination sequence numbers to ensure all

discovered paths are loop-free. The destination sequence number is updated each time

a node receives a new sequence number from the RREQ, RREP, or RRER messages

related to a destination. Before a node initiates a new RREQ, it increases its

destination sequence number to avoid conflicts with previously established reverse
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routes. Also, when a node receives a route request, it updates its destination sequence

number by taking the maximum value of its current destination sequence number and

RREQ’s destination sequence number before sending out a reply packet. In this way,

a node maintains recent route information of a destination by utilizing destination

sequence number technique.

In order to avoid the stale route information, the node always compares its current

sequence number with the newly received AODV’s sequence number. If the value of

the sequence number in AODV message is greater than its current value, the

information relating to the destination is considered stale and discarded from the

routing table. Utilizing sequence number technique not only prevents routing loops

and the initial count-to-infinity problem (Hedrick, 1988) but also ensures the selection

of fresh enough route to the destination.

2.4.3 Message Formats

AODV defines three types of messages, namely Route Request (RREQ), Route Reply

(RREP), and Route Error (RERR). The message formats of AODV are described in

Figure 2.5. The value of the type field determines the packet type (i.e. type 1:RREQ,

type 2:RREP, type 3:RERR). A routing agent determines the packet type by looking

at this value in the message.

Figure 2.5(a) shows the fields in an RREQ message. Flags J (join) and R (Repair) are

used for multicast transmission. G (Gratuitous) is used together with RREP for

unicast transmission to the node specified in the destination address field in the

message. D (Destination only) is set to 1 when only the destination needs to respond

to the RREQ message. U (Unknown) is set to 1 when the destination sequence number

is unknown. Hop count is the number of hops from an originator to the node handling
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the request in the network. RREQ ID is a sequence number that is identified as a

particular RREQ when taken in conjunction with the originator’s address. The

Destination IP address is the address of the destination node that is supposed to

receive data packets from a source node. The originator IP address is the address of

the node that originates the packet transmission.

(a) RREQ message format.

(b) RREP message format.

(c) RERR message format.

Figure 2.5: AODV message formats

When a node has data packets to transfer to a destination, it adds the destination

address in the destination IP address field of RREQ and its sequence number in a

destination sequence number of RREQ packet. The destination sequence number is

the latest sequence number previously received by the originator for any route

Bits:   8                  5                      11 8
Type = 1 J R G D U Reserved Hop Count

RREQ ID
Destination IP Address

Destination Sequence Number
Originator IP Address

Originator Sequence Number
Expire time

Bits:  8                    2 9                    4                  8
Type = 2 R A Reserved Prefix Sz Hop Count

Destination IP Address
Destination Sequence Number

Originator IP Address
Lifetime

Bits:      8              1                     15 8
Type = 3 N Reserved Dest Count

Unreachable Destination IP Address(1)
Unreachable Destination Sequence Number(1)

Additional Unreachable Destination IP Address(if needed)
Additional Unreachable Destination Sequence Number(if needed)
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towards the destination. It also adds its address in the originator IP address field and

its sequence number in the originator sequence number field of the RREQ. The

originator sequence number is used in the route entry pointing toward the originator

of the RREQ. The expired time field indicates when the RREQ packets are going to

expire due to timeout event.

In an RREP message, the R (Repair) flag is used for multicast. An A

(Acknowledgement) flag is set when an acknowledgement is required as shown in

Figure 2.5(b). If a node forwards an RREP over an unstable or unidirectional link, the

node sets the “A” flag to 1 to indicate to the recipient of the RREP that an

acknowledgement is required. The Prefix size (i.e. nonzero value) means that the

indicated next hop can be used for any node with the same routing prefix as the

requested information. Lifetime (milliseconds) is the time for which the nodes

receiving the RREP consider the route to be valid.

The N (No delete) flag is reserved for a local repair procedure. The DestCount is the

number of unreachable destinations. The Unreachable destination IP address is the IP

address of the unreachable destination address. Unreachable destination Sequence

Number is the sequence number for the previous unreachable destination address field

as shown in Figure 2.5(c).

2.4.4 Routing Table

AODV is a hop-by-hop routing protocol, where a routing table keeps all reachable

destinations and the address of the next node towards the destination. Each node

keeps track of how to deliver data packets based on information in its routing tables

that stores the shortest paths or all available paths. An entry in a routing table contains

the following information.
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 Destination IP address

 Destination sequence number: The latest sequence number for the destination

 Hop Count:  The last known hop count to the destination

 Next Hop: The node to forward a data packet in order to reach the destination

 Lifetime: How long a route remains valid

 List of Precursors: The list of neighboring nodes that are likely to use them as

next hops toward a destination

 Valid Destination sequence number flag

2.4.5 Route Discovery Procedure

If a node has data packets to send to a destination, it first determines whether there is

a route in its routing table for the destination. If it has, it uses that route to send the

packets. Otherwise, it requests a route by broadcasting RREQ packets.

(a) RREQ broadcast

(b) RREP unicast

Figure 2.6 : Route discovery procedure of AODV
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In Figure 2.6(a), node S has data packets to transmit. It broadcasts an RREQ packet

by adding a destination IP address and the last known sequence number, its IP address

and current sequence number. A hop count is then initialized to zero. If the source

node receives the RREQ packet that it sends, it discards it.

When a neighbor node receives the RREQ packet, it creates a reversed route entry for

both the source node and the node from which it receives the request. Then it

increases the hop count value and responds to the RREQ packet. The node sends a

reply to the request if it is the destination, or if it has a valid route to the destination.

In Figure 2.6(b), when node D receives the RREQ, it sends an RREP to the source

node. When other intermediate nodes (i.e. node 1 to node 9) receive the RREQ, they

compare their addresses to the destination address of RREQ and forward it to their

neighbors if the addresses do not match. Before the destination node, node D, sends

the RREP packet, it increases its sequence number by taking MAX (Dseq RTE> Dseq

RREQ) + 1. Then the RREP packet is unicast by adding the IP address of the destination

(i.e. node S’s address), its record destination sequence number and hop count that is

set to zero.

When the next hop (i.e. node 9) receives the RREP, it first increases the hop count

value in RREP and compares its address to the IP destination address in RREP packet.

If it does not match, it forwards the RREP packet to its next hop that is shown in its

routing table entry.

As soon as the source node receives the RREP, it starts transmitting data packets. If

the source node receives multiple RREPs, it selects the earliest and shortest route with

the greatest sequence number. On the other hand, each node always checks the RREQ

messages it receives and discards duplicates received from multiple neighbors.
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Referring to Figure 2.6(a), node 3 would discard RREQs it receives from nodes 2 and

5 after receiving the original RREQ from the source node S.

2.4.6 Route Maintenance

Link breaks occur due to node mobility and the temporary nature of wireless

channels. Nodes always monitor the condition of links to the next hops in active

routes that have recently been utilized for data packet transmission. If a node detects a

link failure in an active route, the node upstream of the break invalidates all

unreachable destinations in its routing table and sends an RERR packet to notify other

nodes about the link failure. The RERR message is sent by either unicast or broadcast,

depending on the precursor lists in the routing table of a node that detects the link

breaks.

In Figure 2.7(a), when node 5 could not connect to node S due to a link break, or it

encounters packet drops due to the CBK problem

(DROP_RTR_MAC_CALLBACK)1, node 5 broadcasts RERR packets to its

neighbors (i.e. node 3, 4, 6 and 7). The nodes that receive the RERR forward it to the

source node if their routing tables have route information of a source node as shown

in Figure 2.7(b).

Once the source node S receives the RERR packet, it can re-invoke the route

discovery procedure if it still requires the route. Here, the CBK problem arises due to

the contention at the MAC layer, not because of route failure. If the packet drops are

due to a link break, node 3 may not forward the RERR packet. In this situation, node

4 forwards the RERR packet to reach the source node.

1 NS-2 new trace format explanation: http://www.isi.edu/nsnam/ns/doc/node187.html. CBK problem is due to the MAC layer
packet collision. When nodes compete to access channel, the hidden terminal problem of MAC layer causes packets to collide
with each other.
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(a) Route break and packet drops

(b) Sending RERR packets

Figure 2.7 : Route maintenance procedure of AODV

2.5 Layer Approach for the Optimization of AODV

There are many on-demand routing protocols (Jiang et al., 1999; Toh, 1999; Perkins

and Das, 2003; Johnson et al., 2007). The most popular, i.e. AODV, has been

enhanced for different types of scenarios and networks since the first version of

AODV. On demand routing protocols typically use a simplistic form of broadcasting

called simple flooding for routing tasks, such as route discovery and topology

dissemination. However, this method may lead to unnecessary retransmissions,

channel contentions at the MAC layer and packet collisions. Such an occurrence

induces the broadcast storm problem (Tseng et al., 2002), which has been proven to

degrade network throughput and data delivery latency.

In an effort to reduce this impact, Espes and Mammeri (2007) introduced an

expanding search algorithm that reduces the area flooded with RREQ by exploiting
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spatial locality of nodes. It assumes that if nodes are located physically close to each

other, then it is likely to form a route without searching the entire network. However,

on-demand routing protocols also have to face a higher routing overhead and delay

problems because they invoke a route rediscovery procedure whenever a link

becomes unavailable or congested. Therefore, there have been many approaches that

enhance the route discovery procedure with the purpose of reducing the route

discovery frequencies and delay as shown in Figure 2.8.

Figure 2.8 : Optimization of AODV with the layer approach

AODV has been enhanced with two approaches, such as layer and cross-layer to

improve the performance. There are many constraints due to the limitations of the

wireless medium. Therefore, sending control messages periodically for routing

purposes tends to cause congestion and increase overhead. As a consequence,

establishing routes on-demand is becoming mandatory to limit the control messages.

2.5.1 Self-selecting Route Discovery Procedure

Discovering the shortest path by blindly flooding the RREQ packets is not a good

solution. To minimize the route discovery overhead due to flooding, Abolhasan and
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wireless medium. Therefore, sending control messages periodically for routing

purposes tends to cause congestion and increase overhead. As a consequence,

establishing routes on-demand is becoming mandatory to limit the control messages.

2.5.1 Self-selecting Route Discovery Procedure

Discovering the shortest path by blindly flooding the RREQ packets is not a good

solution. To minimize the route discovery overhead due to flooding, Abolhasan and
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Lipman (2005) proposed a self-selecting route discovery method, where only nodes

that have certain criteria are allowed to forward or rebroadcast RREQ packets.

Two types of self selection strategies are proposed: Source-Driven - each intermediate

node determines if it should forward an RREQ packet depending on a utility metric

specified by the source during a route discovery phase; Pure Self Selection -

intermediate nodes make a decision independently. Allowing intermediate nodes to

actively participate with the route discovery procedure and broadcasting RREQ

packets selectively reduce control overhead, channel contention of MAC layer and

battery power consumption. Although this approach may reduce the overhead and

delay, the impact on throughput was not considered even though throughput is the

most important factor to be measured for data transmission.

2.5.2 Location-assisted Route Discovery Procedure

Idrees et al. (2005), Meng et al. (2005), Cha et al. (2007), Giruka and Singhal (2007),

Zhao and Zhu (2008) and Asenov and Hnatyshin (2009) enhanced AODV for route

discovery latency and throughput improvement with the assistance of Global

Positioning System (GPS).

The awareness of the mobility of neighbor nodes and an estimate of the reliable

distance that must be smaller than the transmission range can reduce the overall

number of control packets traversing the network due to the blind flooding. Looking

for the location of nodes using GPS assists to improve the performance of AODV in

terms of throughput and overhead. The mobility aware agent proposed by Idrees et al.

(2005) improves the throughput of AODV by a factor of up to 1.2. The mobility

prediction techniques proposed by Meng et al. (2005) and Cha et al. (2007) reduces

the control overhead and delay by a factor of up to 2 compared to AODV. Moreover,
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OGPR (On-demand Geo-graphic Path-based Routing) and OAODV (Optimized

AODV) that was proposed by Giruka and Singhal (2007) and Zhao and Zhu (2008),

as well as Geo-AODV (GPS-enhanced AODV) that was proposed by Asenov and

Hnatyshin (2009) not only reduces the control overhead and delay, but also increases

the throughput and packet delivery ratio by a factor of up to 2 compared to AODV.

However, these approaches work only under the GPS coverage area.

2.5.3 Probabilistic-based Route Discovery Procedure

Abdulai et al. (2008) tries to reduce the blind flooding of the RREQ packets using a

generic probabilistic method. Taking into account the local density of nodes and

setting the probability of forwarding as high in the sparse areas and low in the dense

areas, the Fixed Probabilistic Route Discovery with AODV (FPR-AODV) is

introduced to reduce routing overhead from 30% to 60% depending on the density of

nodes in the MANETs.

Another probabilistic algorithm called Gossip is proposed by Mahesh et al. (2007),

where each node forwards a routing packet with some probability; and adds this

gossiping to AODV to avoid the flooding of route discovery. Haas et al. (2006) also

proposed a similar approach, where packets are forwarded with a defined probability

to form a leading set of forwarding nodes to cope with route request flooding

problems in the MANETs.

Shi and Shen (2004) proposed the Adaptive Gossip-based Ad Hoc Routing (AGAR)

by adding sleep time or a reasonable timeout period. Even though the gossiping

algorithm (Haas et al., 2006) reduces the probability of broadcast storms, it may cause

only a subset of nodes to forward the packets, resulting in lower throughput.
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2.5.4 Hop Count based Route Discovery Procedure

Taking into account hop count to reduce the routing overhead, Spohn and Garcia-

Luna-Aceves (2005) introduced a Three-hop Horizon Pruning (THP) algorithm that

broadcasts the RREQs based on the current information about the local neighborhood.

Depending on the local topology information makes the performance of THP less

reliable when the topology changes frequently. Although the simulation results of

AODV-THP show significant performance in terms of a PDF, delay and overhead,

they do not show the throughput improvement, which is a very important factor.

The Direct Forwarding Routing Protocol (DFRP) proposed by Mohamed and Hassan

(2008) forwards RREQ through a double function agent node that has at least two-hop

connectivity. Instead of forwarding route request packets throughout the entire

network, the source node broadcasts them to only half of the network in order to avoid

network congestion and deliver the packet to the destination routes with minimum

overhead. Using his approach, performance improvement was achieved only in a very

small-scaled network. The consideration of large-scaled networks is an important

factor.

An adaptive timeout mechanism based on hop count was proposed by Tamilarasi et

al. (2007), namely AAODV (Adaptive AODV), to enhance AODV by assigning the

lifetime for the removal of stale routes from the routing tables. When a source node

receives a route error packet, the current entries using the failed link are marked as

inactive in its routing table. Then bad link time is set by dividing the default bad link

time by an average hop count that is calculated according to the route error message.

Then the lifetime of the routes is updated using the failed link’s bad link life time. The

simulation results show that AAODV reduces an average control packet load by 10%

and delay by 5% and increases the packet delivery ratio by 2%.
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2.5.5 Node Selection based Route Discovery Procedure

By categorizing mobile hosts as normal nodes and selfish nodes, Zhang and Agrawal

(2004) proposed a routing protocol with the purpose of reducing the route discovery

frequency by allowing only normal nodes to forward packets for other nodes. By

using a probabilistic approach like gossiping, a proper number of selfish nodes are set

up. Although this approach can reduce the route discovery cost by minimizing the

number of broadcast packets, the network may not operate if all nodes are selfish.

Therefore, Wang et al. (2005) proposed a method to distinguish selfish peers based on

local observations of the AODV routing protocol. Building a statistical description of

each neighbor assists to separate the set of neighbor nodes as cooperative and selfish

nodes. However, this approach does not consider the mobility of nodes and might

increase RREQ drop rates when node movement is introduced.

On the other hand, Zhou et al. (2004) also proposed the Priority Route Discovery

Strategy (PRDS) that constructs quality routes to forward RREQ messages. By

exploiting a competitive technique, only good quality nodes take part in the

construction of routes to prevent unnecessary route discovery and reduce route

discovery overhead. Lee and Kim (2006) tried to recover the path by selecting

designated candidate nodes from the pre-connected routing nodes. Ramakrishnan and

Shanmugavel (2006) tried to repair broken routes with the aid of a virtual node

instead of sending the RERR packets to the source node. Enhancements of AODV are

able to reduce the routing overhead, but throughput improvement is rarely considered.

2.5.6 Combining Proactive and Reactive Route Discovery Procedure

Proactive routing protocols that keep routes in hand do not need to initiate route

discovery once a route break occurs, whereas reactive routing protocols discover
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routes on demand. Even though the proactive routing protocols support routes

immediately, there may have stale routes2 in their route caches, and there is no proper

mechanism to effectively detect and remove stale routes. On the other hand, although

reactive routing protocols are able to adapt to route changes as soon as possible, they

are not as effective as proactive routing protocols in small-scaled networks.

Therefore, combining the proactive and reactive approaches is an effective way to

enhance the performance of routing layer protocols.

Liu and Lin (2005) proposed a refinement-based routing protocol that takes advantage

of both proactive and reactive protocols by selecting the routes proactively and

maintaining the routes reactively. Bai and Singhal (2006) introduced DOA (DSR over

AODV) routing protocol by dividing the routes as segments through the waypoints

and selecting intermediate nodes as waypoints. Waypoint nodes, called a start node

and an end node, start communication in a segment with the assistance of intermediate

nodes. Intra-segment route repair is invoked when a primary route fails. If it fails,

inter-segment or primary route repair is invoked. Only when both of them fail are

route error messages sent to a source node.

By applying proactive and reactive approaches separately and concurrently, Mase and

Kameyama (2005a) enhanced the Multihop Hello Guided Routing with proactive

(MHGR-P) that was proposed by Mase and Kameyama (2004) with Reactive

approach (MHGR-R). Each node in MHGR-R diffuses hello message to the entire

network when it has data packets for a source and destination with the purpose of

reducing the routing overhead of MHGR-P. By combining the concept of proactive

and reactive MHGR, Mase and Kameyama (2005b) also proposed a unified MHGR

(MHGR-U), where each node proactively originates multihop hello (P-mode) or

2 A stale route is an expired route in the route cache that is used for routing purposes. It could result in inconsistencies during the
route reconstruction phase.



36

reactively does so (R-mode). Consequently, the P mode is able to create and maintain

routes to nodes and the R mode does so reactively. In this way, all these proposals try

to reduce the routing overhead of the original AODV by combining the two

approaches: proactive and reactive. The mentioned approaches reduce the average

delay and overhead by almost 25% in the best case, but the consideration for

throughput is lacking in the enhanced protocols. Therefore, in the next section, we

describe a different approach that considers multiple paths between the source and

destination to improve throughput.

2.5.7 Multipath Routing Approach

Keeping only a single path between a source and destination pair is a big challenge in

MANETs because mobile nodes are prone to disconnections. Therefore, more

aggressive and adaptable routing strategies are required to be tolerant of dynamic

route changes. To be robust to link breaks, it is possible to keep one or more

alternative next hops to the destination in routing tables.

Lee and Gerla (2000) introduced a backup routing, called AODV-BR, that only

modifies RREP to establish a mesh structure and alternative paths. To obtain an

alternative path, a node listens to the neighbors’ RREP packets promiscuously. If a

node that is not part of the primary route overhears an RREP packet, it records that

neighbor as its next hop to the destination in its alternative routing table. If a node that

is part of the primary route overhears multiple RREPs, it selects the best route based

on the shortest path and inserts it to its alternative routing table. When a primary route

is not available, a node performs a one hop data broadcast to its immediate neighbors

with backup paths from the alternative routing table. Upon receiving this packet, the

neighbors unicast it to their next nodes if their alternative routing tables have an entry
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for the destination. In this way, AODV-BR prevents the possibility of dropped

packets by delivering through one or more alternative routes. Although it reduces

packet drop rates, it cannot direct the packets to the destination with less delay.

Buffering packets in nodes that are parts of alternative routes increases packet latency

when TCP traffic is used. Moreover, it has a limitation that the alternative routes can

only be selected within one hop distance.

Chen and Lee (2005) extended the idea of AODV-BR by counting the nodes that are

two-hop distance from the primary route. During the route discovery procedure,

backup paths with two-hop distance are built while replying to an RREP packet. Lai

et al. (2007) also extended AODV-BR to adapt the topology changes by overhearing

data packets besides the RREP packets. The alternative paths that only depend on the

RREP packets may fail as the node speed increases. AODV-adaptive backup routing

(ABR) and AODV adaptive backup with local repair route (ABL) proposed by Lai et

al. (2007) can overcome the weakness of AODV-BR.

When a link break is detected, AODV-ABR tries to repair the broken route by

handshaking with its immediate neighbors instead of sending one-hop data broadcast

that may cause duplicate data packets. For handshake purposes, Backup Route

Request (BRRQ) and Backup Route Reply (BRRP) are introduced. When the distance

between the broken link and the destination is not farther than the specific hops,

AODV-ABL tries to repair the link by sending RREQ packets. Otherwise, it repairs

the link using a handshake process. Even though these approaches perform better than

AODV-BR, floating extra packets may increase control overhead.

Another way to provide backup paths was introduced by Jiang et al. (2002) with the

short-term name Multiple Next Hop (MNH) routing protocol. Unlike the AODV-BR,

MNH modifies AODV’s RREQ to set up forward paths to the source node. MNH also
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modifies RREP to add multiple next hops in the routing table for the destination.

However, the weakness of MNH is the lack of route update because the multiple

routing paths are only constructed at the beginning. As the network topology changes

happen more often due to node mobility, the number of used backup paths becomes

invalid. The problems with this method are the occurrence of routing loops and the

generation of many routing packets.

In order to address the weakness of the above mentioned AODV’s variants, Marina

and Das (2006) considered the Ad-hoc On-demand Multipath Distance Vector

(AOMDV) routing protocol that provides multiple alternative paths at every node.

AOMDV computes multiple paths and observes each route advertisement to define an

extra path to the intended destination during a route discovery procedure. RREQ

packets arriving at the nodes are copied and sent back to the source nodes. This

approach may cause the formation of loops due to accepting all copied routes. To

eliminate any possibility of routing loops, it uses an advertised hop count field in the

routing tables of nodes.

The advertised hop count of a node S for a destination D is set to the maximum hop

count of the multiple paths for D at S. The advertised hop count is initialized

whenever the sequence number is updated. By doing so, AOMDV only accepts

alternative routes with lower hop counts. Each RREQ conveys an additional first hop

field to indicate the first neighbor of the source node. The intermediate nodes do not

discard duplicate copies of RREQ immediately as long as each RREQ provides a new

node-disjoint path to the source. If an intermediate node offers a new path, a reverse

path is established by sending an RREP back to the source.

By computing multiple paths in a single route discovery attempt, a new route

discovery is needed only when all paths fail. Even though the multiple path technique
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is good enough to adapt to the broken route quickly with lower overheads and higher

throughput, it must use the scarce resources of MANETs, such as bandwidth, memory

and battery power for calculating and maintaining multiple paths at every node.

2.5.8 Multicast Routing Approach

In addition to unicast and broadcast transmission, AODV could be extended as

multicast through the multicast trees (Royer and Perkins, 1999). In multicast AODV

(MAODV), when a node wants to be a part of the multicast group, it broadcasts an

RREQ by attaching the multicast group address. Nodes that receive the RREQ set up

the reverse routes to the source node and rebroadcast it. As soon as the RREP packets

are received, intermediate nodes create the forward routing table entries to the

multicast group. Members of the multicast tree can only reply to the source node.

The source node may receive multiple RREPs, thus it explicitly needs to send an

activation message along the path. There is a short period to wait for the RREPs. As

soon as that period expires, the source node unicasts a Multicast Activation (MACT)

message to update the routing tables of nodes to become members of multicast trees.

Royer and Perkins (1999) has described the detail mechanism about the responsibility

of the group leader, group merge and multicast tree maintenance. Nodes in MAODV

use a Hello message to detect a link break among their neighbors. However, flooding

Hello messages continuously is not a good approach in order to reduce routing.

2.5.9 Proxy-assistance Approach

Choi and Das (2002) proposed a proxy-based indirect routing scheme, namely an

applicative indirect routing (AIR) that is proactive in nature for link failure and

congestion problems. AIR uses proxies to manage unreliable links in the original path.
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The rerouting mechanism of AIR directs packets that encounter congestion or broken

links to an alternative path. Simulation results show that although AIR achieves

performance improvement over one of the proactive routing protocols DSDV, it

cannot mimic the reactive routing protocols AODV and DSR, and thus it is just a

competitive proactive protocol.

Tiwari (2006) proposed a proxy-AODV routing protocol that appoints the proxy

nodes for data transmission over a partially connected ad hoc network. In proxy-

AODV, the source nodes select the proxy nodes to hold data on behalf of the

destination and then the proxy nodes try to transfer data packets to the destination. In

the situation that the source and destination are in different partitions, the farthermost

nodes are assumed to be the nearest nodes towards the destination and need to store

the same data packets for a destination node. Storing data packets at the proxy nodes

may assist data transmission to the desired destination, but may incur not only the

unnecessary data packet forwarding, but also network overloading due to the extra

proxy requests and replies when the movement of a proxy node is not as expected.

In proxy-AODV, the source node sends an RREQ packet if it wants to establish a

route to a destination. In the meantime, the node that is farther enough hop away

replies to the source node with a proxy RREP (P-RREP). The source node keeps all P-

RREP, and if it does not receive any reply packets from the destination after the

timeout period, the source node sends a data packet to nodes that are assumed to reach

the destination quickly. If those nodes cannot reach the destination after the timeout

period, they discard the data packets. This approach sometimes causes out-of-order

packets at a TCP destination. If there is no packet reordering technique at the

destination, this may degrade performance due to the acknowledgement technique of

TCP.



41

Boice et al. (2009) also considered the possibility of temporary or long-lived network

partitions and proposed the space-content-adaptive-time routing (SCaTR) framework

that is able to deliver data even in the situation of connectivity disruptions. In the

SCaTR framework, proxies are selected based on past connectivity information. The

proxy nodes need to maintain content-adaptive contact tables and update its tables

whenever it receives a timely hello packet. After a proxy node has buffered the data

packets, it must take the responsibility of sending the packets to the destination during

the simulation. If the proxy node no longer wants to act as a proxy, it initiates a route

discovery process for buffered packets to find another proxy or destination. As soon

as the proxy node knows that its buffer space is going to be low, it selects the first

node that has contact with the destination as a proxy node even if this node has a

lower contact value. By doing so, data packets can be sent to the destination even if

the disruption time is very long in the SCaTR framework.

To reduce message replication and routing overhead, the SCaTR protocol is

constrained to selecting at most two proxies for each message. However, the SCaTR

protocol does not take part in data transmission as long as the connectivity is still

available in the network. SCaTR acts exactly like on-demand routing. Only when

source and destination do not have a direct connection does SCaTR choose a node

which is closer to the destination as a proxy for that destination and takes part in data

transmission.

2.6 Cross-layer Approach for the Optimization of AODV

There are many proposals that attempt to enhance the performance of the MANETs.

Most of them modify only one layer, such as the routing layer, transport layer, link

layer or physical layer, to reduce the routing overhead, average end-to-end delay,
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channel contention and collision for overall network performance. The following

subsections and Figure 2.9 describe the cross layer concepts between AODV and the

other layers.

Figure 2.9 : Optimization of AODV with the cross layer approach

2.6.1 SHAODV

Routes in the MANETs can be easily broken by a node along the route that moves out

of the transmission range or runs out of battery power. Therefore, taking advantage of

the physical layer parameters, such as a signal to noise ratio (SNR) and signal

strengths, can assist to improve the performance of the MANETs. By collecting the

signal strength data, Feng et al. (2004) proposed a self-healing routing scheme based

on AODV (SHAODV) that triggers the edge effect and route break problems

occurring at the same time. SHAODV can establish a new route with a long lifetime

according to the collected signal strength. However, the weak point of SHAODV is

that the MAC device has to be remodeled to collect the SNR for the received data

frame when using SHAODV.

2.6.2 AODV-2T

Otakahn and Lertwatechakul (2008) proposed an efficient routing protocol called

AODV-2T that uses two level thresholds of battery power and receivable signal
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power to repair and redirect routes before an actual route break happens. Alternative

routes are prepared at the first level threshold check; and connections are directed to

the backup path immediately at the critical state of the second level threshold.

Simulation results show that AODV-2T reduces routing overhead by 15 to 18 %

lower than AODV.

2.6.3 AODV-ERRA & ERU

A new method that exchanges link conditions between link and network layers was

proposed by Alsharabi et al. (2005). According to the link condition of IEEE 802.11a,

the proposed methods, namely ERRA (Early Route ReArrangement) and ERU (Early

Route Update), establish alternative routes by predicting the link stability and link

lifetime, resulting in not only prevention of link breaks but also keeping optimized

routes. Alsharabi et al. (2005) also consider limiting the necessary signaling overhead

to maintain an optimum route. Even though this paper mentions the theory, no

comparison was done to other protocols.

2.6.4 AODV-PLRR

AODV-PLRR (Preemptive Local Route Repair) proposed by Crisostomo et al. (2005)

avoids route failures by repairing routes preemptively when a link break is about to

occur. This approach utilizes HELLO messages to probe the link stability of

neighbors and triggers the local repair procedure to find a new route, or a node that

has a fresh and stable route to a destination before an actual route break occurs. As

Crisostomo et al. (2005) do not consider the locations of the source and destination,

the non-optimal route establishments can happen more, especially for large-scaled ad

hoc networks.
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2.7 Chapter Summary

Previous researchers have focused on solving the following problems.

 Control broadcast storm problems, such as blind flooding

 Route discovery overhead due to broadcast technique

 Route errors due to link breaks, battery power, transmission rate

The approaches taken to solve the above problems are:

 Use the information of other layers to detect route errors

 Learn topology changes using the information from other layers

 Enhancement of route discovery procedure

 Adding multiple paths

 Proposing multicast techniques

 Proxy-based approaches for intermittent connections

While the proposed solutions are able to address the problems of routing layer, there

are few outstanding problems as listed below:

 To the best of our knowledge, there are few researches for routing that use one

or more proxy nodes in the network, such as SCaTR routing protocol proposed

by Boice (2009). Nevertheless, this technique considers the participation of

proxies for intermittent and disruptive networks. On the other hand, proxy-

AODV proposed by Tiwari (2006) considered a risky condition by assuming

that the farthermost nodes as the nearest nodes towards the destination and this

assumption may not be right at all time. Therefore, in this thesis, we consider

the involvement of a proxy node for not only the intermittent connections, but

also the longer distance or hop count. If the destination node knows that the

distance to the source node is more than the predefined value, it considers

using a proxy node. The responsibility of a proxy node is to reduce the
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unnecessary broadcasting route discovery latency by repairing routes between

a source and a proxy; or a proxy and a destination locally, resulting in not only

a lower overhead and delay but also a better throughput.

 In MANETs, route errors happen more often due to route failures or collisions

at the MAC layer. On-demand routing protocols invoke the route discovery

procedure for all route errors, resulting in the worst effect on routing overhead,

delay and throughput. Although there are many solutions to solve the route

discovery latency, so far no proper mechanism is proposed yet to react to the

route errors that happen due to collisions at the MAC layer or route errors with

mobility. In this thesis, when a proxy node receives a route error packet, it

tries to repair the route locally if this error is due to the collision at the MAC

layer instead of sending the route error packets to the source node and

broadcasting the request packets throughout the whole network. If this error is

due to the route failure, in other words, ‘no route available’, either the source

node or proxy node broadcasts the request packets within a limited zone to

reduce the routing overhead.

As a summary, in this thesis, we propose a Proxy-Assisted Routing for efficient data

Transmission (PART) protocol that considers the participation of a proxy node for a

longer distance that is higher than the pre-defined value, according to the hop count

information. The justification for our proposed solution is discussed in Chapter 4.
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Chapter 3

LITERATURE REVIEW FOR TRANSPORT LAYER PROTOCOLS

3.1 Introduction

The Transmission Control Protocol (TCP) (Postel, 1981) is the de facto standard for

the reliability of end-to-end data delivery in the wired networks. Normally, TCP is an

independent protocol that is not related to the underlying network technology. TCP’s

reliability depends on the retransmission of lost packets. Packet retransmission

technique is used if the sender receives duplicate acknowledgments or no

acknowledgment before a timeout period.

Packet losses occur frequently as the amount of traffic to access Internet applications,

such as World Wide Web (WWW), e-mail, multimedia and file transfer applications

increases. As there are no resource reservation and admission control to monitor the

imposed network load, the total number of packets in the network is more than they

should be, leading to a congestion.

The TCP congestion control mechanism controls the sending rate by keeping track of

the congestion window (CWND). When a new TCP connection is established, the

CWND is set to one maximum segment size (MMS) (Allman and Floyd, 2002). When

an acknowledgement packet is received, the CWND is increased exponentially. To

limit the CWND size, there is a slow-start threshold that is set to 65Kbytes (Stevens,

1997). After the CWND size has reached the slow start threshold, it is increased

linearly. This region is called congestion avoidance as shown in Figure 3.1. In the

congestion avoidance region, the initial window is increased linearly. Whenever the

timeout event occurs, the slow start procedure is initialized by setting the congestion

window size to one, whereas the CWND is halved (i.e. CWND = CWND/2) when
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Slow start Congestion avoidance

Threshold

Timeout Duplicate ACKs

three duplicate ACKs are received. Initiating the slow start procedure whenever a

timeout event occurs reduces throughput.

Figure 3.1 : Congestion control algorithm of TCP

As a transport layer protocol, TCP controls network congestion and bridges a file

transfer application to a lower layer. TCP limits the transmission rate depending on

the congestion window and provides reliability using the packet retransmission

technique. It sends ack packets for each received TCP segment. Sending ack packets

for all received TCP segments reduce the performance throughput, especially in

longer path length. Therefore, Chen et al, (2008) not only points out that the path

length is an important factor to consider when choosing appropriate delay window

sizes, but also proposes a delay acknowledgement scheme that delays and balances

ack flow and burst loss. This approach improves throughput up to 30% in static

networks. In addition, a number of TCP variants have been introduced for the

traditional TCP with layer approach (i.e. enhance within the single layer) and the

mobile wireless environments with cross layer approach (i.e. use the aid of other

layers). The next sections describe how to enhance the transport layer protocol (i.e.

TCP) to achieve the better performance in mobile environments.
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3.2 Enhancements of Traditional TCP

Reno (Allman, 1999), New Reno (Floyd & Henderson, 1999), Vegas (Brakno et al.,

1994) and Westwood (Caasetti et al., 2002) proposed TCP enhancements with a

single layer approach.

3.2.1 TCP-Reno

Instead of starting transmission from a slow start after a relatively long idle period,

Allman (1999) introduced TCP-Reno that adds fast retransmit and fast recovery

algorithms. With fast retransmit, Reno attempts to retransmit packets before a

timeout, but the sender initiates the slow-start procedure as if a timeout causes the

retransmission. With fast recovery, Reno uses additive increase/multiplicative

decrease (AIMD) at all time, and only initiates the slow start when either a connection

is established or a timeout occurs. In other words, Reno with fast recovery omits the

slow start if no timeout occurs as shown in Figure 3.2.

Figure 3.2 : Congestion control algorithm of TCP-Reno

3.2.2 TCP-New Reno

TCP-New Reno (Floyd & Henderson, 1999) is an improvement of Reno, and it is

advanced fast transmit, where three duplicate acknowledgments signal a

Duplicate
Timeout

Slow start

Additive increase
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retransmission without a timeout with fast recovery. The fast recovery means that

once a certain ACK threshold is received, the window size is decreased by half rather

than starting over with a slow start. Only during a timeout does it go back into slow

start. New Reno increases the adoption of the TCP selective acknowledgements

(SACK) (Mathis & Mahdavi, 1996) modification.

Figure 3.3 : Congestion control algorithm of TCP-New Reno

TCP-New Reno involves two kinds of ACKs: partial ACK and full ACK. The partial

ACK acknowledges some segments at the fast recovery stage while the full ACK

acknowledges all outstanding data. Upon receiving the full ACK, the sender sets the

congestion window to slow start threshold and terminates the fast recovery as shown

in Figure 3.3. Then the congestion avoidance mechanism is resumed. In this way, the

New Reno maintains a high throughput.

3.2.3 TCP-Vegas

Tahoe, Reno and New Reno variants are window-based transport protocols that adjust

the congestion window upon packet losses. On the other hand, Brakno et al., (1994)

introduce a delay-based TCP, called TCP-Vegas, which does not violate the
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congestion avoidance paradigm of TCP. Vegas prevents packet losses by reducing the

sending rate once it senses initial congestion. Vegas uses packet delay as an indication

of congestion.

In a situation where a duplicate ACK is received, the timestamp for the ACK is

compared to a timeout value. If the timestamp is greater than the timeout value, then

Vegas will retransmit rather than waiting for three duplicate ACKs. Vegas estimates

the available bandwidth using the difference between expected and actual flow rates.

When the network is congested, the actual flow rate will be smaller than the expected

flow rate. Otherwise, the actual flow rate and the expected flow rate are close to each

other. TCP-Vegas estimates the congestion level and updates the window size

accordingly. The difference between the flow rates can be easily calculated during the

round trip time using the equation= ( – )
where is the minimum round trip time. Based on Diff, the source updates

its window size as follows.

= + 1 <− 1 >
3.2.4 TCP-Westwood

TCP-Westwood (Caasetti et al., 2002) modifies the congestion window algorithm of

TCP at a sender-side. The idea behind is to estimate the available bandwidth to

control the congestion window size by monitoring the ACK packets. A sender

measures the rate of ACKs that it receives and estimates the current bandwidth

according to that connection. Once packet losses occur (i.e. timeout or duplicate

ACKs), the sender set appropriate congestion window according to the estimated
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bandwidth. Instead of halving the congestion window like Reno and New Reno, TCP

Westwood backs off some value of cwnd and threshold based on the estimated value

to ensure faster recovery. The improvement of Westwood is more significant in lossy-

link wireless networks due to its bandwidth estimation.

3.3 Layer Approach for Enhancements of TCP

The transport layer protocol (i.e. TCP) has been enhanced with layer approach and

cross layer approach for the mobile environments. Due to the inherent reliability of

wired networks, there is an implicit assumption made by TCP that any packet loss is

due to congestion (Caceres and Lftode, 1995). TCP simply invokes the congestion

control mechanism as soon as packet losses are detected.

Figure 3.4 : Layer TCP enhancements for MANETs

To adjust a congestion window due to packet losses and to be robust to sporadic

losses due to channel errors, Gao, et al (2008) proposed TCP SPC (Statistic Process

Control) by using RTT statistics that judge the network status. Although the wider use

of TCP provides reliable data transmission for the wired Internet, there has been

significant performance degradation when it is implemented in the wireless world.

Node mobility, misinterpretation of packet losses, frequent route breaks, congestion
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and the effects of path length are common problems for the TCP. Figure 3.4 shows

the layer approaches to apply TCP in the mobile environment.

3.3.1 Fixed RTO

To distinguish between route failures and congestion, Dyer and Boppana (2001)

proposed the fixed retransmission timeout (fixed RTO) technique by enhancing the

transport layer. There are two RTOs to determine whether the packet loss is due to

route break or congestion. The two timeout events occur in sequence, and then if the

missing acknowledgement is not received after the expiry of the second timeout, the

source node assumes that this packet loss is due to route failure. Instead of using an

exponential backoff algorithm of the traditional TCP, the fixed RTO is maintained

without doubling the timeout value until the route is re-established. This technique is

evaluated for three ad hoc routing protocols, i.e. AODV, DSR and ADV (Adaptive

proactive) (Boppana and Konduru, 2001). ADV with fixed RTO technique achieves a

higher throughput up to 12%, with lower overhead compared to AODV and DSR.

3.3.2 TCP-DOOR

Due to the out-of-order delivery events occurring at the TCP destination, an end-to-

end protocol called TCP Detection of Out-of-Order and Response (TCP-DOOR) was

proposed by Wang and Zhang (2002) by enhancing the transport layer. The out-of-

order events are detected by using the non-decreasing property of the ACK sequence

numbers. Out-of-order packets are detected by looking at either the sequence number

of packets at the receiver side or the sequence number of ACKs at the sender side.

These out-of-order events are interpreted as route failures and the congestion control

algorithm is disabled temporarily. However, the assumption of out-of-order packet as

due to route failure deserves further analysis because the sender or the receiver may
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receive the out-of-order packets due to collision or congestion. Simulation results of

TCP-DOOR show that it improves throughput up to 50% on average due to its out-of-

order detection.

3.3.3 COPAS

Cordeiro et al. (2003) proposed the Contention-based Path Selection (COPAS) to

address the TCP performance by considering the TCP packet drop due to the wireless

channel. COPAS not only uses the routing layer information and selects disjoint

routes but also redirects packets whenever a route failure occurs. It monitors the

backup threshold to measure the contention levels in the network. Once the contention

of a route exceeds the backup threshold, an uncongested route or a new route is

selected to redirect traffic from a highly congested route. Simulation results show that

COPAS achieves 90% better throughput than DSR in a static network. Although this

technique is the best for static networks, it may not perform well for mobile networks.

3.3.4 Link RED

The link Random Early Detection (RED) algorithm proposed by Fu et al. (2003)

monitors the average number of retransmissions at the link layer to reduce the

wireless channel contention. When the average number of retransmissions exceeds a

given threshold, the backoff timer at the MAC layer is increased without notifying the

sender. In this way, the link RED technique is able to improve TCP throughput

between 5% to 30% in various simulated topologies.

3.3.5 Neighborhood RED

Xu et al. (2003) proposed the neighborhood Random Early Detection (RED) to

enhance TCP fairness. This algorithm uses a new distributed queue called
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neighborhood. It also measures RED dropping and neighbor contention level based on

ideal and busy time slots. The neighborhood RED aggregates queues of its one-hop

neighbors to compute the average queue size. Simulation results verify its

effectiveness in improving TCP fairness.

3.4 Cross-layer Approach for Enhancements of TCP

There are cross layer enhancements that address the problem of TCP’s inability.

Figure 3.5 shows the modified versions of the mentioned problems to improve the

performance with the cross layer approaches.

Figure 3.5 : Cross layer TCP enhancements for MANETs

3.4.1 TCP-F

TCP-Feedback (TCP-F) was proposed by Chandran et al. (2001) to overcome the

problem of invoking the congestion control algorithm by mistake. It depends on an

intermediate node at the routing layer to monitor the mobility of a downstream

neighbor along the route. To signal TCP about the route failure, a route failure

notification (RFN) is set whenever a route break is detected at the routing layer. Upon

receiving RFN, the TCP sender goes into the snooze state, stops sending packets and

freezes timers. The sender can resume transmission after receiving a route

reestablishment notification (RRN) from the network layer. Although entering the
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TCP-Feedback (TCP-F) was proposed by Chandran et al. (2001) to overcome the

problem of invoking the congestion control algorithm by mistake. It depends on an

intermediate node at the routing layer to monitor the mobility of a downstream

neighbor along the route. To signal TCP about the route failure, a route failure

notification (RFN) is set whenever a route break is detected at the routing layer. Upon

receiving RFN, the TCP sender goes into the snooze state, stops sending packets and

freezes timers. The sender can resume transmission after receiving a route

reestablishment notification (RRN) from the network layer. Although entering the
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snooze state avoids unnecessary retransmission and invoking congestion control, if a

route to the sender is not established at the routing layer due to mobility, additional

control packets, such as RFN and RRN, tends to increase congestion and collision in

the network. This could lead to the performance degradation, such as increased end-

to-end delay and decreased throughput.

3.4.2 TCP-ELFN

The explicit link failure notification (ELFN) technique is similar to TCP-F and was

proposed by Holland and Vaidya (2002) to inform a TCP sender about a route failure.

Upon receiving the ELFN message, the TCP sender disables its retransmission timers

and enters a standby mode, but it periodically sends a small packet to probe the

network. Unlike the TCP-F, the TCP-ELFN uses an explicit notification to monitor a

new route. As soon as an acknowledgement for the probe packet is received, the TCP

sender defers the standby mode, resumes its retransmission timer, and continues the

packet transmission. The TCP-ELFN, which uses the DSR routing protocol, requires

only a link failure notification from the lower layer. However, both mechanisms,

TCP-F and TCP-ELFN, do not consider bit error that is very common in the

MANETs.

3.4.3 Ad Hoc TCP (ATCP)

ATCP (Liu and Singh, 2001) inserts a thin layer between IP and TCP to handle packet

losses or high bit error rate. Contrary to previous TCP F/ELFN, ATCP considers the

packet losses due to channel errors. Explicit Congestion Notification (ECN) and

destination unreachable message are used to learn the network state information so

that the sender can pick a proper state correctly. If the sender receives a destination

unreachable message, it goes into persist state and packets are not transmitted until a
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new route is found instead of invoking a congestion control. As soon as the ECN is

received, congestion control is immediately started instead of waiting for a time out

period.

The high bit error is detected when packet losses occur, but if the ECN bit is not set,

ATCP assumes such losses as bit error and simply retransmits the lost packets. ATCP

is only active at the TCP layer, and has four possible states: Normal, Congested, Loss

and Disconnect. In the normal state, ATCP counts the number of duplicate ACKs and

put TCP in the persist mode if either three duplicate ACKs are received or the

retransmission timer expires. Then it goes to the loss state and transmits the

unacknowledged segments of TCP buffer. If the ECN flag that indicates congestion is

active, it goes to the congested state, does nothing, and returns to the normal state on

receiving a packet from the TCP layer. If the TCP sender receives an unreachable

message, it enters a Disconnected state as shown in Figure 3.6.

Although the ATCP is transparent, meaning that nodes with and without ATCP can

set up TCP connections normally, the ATCP layer may require to change the layer

interfaces currently in use.

Figure 3.6 : State transition diagram for ATCP at the sender (Liu and Singh, 2001)
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3.4.4 TCP-Bus

Buffering capacity and sequence information (TCP-Bus) was proposed by Kim et al.

(2000). TCP-Bus uses feedback information of a node that detects a path break. The

source initiated on-demand Associatively Based Routing (ABR) (Toh, 1999) is

selected to get the feedback information from the routing layer. TCP-Bus uses two

control messages, i.e. explicit route disconnection notification (ERDN) and explicit

route successful notification (ERSN) for route maintenance. On detecting a route

break, the ERDN is generated at the intermediate node or pivoting node (PN). After

discovering a new partial route from the source to destination, the PN sends an ERSN

message to the source node. During the route reconstruction phase, packets are

buffered until a new partial route is established. When a route failure occurs, timeout

values for the buffered packets are doubled. To retransmit the lost packets, the

receiver node requests a selective retransmission by sending an indication to the

source. Although the TCP-Bus outperforms TCP and TCP-F, it does not consider the

failure of the PN to establish a new route to the destination.

3.4.5 Split TCP

Split TCP (Kopparty et al., 2002) mainly solved the unfairness problems between

TCP sessions because sessions with short paths achieve much higher throughput than

sessions with long paths. The split-TCP also splits a TCP connection into a set of

shorter TCP connections, and proxy nodes are used as end points of these short

connections as shown in Figure 3.7. The number of proxies depends on the path

length – longer paths require more proxy nodes. The routing agent determines if a

node has a proxy duty according to the inter-proxy distance. The responsibility of a

proxy is to capture TCP packets, store them, and send local acknowledgement

(LACK) packets to the source (or the previous proxy). When the proxy receives
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LACK, the stored packets are cleared. In the end-to-end delivery, the destination node

also sends end-to-end ACKs to the source upon receiving packets.

Figure 3.7 : TCP-Split (Kopparty et al., 2002)

The intermediate nodes decide whether they should act as a proxy or a normal node

depending on the number of hops. The split-TCP improves throughput and fairness.

As the split TCP still requires the end-to-end ACKs, when a proxy fails or becomes

disconnected from the network, the overall throughput is higher than that of regular

TCP. Large buffers and network overload are the weaknesses of split TCP. On the

other hand, as the number of TCP connections increases, the number of proxies also

increases. A node may act as a proxy for two or three TCP connections, giving rise to

the possibility of buffer overflow at the proxy. This approach works best with fewer

TCP connections. As the number of TCP connections increases, not only the number

of proxies, but also the overhead used for LACK, increases. A similar split TCP

technique was proposed by Luglio et al, (2004) for satellite networks.

3.4.6 Hop-by-hop Transport Protocol

As the end-to-end data reliability checking tends to decrease the TCP performance in

the MANETs, Scofield (2007) and Heimlicher et al. (2007) designed a hop-by-hop
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framework to overcome the end-to-end inefficiency of TCP. According to the

simulation results, the hop-by-hop transport protocol delivers data packets three times

faster than the end-to-end TCP in the MANETs. In the hop-by-hop framework, data

packets are forwarded from node to node in a store-and-forward manner, and the

participation of intermediate nodes is very important. The hop-by-hop protocol is run

on every node, and provides per-link flow control and congestion control. Ensuring

end-to-end data efficiency still requires the end-to-end flow and congestion control.

However, checking data packets at every node are very expensive for scarce

resources, such as battery power and bandwidth. As we mentioned above, the

transport protocols are enhanced to improve throughput and fairness of TCP with the

aid of routing layer protocols. In this thesis, to provide a reliable data transmission,

we use a proxy node for each TCP connection, instead of using many proxies for one

TCP connection, with the assistance of the routing layer.

3.5 Chapter Summary

Previous researchers have focused on solving the following problems.

 The difficulty to distinguish route failures and congestion

 Out-of-order delivery packets at the destination node

 Packet drop problems of TCP due to the wireless channel

 Contention and collision problems

 TCP unfairness problems

 TCP’s end-to-end inefficiency problems

The approaches taken to solve the above problems are:

1. Enhancing protocol within a single layer

 Congestion control algorithm
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 Retransmission and timeout considerations of TCP

2. Sharing information between layers

 Use the information of other layers to detect bit error and contentions

 Learn topology changes with the information from other layers

While the proposed solutions above are able to address the problems at the transport

layers, there is an outstanding problem as listed below:

 For the reliability of TCP data packets at the transport layer, the sender and

receiver check whether the packets are received correctly by using

acknowledgment packets. However, not only are the routes very unstable, but

the end-to-end data reliability checking of TCP is insufficient in the MANETs.

The hop-by-hop transport protocols proposed by Scofield (2007) and

Heimlicher et al. (2007) checks the reliability of data packet at every node to

improve the correctness of data and throughput. However, this approach is

very expensive on scarce resources, such as bandwidth, power and memory

usages. Therefore, in this thesis, the technique that we proposed checks the

reliability of data packets at a proxy node for a TCP connection while

maintaining the end-to-end reliability of TCP.

As a summary, we propose a proxy acknowledgement (PACK) technique for the TCP

senders. For the efficiency of TCP data packets, instead of checking TCP packets

either at every hop or at many proxies like split TCP, the proposed protocol monitors

data packets at one proxy node between a source and destination. The main objective

is to address the problems of end-to-end inefficiency and hop-by-hop inefficiency at

the transport layer by using a proxy-assisted approach. The justification for our

proposed solution is discussed in Chapter 5.
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Chapter 4

RESEARCH METHODOLOGY: THE CROSS LAYER

ENHANCEMENT BETWEEN THE ROUTING AND MAC LAYERS

4.1 Introduction

This chapter discusses the methodology of PART protocol, followed by

implementation and experimental results. The proposed protocol, Proxy-assisted

routing protocol for data transmission (PART) must satisfy the following

requirements to transmit data packets efficiently.

Resilience to route failures: The protocol is designed to be resilient to route failure

with the aid of a proxy node.

Broadcast zone limitation: The protocol limits the broadcast zone to reduce

unnecessary forwarding of control packets.

Cross-layer information: It needs the address of downstream and upstream nodes

from the MAC layer for unicast transmission.

4.2 Components of PART Protocol

PART consists of two components, which are explained below.

4.2.1 Packet Types

The packets that are used in PART protocol are shown in Figure 4.1. A broadcast

route request (RREQ) packet and a unicast route reply (RREP) packet are to discover

a route. For reporting a route error or collision, a broadcast or unicast route error

(RERR) packet is sent depending on the precursor lists1 in the routing table. For

1 The precursor lists of a routing table entry contain the neighbor nodes to which a route reply is generated or forwarded.
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repairing a route locally after receiving a route failure notification, RREQ and RREP

with flags are used. For notifying a proxy address, a P-INFORM packet is used by

using cross-layer information for the unicast transmission.

Figure 4.1 : Formats of control packets for PART

RREQ/RREQ-with-flag

Pflag Proxy only flag; indicates only the proxy may respond to

RREQ.

Dflag Destination only flag; indicates only the destination may

respond to RREQ.

Bcast-id An ID number that indentifies the particular RREQ with the IP

address of a source node.

Hop Count (HC) The number of hops from the originator IP address to the node

handling the request.

Destination IP address (Dest)

The IP address of the destination that is intended for data

transmission.

RREQ/ RREQ-with-flag
Flag (P,D) Bcast-id HC PHC dest dest-seq-num src src-seq-num padd

RREP/RREP-with-flag

Flag (P,D) HC PHC dest dest-seq-num src padd

RERR

dest-count proxy-count unreach-dest unreach-dest-seq-num unreach-proxy

P-INFORM

dest dest-seq-num Padd HC PHC
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Destination sequence number (dest-seq-num)

The latest SN previously received by the originator for any

route toward the destination.

Proxy hop count (PHC)

The number of hops to the proxy from the current node.

Source IP address (src)

The address of the source node that sends data packets.

Source sequence number (src-seq-num)

The current sequence number to be used in the route entry

pointing toward the originator of the route request.

Proxy Address (Padd)

The address of the proxy node.

RREP/RREP-with-flag

Most fields are the same as RREQ packet. The only difference is the transmission

method, i.e. unicast or broadcast transmission.

RERR

Unreachable destination IP address

The IP address of the destination that has become unreachable

due to a link break.

Unreachable destination sequence number

The sequence number in the routing table for the destination

listed in the previous unreachable destination IP address field.

Unreachable proxy address

The IP address of the proxy that has become unreachable due to

a link failure or proxy failure.
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DestCount The number of unreachable destinations in the message.

Proxy-count The number of hops to the proxy from the current node.

P-INFORM

P-INFORM is used to notify the destination node the proxy’s address after assigning a

proxy node.

4.2.2 Routing Table

Each node needs to keep track of how to deliver data packets, and for this purpose, a

routing table is used. The routing table is like a database to store the shortest paths or

all available paths to provide nodes with routing information as shown in Figure 4.2.

Figure 4.2 : Routing table of PART

PART is a hop-by-hop routing protocol, where each routing table keeps all reachable

destinations and the address of the next node towards the destination. An entry in a

routing table contains the following information.

 Destination IP address

 Hop Count: The last known hop count to the destination

 Destination sequence number: The latest sequence number for the destination

 Proxy Hop Count: The number of hops away from source/destination to a

proxy.

 Next Hop: The node to forward a data packet in order to reach the destination

ROUTING TABLE

dest seq-num hops p-hops next hop proxy rep_downstream flag
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 Proxy Hop: The node that needs to send local acknowledgement or repair the

broken routes

 Lifetime: How long a route remains valid

 List of Precursors: The list of neighboring nodes that are likely to use them as

next hops toward a destination

 Valid Destination sequence number flag

When a node receives a control message from a neighbor, it checks its routing table

for an entry of the destination. If an entry does not exist, one is created. If an entry

exists, it compares the destination sequence number in the entry and in the message.

The route is updated if either

 the sequence number (SN) in route table entry (RTE) is lower than the one in

the control message, i.e., (SN RTE< SN CONTROLmessage) or

 the sequence numbers are equal (SNRTE == SNCONTROLmessage), but the hop

count of control packets is smaller than the existing hop count in the table,

i.e., (HC CONTROLmessage< HC RTE) or

 the sequence number is unknown.

Depending on the control message, the lifetime of an active route is updated each time

the route is used, and is initialized to ACTIVE_ROUTE_TIMEOUT. Each time a route

is used to forward a data packet, each node on the route updates this field to

(CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT).

4.3 Overview of PART Protocol

The characteristics of PART include broadcast and unicast techniques and proxy

repair function to repair the routes locally.
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 PART builds routes using a Route Request (RREQ) broadcast with or without

a flag, and a Route Reply (RREP) unicast with or without a flag. P-INFORM

is used to let the other nodes know the proxy’s address.

 The proxy calculation function is the responsibility of the destination. A node

receiving the RREQ does the following.

o Check if it is with or without a flag.

o If a destination node receives RREQ-NOflag, it considers using a

proxy node according to the hop count information.

o Reply with RREP-NOflag packet to the sender when an intended

destination receives RREQ-NOflag packet.

o Reply with RREP-Pflag to the sender when a proxy node receives

RREQ-Pflag packet.

o Reply with RREP-Dflag to the proxy when a destination node receives

RREQ-Dflag packet.

 To reduce the number of RREQ broadcast packets, a limited broadcasting

zone is created to decrease routing overhead.

 The proxy node is responsible for detecting a route break and repairing it

locally by broadcasting the RREQ-Dflag packet (i.e. Proxy repair function).

4.4 Route Discovery Procedure and Functionalities of Nodes

In the following sections, the fundamental operations of the nodes (i.e. source node,

destination node, intermediate node and proxy node) and how to assign a proxy node

during a route discovery procedure are outlined.

The source node decides whether the RREQ is broadcast with or without flag,

depending on its routing table information. Firstly, the source node checks its routing
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table (RT) to find information related to a proxy node. If the source node finds the

proxy address (Padd) in its routing table, it sends RREQ-Pflag to the proxy node

instead of broadcasting the RREQ packet to reach the destination. Otherwise, it

broadcasts RREQ-NOflag packet throughout the network (cf. Algorithm 4.2).

Receive Data from Application layer (Source)

1: upon receiving a data packet from the application layer do
2: put data packets into send buffer
3: call Algorithm 4.2
4: end upon

Algorithm 4.1 : Data from the application layer

Send control packet (RREQ-NOflag) at the source node

1: upon receiving a data packet intended for a node do
2: if proxy address is not already known in the routing table then
3: send RREQ-NOflag
4: else
5: send RREQ-Pflag
6: end if
7: end upon

Algorithm 4.2 : Functions of a source node

The basic route discovery procedure of PART is shown in Figure 4.3. When a

destination node receives a RREQ-NOflag, it decides whether to use the assistance of

a proxy node by checking the hop count of RREQ. In this case, the minimum

allowable hop count value, which is an adjustable value, is defined as three. When the

distance between the source and destination node is less than the defined value, a

proxy node is not used.

To repair a route and start data transmission quickly, a middle node in the path is

assigned as a proxy node. If the hop count of RREQ-Noflag is greater than the

predefined value, the proxy calculation function is invoked (cf. Algorithm 4.3). If the

hop count is even, proxy hop count (PHC) is taken by dividing the hop count by two.
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Otherwise, the hop count is added by one and divided by two to assign a proxy node

along the path (cf. Algorithm 4.4).

Figure 4.3 : RREQ-NOflag packet broadcasting and routing table updating

Receive control packet (RREQ-NOflag) at the destination node

1: upon receiving RREQ at destination do
2: check HC of RREQ
3: if HC is greater than a predefined value then
4: call Algorithm 4.4
5: end if
6: end upon

Algorithm 4.3 : Consideration of a proxy involvement

Proxy calculation function at destination node

1: if HC is even then
2: HC is divided by two to obtain PHC value
3: else
4: HC is added by one and divided by two to obtain PHC value
5: Add PHC value to the RREP-NOflag packet
6: end if

Algorithm 4.4 : Proxy calculation function
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Proxy node assignation at intermediate nodes

1: upon receiving RREP-NOflag at the intermediate nodes do
2: check PHC value and HC value
3: if PHC and HC are equal then
4: I am proxy node
5: call Algorithm 4.6
6: else
7: forward RREP-NOflag
8: end if
9: end upon

Algorithm 4.5 : Proxy node assignation process

After calculating a PHC value, the destination node attaches this value in the RREP

packet to assign a proxy node. At this point, the destination node only knows how

many hops away the proxy node is, but does not know the proxy address yet. The

intermediate nodes that receive the RREP-NOflag packet compare the calculated PHC

value and hop count value of RREP-NOflag packet, which increases monotonically. If

these values are equal, this node is assigned to perform as a proxy node. Otherwise,

RREP-NOflag packet is forwarded to the next hop according to the routing table

information (cf. Algorithm 4.5).

The PART protocol comes to life after the destination node has decided the PHC

value when it receives the RREQ-NOflag packet. The destination node updates its

routing table first after calculating the PHC value. In other words, the PHC value is 3,

which is added to the routing table of the destination node as shown in Figure 4.4.

Then, this PHC value is attached in RREP-NOflag packet (Padd, PHC, HC, for

example, 0, 3, 1). The destination node does not know the proxy address yet, thus

Padd is 0; PHC, which is a calculated value is 3; and HC, which always starts at 1.

Referring to Figure 4.4, when the intermediate nodes (i.e. nodes 6 and 9) receive

RREP-NOflag packet, they compare whether the PHC and HC values are equal,
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update their routing tables and forward RREQ-NOflag packet because the values are

not equal.

Figure 4.4 : Proxy assignation with reply packet (RREP-NOflag)

When the packet arrives at node 3, and it detects that the values are equal, it takes the

responsibility of a proxy node. Node 3 then sends a unicast P-INFORM packet to the

destination node to inform its proxy address. All nodes (i.e. nodes 9, 6 and D) update

their routing tables by adding the Padd value when they receive P-INFORM. At the

same time, node 3 attaches its address in the RREP-NOflag packet; resets the proxy

hop count value and counts it from the default value to determine the distance

between the source and proxy node. In this way, all nodes along the path to the source

can update their routing tables. Before the source node starts data transmission, all

nodes along the path know the proxy address without broadcasting.
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4.4.1 Cross-layer Information for Unicast P-INFORM

The unicast P-INFORM packet is sent by taking the address information at the MAC

layer, in other words, taking the cross layer information from the MAC layer. To use

the address information of the MAC layer, rep_downstream field is added to the

routing table. When RREP-NOflag packet is received from the destination node,

intermediate nodes update the rep_downstream in the routing table. The nodes that

receive the RREP-Noflag must keep the source’s Ethernet address at the MAC layer

so that the proxy node can send a P-INFORM to the downstream node to reach the

destination while sending RREP-NOflag packet to the upstream node to reach the

source as shown in Figure 4.4 and Algorithm 4.6.

Sending unicast P-INFORM packet at the proxy node

1: upon receiving RREP-NOflag at the proxy node do
2: add rep_downstream field in the routing table
3: take source’s Ethernet address at the MAC layer
4: update rep_downstream address of routing table
5: send P-INFORM to this downstream address
6: while receiving P-INFORM at the nodes then
7: if I am a destination node then
8: add proxy address in the Padd of routing table
9: else
10: forward P-INFORM to downstream address
11: end if
12: end while
13: end upon

Algorithm 4.6 : Sending unicast P-INFORM

4.5 Limiting of the Broadcast Zone

In order to reduce the routing overhead, the source node defines a broadcast zone after

it receives a route failure signal. A source node decides on a broadcasting zone

depending on the nature of the route error. When a source node detects that a route

error is due to the packet collision at the MAC layer “COL”

(DROP_MAC_COLLISION) (new-trace explanation), it sends a broadcast RREQ-
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Pflag packet to the proxy node. To limit the broadcast zone, the source node attaches

the PHC value in the RREQ-Pflag packet while repairing the route as shown in Figure

4.5 and Algorithm 4.7.

Source node limits a broadcast zone depending on the ERROR

1: upon receiving ERROR at the source node do
2: check ERROR type
3: if collision at MAC layer then
4: send RREQ-Pflag to the proxy node
5: else
6: send RREP-NOflag to the source node
7: end if
8: end upon

Algorithm 4.7 : Limiting a broadcast zone depending on the error type

Figure 4.5 : Limitation of broadcasting zone with hop count consideration

When the intermediate nodes receiving the RREQ-Pflag packet find that the hop

count is greater than PHC plus two, they discard the RREQ-Pflag packet without
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forwarding it. Referring to Figure 4.5, the PHC value of the source node is 2. Before

the source node sends RREQ-Pflag packet, it attaches the PHC value 2. The RREQ-

Pflag packet is forwarded as long as the hop count is less than (PHC+2) or the node is

not the proxy.

If an intermediate node discovers the hop distance is higher than (PHC+2), it discards

the RREQ-Pflag packet. For example, in Figure 4.5, when node 9 receives RREQ-

Pflag packet, it detects that the hop count is 5, which is higher than (PHC + 2 = 4). A

similar situation is seen at node 7. Node 9 and node 7 will not forward the RREQ-

Pflag packet and discard it. When the proxy node receives the RREQ-Pflag packet, it

sends a RREP-Pflag packet to the source.

4.6 Repairing Routes at the Proxy Node

When a proxy node detects that there is a packet drop or receives an ERROR packet,

it tries to repair the route by sending a RREQ-Dflag packet intending that the

destination should reply to it. The direction of packet flow determines which node

acts as a source and destination, i.e. the sender of the packet is the source and the

receiver is the destination. Even though the data source and destination are exactly the

same for the RREQ and TCP packets, they may not be the same for the RREP and

ACK packets. The proxy node tries to repair a route depending on the destinations of

the packets. Referring to Figure 4.6, if the dropped packet is a request or data packet,

such as TCP, the proxy node sends RREQ-Dflag to the data destination. If it is a reply

or acknowledgement packet, the proxy node sends RREQ-D to the data source.

Before sending the RREQ-Dflag packet, a proxy node keeps track of not only how

many times the route errors have occurred, but also the CURRENT_TIME that the

first error occurs. Then the proxy node tries to repair a route by calling a proxy repair
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function. However, when the proxy node finds that there have been three continuous

failures within a predefined time (i.e. 0.5 seconds), the proxy node sends ERROR

with RESET flag to inform the source node to discover a new route. (cf. Algorithm

4.8).

Figure 4.6 : Error handling at proxy node
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In Algorithm 4.8, the proxy_fail_to_forward (int), proxy_firsttime_failure (double),

and proxy_lasttime_failure (double) fields are defined in the routing tables to handle a

route error at a proxy node. Once a route break is detected, a proxy node increases

proxy_fail_to_forward by 1 and records the CURRENT_TIME that a failure occurs,

and repairs a broken route by calling a proxy_repair function that sends RREQ-Dflag

(cf. Algorithm 4.9).

Proxy node tries to repair a route when it detects an ERROR

1: upon notification to perform proxy_repair do
2: buffer data packet
3: mark RTF_IN_REPAIR in the flag of routing table
4: while proxy_timer is not expire do
5: send RREQ_Dflag
6: end while
7: end upon

Algorithm 4.9 : Proxy-repair function

4.7 Detection of Proxy Failure Conditions

There are two ways to detect proxy failure conditions.

a) Detection by Source Node

After the source node has sent the RREQ-Pflag packet to the proxy node, it sets the

RREP_P_WAIT timer. If the source node does not receive the RREP-Pflag packet

after the timeout period, it retries. If it does not receive a reply after the second

attempt, it assumes that the proxy node is dead, and discovers a new path and another

proxy if the path length is still longer than the predefined value.

Another technique to check the availability of a proxy node is the consideration of

hop count. When the source node receives RREP-Pflag packet from the proxy node, it
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checks the hop count. If the hop count is getting higher, the source node considers

finding a new proxy soon after receiving an ERROR signal.

b) Detection by Proxy Node

The proxy node has to be intelligent to detect whether it should give up the proxy

duty. Whenever an ERROR message is received, the proxy node tries to repair the

route first. However, when the proxy encounters more than three ERRORs

continuously within a very short time, it assumes that it is out of the transmission

range or has moved far away from the source and destination, and sends ERROR with

RESET flag.

As the proxy node moves out of the transmission range, the source node uses the

timer and retry techniques to discover a new route if it does not receive the ERROR

signal from the proxy node. The best thing the proxy node can do is to repair a route

with less overhead as soon as possible and supports data transmission with less delay.

4.8 The Implementation of PART Protocol

This section gives an overview of the PART protocol and the core considerations of

its design. Further, we present how the protocol interfaces with the simulator and how

cross-layer information is managed.

The building of real testbeds for wireless connection does come at a price, and it is an

impossible task when network factors like mobility, simulating area and movement

pattern, are taken into account. Moreover, it is impossible to test hundreds or

thousands of nodes using different topologies and movement patterns. Therefore,

simulators have become compulsory for wired and wireless network environments to

overcome the above mentioned problems.
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There are many simulators, for example, GloMoSim (Bagrodia et al., 1998), NS-2

(VINT Group, Network Simulator), NS-3 (Henderson et al., 2006), OMNeT++ (Varga

& Hornig, 2008), OPNET (OPNET Technologies Inc. OPNET modeler), and QualNet

(QualNet Network Simulator). A comparison of the strengths and weaknesses of

simulators has been discussed by Schilling (2005) and Weingartner and Wehrle

(2009).

NS-2 has many and expanding uses, including: To evaluate the

performance of existing network protocols; To evaluate new network

protocols before use; To run large scale experiments impossible in real

experiments; To simulate a variety of IP networks (Meeneghan, 2004).

In this thesis, we use the Network Simulator (NS), mainly due to the provision of TCP

variants, a variety of ad hoc routing protocols and wireless network interfaces. The

NS-2 is an event-driven packet level network simulator developed as a part of the

VINT project (Virtual Internet Testbed). The CMU Monarch group extended NS-2 to

provide new elements at each layer and to construct detailed and accurate wireless

simulations.

4.8.1 Introduction to Network Simulator (NS)

NS is objective-oriented and a discrete event simulator for the networking research.

Objects can be defined in two key languages: C++ and Object-oriented Tool

Command Language (OTcl).

The C++ and the OTcl are linked together using TclCL. These objects are combined

using Tcl scripts. The simulation structure of NS is shown in Figure 4.7. During

simulation, the NS creates an output trace file to analyze simulation results and output

network animation file (NAM) to visualize the network simulation scenarios.
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Figure 4.7 : User’s view and basic architecture of network simulator

4.8.2 Components of NS

Figure 4.8 shows that all objects derived from class NsObject consists of two classes:

connectors and classifiers.

Figure 4.8 : Network components of NS
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While connectors link queue, delay and agents, classifiers examine packets (i.e.

multicast or unicast) and direct them to the respective destinations.

4.8.3 Basic Protocol Implementation in NS

Network components include queue management techniques (i.e. Drop Tail queue,

RED queue, etc.), agents (i.e. TCP and UDP), routing, broadcasting and multicasting

techniques, and traced output files. The detailed structure of installation, compilation,

running and analyzing could be found in the NS manual (The Network Simulator NS-

2: Documentation).

In NS-2, a new protocol is implemented as a C++ class that provides the basic

functionality of a protocol, referred to as “routing agent”, “transport agent”, etc.

Figure 4.9 shows the basic layering concepts of protocols. The TCP agents run the

varieties of transport protocols, such as UDP and TCP (Tahoe, Reno, New Reno,

Vegas, Westwood, and Sack).

The PART agents run the PART protocols. The LL agent supports data link protocols,

such as link layer retransmissions, queuing, packet fragmentation and reassembly.

The IFq runs as an interface queue between link and MAC layers and determines the

contention level. NetIF is the interface between the node and the channel that

determines the propagation model, such as transmission power and frequency.

The RPM is a radio propagation model to implement an antenna and two-way ground

propagation. Multiplexers are used as a bridge among layers and nodes. The address

and port multiplexers (i.e. addr demux and port demux) are used as demultiplexers

that bridge a node to a receiving transport or routing agent as shown in Figure 4.9.
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Figure 4.9 : A basic mobile node structure of NS

A routing agent is implemented, whose main responsibility is to compute the routing

table. The PART routing protocol is implemented in the network simulator version

2.34. We firstly create a new directory called part inside the base directory of ns2.34,

including:

part.h This is the header file where all necessary predefined values,

timers, and routing agent are defined for the functionalities of

protocols.
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part.cc The routing agent, all timers and Tcl hooks are implemented in this

file.

part_packet.h All PART packet types are declared to enable the exchange of

packets among nodes.

part_rtable.h Header files where the routing table information of PART are

maintained.

part_rtable.cc Implement the routing table

part_rqueue.h A header file where the data packets are queued.

part_rqueue.cc Implement the queue size, queue function.

The files above are compulsory to build a new routing protocol. To implement a

routing protocol in NS, an agent must be created by inheriting from Agent class that

offers a link with a Tcl interface so that the PART protocol can be controlled through

the simulation scripts written in Tcl.

4.8.4 Necessary Changes

Before coding the PART protocol inside NS, there are some changes to integrate our

codes inside the simulator.

4.8.4.1 Packet Type Declaration

The new packet type, part, is indicated as PT_PART inside common/packet.h as

shown in Program 4.1. In order to allow a dynamic definition of part within dynamic

libraries, the predefined packet type is implemented as static constant.

Program : 4.1 //~ns/common/packet.h
1: static const packet_t PT_PART = 45;
2: class PacketClassifier {
3: …
4: name_[PT_PART]= "PART";
5: }
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4.8.4.2 Tcl Library

The new packet type, PART, is added in the following Tcl libraries to provide the

necessary infrastructure and create wireless nodes running the PART routing protocol.

(Program 4.2 to 4.5)

4.8.4.3 Tracing Support

Tracing support is the most important part of the simulator in order to keep track of

what happens during the simulation. A trace object describes the detail information of

packets during the simulation, such as which node receives what types of control

Program : 4.2 //~ns/tcl/lib/ns-packet.tcl
1: foreach prot {
2: PART
3: DSR
4: AODV
5: ARP
6:       …
7: #
8. }

Program : 4.3 //~ns/tcl/lib/ns-agent.tcl
1: Agent/PART set sport_   0
2: Agent/PART set dport_   0

Program : 4.4 //~ns/tcl/lib/ns-lib.tcl
1: Simulator instproc create-wireless-node args {
2: # …
3: switch –exact $routingAgent_{
4: PART {
5: set ragent [$self create-part-agent $node]
6: }
7: # …
8: }

Program : 4.5 //~ns/tcl/lib/ns-mobilenode.tcl
1: # Special processing for PART
2: set partonly[string first "PART" [$agent info class]]
3: if {$partonly != -1 } {
4: $agent if-queue [$self set ifq_(0)];
5: # ifq between LL and MAC   }
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packet (i.e. request, reply, error or data) at how many seconds later after running the

simulation.

The CMU trace objects provide the trace format for wireless simulations, and the new

trace information of PART is needed to add in cmu-trace.h (Program 4.6) and cmu-

trace.cc (Program 4.7). There are two trace formats: old traces and new traces. Table

4.1 gives that the detail explanation for new-trace format. Here is the example of

output new trace lines.

s -t 1.000000000 -Hs 0 -Hd -2 -Ni 0 -Nx 200.00 -Ny 297.00 -Nz 0.00 -Ne -1.000000 -Nl AGT -Nw ---
-Ma 0 -Md 0 -Ms 0 -Mt 0 -Is 0.0 -Id 1.0 -It tcp -Il 40 -If 0 -Ii 0 -Iv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po 0

In this thesis, the AWK scripts (Robbins, 2001) are utilized to analyze output trace

files. A graph generation tool (i.e. gnuplot) is used to generate output graphs

automatically (Janert, 2009).

Program : 4.6 //~ns/trace/cmu-trace.h
1: class CMUTrace: public Trace {
2: Private:
3: void format_part(Packet *p, int offset);

Program : 4.7 //~ns/trace/cmu-trace.cc
1: void
2: CMUTrace::format(Packet* p, const char *why)
3: {
4: case PT_AODV:
5: break;
6: case PT_PART:
7: break;
8: default:
9: }
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Table 4.1 : New trace format explanation

1 2 3 4 5 6 7 8 9 10 11
eve
nt

Time Node
info:

Node
ID

Node
coordinates

Node
energy

Node
trace
level

Reasons
for event

Packets
info: at
MAC

Packets
info: at

IP

Protocol
s

Types
s
r
d
f

t Hs
Hd

Ni Nx
Ny
Nz

Ne Nl Nw Ma
Md
Ms
Mt

Is
Id
It
Il
If
Ii
Iv

Vary on
Protocol

s

1 s, r, d, f send, receive, drop, forward
2 t time
3 Hs, Hd id for this node, id for next hop towards the destination
4 Ni Node id
5 Nx, Ny, Nz X, Y, Z coordinates of node
6 Ne Node energy level
7 Nl AGT – Agent trace (i.e. TCP or CBR)

RTR – Router trace (i.e. AODV, DSR or DSDV)
MAC – MAC trace (i.e. RTS, CTS, ARP)

8 Nw "END"  DROP_END_OF_SIMULATION
"COL"  DROP_MAC_COLLISION
"DUP"  DROP_MAC_DUPLICATE
"ERR"  DROP_MAC_PACKET_ERROR
"RET"  DROP_MAC_RETRY_COUNT_EXCEEDED
"STA"  DROP_MAC_INVALID_STATE
"BSY"  DROP_MAC_BUSY
"NRTE"  DROP_RTR_NO_ROUTE  (i.e no route is available)
"LOOP"  DROP_RTR_ROUTE_LOOP  (i.e there is a routing loop)
"TTL"  DROP_RTR_TTL ( i.e TTL has reached zero)
"TOUT"  DROP_RTR_QTIMEOUT  (i.e packet has expired)
"CBK"  DROP_RTR_MAC_CALLBACK
"IFQ"  DROP_IFQ_QFULL  (i.e no buffer space in IFQ)
"ARP"  DROP_IFQ_ARP_FULL ( i.e dropped by ARP)
"OUT"  DROP_OUTSIDE_SUBNET (i.e dropped by base stations on receiving

routing updates from nodes outside its domain)
9 Ma

Md
Ms
Mt

Duration
Destination’s Ethernet address
Source’s Ethernet address
Ethernet type

10 Is
Id
It
Il
If
Ii
Iv

Source address. Source port number
Destination address. Destination port number
Packet type
Packet size
Flow id
Unique id
TTL value

11 Parp

Paodv

Pcbr

Ptcp

Po
Pm
Ps
Pa
Pd

Pt
Ph
Pb
Pd
Pds
Ps
Pss
Pl
Pc

Pi
Pf
Po

Ps
Pa
Pf
Po

ARP Request/Reply
Source MAC Address
Source address
Destination MAC address
Destination address

packet type
hop count
Broadcase ID
Destination
Destination Sequence Number
Source
Source Sequence Number
Lifetime
Operation ( REQUEST, REPLY, ERROR, HELLO)

Sequence number
how many times this packet was forwarded
optimal number of forwards

sequence number
ack number
how many times this packet was forwarded
optimal number of forwards
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4.8.4.4 Priority Queue

The priority queue defines routing packets as high priority packets by inserting them

at the beginning of the queue. Therefore, the new packet type, part, is added in the

queue/priqueue.cc to be treated as high priority as coded in line 11 of Program 4.8.

4.8.4.5 Makefile

Before compiling a new protocol into the compiler, the Makefile is edited by adding

the object files of part (lines 10 and 11) of Program 4.9 inside OBJ_CC variable of

NS. These are the basic procedures to implement a new protocol in the simulator.

Program : 4.8 //~ns/queue/pri-queue.cc
1: void
2: PriQueue::recv(Packet* p, Handler *h) {
3: struct hdr_cmn *ch = HDR_CMN(p);
4: If(Prefer_Routing_Protocols) {
5: switch(ch->ptype()) {
6: case PT_DSR:
7: case PT_MESSAGE:  #DSDV
8: case PT_AODV:
9: case PT_AOMDV:
10: case PT_PART:
11: recvHighPriority(p, h);
12: break;
13: default:
14: Queue::recv(p,h)
15: }
16: }

Program : 4.9 //~ns/Makefile
1: OBJ_CC = \
2: tools/random.o tools/rng.o tools/ranvar.o
3: common/misc.o common/timer-handler.o \
4: …
5: aodv/aodv_logs.o aodv/aodv.o \
6: aodv/aodv_rtable.o aodv/aodv_rqueue.o \
7: aomdv/aomdv_logs.o aomdv/aomdv.o \
8: aomdv/aomdv_rtable.o aomdv/aomdv_rqueue.o \
9: …
10: part/part_logs.o part/part.o \
11: part/part_rtable.o part/part_rqueue.o \
12: …
13: $(OBJ_STL)



86

We are going to explain how to implement the PART protocol in the simulator in the

following section. The PART protocol has to maintain an internal state, such as a new

class inside the routing agent, a routing table and control packet types.

4.8.5 Packet Header Declaration

The PART packet types are coded in lines 4-6 of Program 4.10. All data structures,

constants and macro lines 7-11 of Program 4.10 are put to a new packet type. Lines

12-20 of Program 4.10 declare the PART header format that can be shared among the

packet types of PART.

Lines 22-35 of Program 4.10 are an example of request packet format (RREQ).

nsaddr_t Every time the network address needs to be declared in ns2.

u_int32_t 32 bits unsigned integer.

u_int8_t 8 bits unsigned integer.

Double Floating arithmetic for timer

Program : 4.10 //~ns/part/part_packet.h
1: #ifndef __part_packet.h__
2: #define __part_packet_h__
3: /* Packet formats */
4: #define PARTTYPE_RREQ 0x02
5: …
6: #define PARTTYPE_PINFORM 0x12
7: /* Header Macros */
8: #define HDR_PART(p)((struct hdr_part*)hdr_part::access(p))
9: …
10: #define HDR_PART_REQUEST(p)((struct
11: hdr_part_request*)hdr_part::access(p))
12: /* General PART Header which is shared by all formats */
13: struct hdr_part {
14: u_int8_t        ah_type;
15: static int offset_;
16: inline static int& offset() { return offset_; }
17: inline static hdr_part* access(const Packet* p) {
18: return (hdr_part*) p->access(offset_);
19: }
20: };
21: …
22: /* example of packet type */
23: struct hdr_part_request {
24: nsaddr_t   rq_src;  //Node which originated the packets
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4.8.6 Routing Table Implementation

The main responsibility of a routing table is to maintain up-to-date routing

information. When a node receives a PART control packet from a neighbor, it checks

its routing table for an entry for the destination. If there is no entry, a new entry must

be created.

25: u_int32_t  rq_seqno; //Packet sequence number
26: u_int8_t   rq_hop_count; //The number of hops
27: Double     rq_timestamp;
28: …
29: inline int size() {
30: int sz = 0;
31: sz = size*sizeof(u_int32_t);
32: assert(sz>=0);
33: return sz;
34: };
35: };
36: …
37: union hdr_all_part { // for size calculation for header
38: hdr_part ah;
39: };
40:
41: #endif

Program : 4.11 //~ns/part/part_rtable.h
1: #ifndef __part_rtable_h__
2: #define __part_rtable_h__
3: class part_rt_entry {
4:
5: public:
6: part_rt_entry();
7: void nb_insert(nsaddr_t id);
8: void pc_insert(nsaddr_t id);
9: PART_Precursor* pc_lookup(nsaddr_t id);
10: void pc_delete(nsaddr_t id);
11: void pc_delete(void);
12: double rt_req_timeout;
13: u_int8_t  rt_flags;
14: nsaddr_t rt_rep_downstream; //Unicast P-INFORM
15: …
16: protected:
17: LIST_ENTRY(part_rt_entry) rt_link;
18: nsaddr_t   rt_dst;
19: u_int32_t  rt_seqno;
20: u_int16_t  rt_hops; // hop count
21: Nsaddr_t   rt_padd;  // proxy address
22: }
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According to the information contained in the control packet, the sequence number is

determined to ensure up-to-date routes. It is also necessary to maintain a list of

precursors (i.e. the neighborhood information of nodes) in the routing table entry.

In part_rtable.h, lines 7-11 of Program 4.11 are for inserting and deleting the

neighbors. Lines 16-22 of Program 4.11 are examples of routing table entries, such as

the timeouts, flags, destination (dst), sequence number, hops, proxy address (padd)

etc. In part_rtable.cc, the initial values are assigned for each routing entry shown in

Program 4.12. After that, a classifier-port that classifies the packets is declared. In

Program 4.13, function classify (p) returns the destination port number of the IP

header of the incoming packet p.

Program : 4.12 //~ns/part/part_rtable.cc
1: part_rt_entry::part_rt_entry()
2: {
3: int i;
4: rt_req_timeout = 0.0;
5: rt_rep_downstream = 0;
6: rt_dst = 0;
7: rt_seqno = 0;
8: rt_hops = rt_last_hop_count = INFINITY2;
9: rt_nexthop = 0;
10: rt_padd = 0;
11: …
12: LIST_INIT(&rt_pclist);
13: rt_expire = 0.0;
14: rt_flags = RTF_DOWN;
15: }

Program : 4.13 //~ns/classifier/classifier_port.cc
1: int PortClassifier::classify(Packet *p)
2: {
3: hdr_ip* iph = hdr_ip::access(p);
4: return iph->dport();
5: }
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4.8.7 PART Agent

The PART agent performs functions for the proxy local repair, local

acknowledgement for TCP packets, adaption of route between source and proxy; or

proxy and destination vice versa. The necessary functions and headers are declared in

the part.h of the part directory of ns in Program 4.14.

Program : 4.14 //~ns/part/part.h
1: #include <cmu-trace.h>
2: #include <priqueue.h>
3: #include <part/part_rtable.h>
4: #include <part/part_rqueue.h>
5: #include <classifier/classifier-port.h>
6: …
7: …
8: #define PART_PROXY_REPAIR
9: #define RREP_WAIT_TIME         1.0 // sec
10: #define RREP_P_WAIT_TIME       0.5 // sec
11: #define PRO_RESET_TIME 0.5   // sec
12: …
13: class  PARTProxyRepairTimer: public Handler {
14: public:
15: PARTProxyRepairTimer(PART *a): agent(a) {}
16: void handle(Event*);
17: private:
18: PART *agent;
19: Event intr;
20: };
21: …
22: void  proxy_calculation(Packet *p);
23: void  forward(part_rt_entry *rt, Packet *p,
24: double delay);
25: void  sendHello(void);
26: void  sendRequest(nsaddr_t dst, nsaddr_t padd,
27: u_int8_t phc, u_int8_t flags);
28: void  sendReply(nsaddr_t ipdst, u_int32_t
29: hop_count, u_int32_t phop_count,
30: nsaddr_t rpdst, u_int32_t rpseq,
31: nsaddr_t padd, u_int32_t lifetime,
32: double timestamp, u_int8_t flags);
33: void  sendError(Packet *p, u_int8_t flags,
34: bool jitter = true);
35: void sendProxyInform(nsaddr_t dst);
36: …
37: void  recvPART(Packet *p);
38: void  recvHello(Packet *p);
39: void  recvRequest(Packet *p);
40: void recvReply(Packet *p);
41: void  recvError(Packet *p);
42: void recvProxyInform_D(Packet *p);
43: …
44: PortClassifier *dmux_;
45: };
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The proxy_calculation function (line 23 of Program 4.14) is called to determine

whether a proxy node should be used. On the other hand, the Timer is required for the

controlled packets that are sent periodically or after some events have occurred. Lines

14-21 from Program 4.14 are the codes for the PARTProxyRepairTimer, which is

used while a proxy node is trying to repair a broken route.

4.8.7.1 Tcl Hooks

The packet header of part in Program 4.10 (Section 4.8.5) has to be found to a Tcl

interface. Tcl (Tool control language) is used for writing the protocol testing codes,

such as random topology, grid topology, chain topology, etc. To access Tcl scripts for

testing scenarios, the offset of the packet header and a portion of part.cc, Program

4.15, performs such functions.

4.8.7.2 Cross-layer Communication

The unicast transmission for P-INFORM packet is done by taking the address of the

upstream node from MAC layer while the unicast RREP packet is sent to the

downstream node. Therefore, the mac-802.11 header from the MAC layer needs to be

declared in part.cc. When a node receives a unicast RREP-NoFlag packet, it looks at

the MAC layer destination address in the packet so that the routing table

Program : 4.15 //~ns/part/part.cc
1: int hdr_part::offset_;
2: static class PARTHeaderClass : public PacketHeaderClass {
3: public:
4: PARTHeaderClass():PacketHeadeClass("PacketHeader/PART",
5: sizeof(hdr_all_edtp)) {
6: bind_offset(&hdr_edtp::offset_)
7: }
8: }
9: Class_rtPrototoPART_hdr;
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(rt_rep_downstream) can be updated. Lines 10-15 in Program 4.16 are the updating

procedure of the routing table.

4.9 Statistical Analysis

Statistical analysis is used to compare the sample and population means to ascertain

whether there is a significant difference. The most useful statistical tests are z-test and

t-test. The z-test is applied to analyze in large sample sizes (n > 30), whereas the t-test

is the best to apply in a small sample sizes (n < 30).  Every hypothesis is stated as a

null hypothesis and an alternative hypothesis. If the sample mean has many standard

deviations from the mean stated in the null hypothesis, the null hypothesis is rejected.

If the results observed in the sample are not under the assumption of the null

hypothesis, the result is statistically significant.

Suppose that we want to conduct a hypothesis test to determine whether the average

output results for PART is significantly different from the AODV routing protocol.

1. Null hypothesis

H0: µ1 = µ2 (H0: PART = AODV)

Program : 4.16 //~ns/part/part.cc
1: #include <mac-802_11.h>
2: …
3: void
4: PART::recvReply(Packet *p) {
5: struct hdr_ip *ih = HDR_IP(p);
6: struct hdr_part_reply *rp = HDR_PART_REPLY(p);
7: struct hdr_mac802_11 *mh = HDR_MAC802_11(p);
8: part_rt_entry *rt;
9: If(rp->rp_flags == 0x00) { // RREP-NOFlag
10: // to update routing table with MAC layer address
11: rt_update(rt, rp->rp_dst_seqno, rp->rp_hop_count,
12: rp->rp_phop_count, rp->rp_src, index,
13: (ETHER_ADDR(mh->dh_ta)), rt->rt_datadst,
14: rt->rt_datasrc, CURRENT_TIME+rp->rp_lifetime);
15: …
16: }
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2. Alternative hypothesis

Ha: µ1 < µ2 (Ha: PART < AODV)

For throughput, PART does not perform as well as AODV.

For average end-to-end delay, PART performs better than AODV.

3. Test statistics

= −√ = −√
4. Critical value

α = 0.01 (1%)

α = 0.05 (5%)

z = − zα or t = − tα

5. Decision Rule

If z < − zα or    t < − tα;     Reject H0.

Otherwise      Accept H0.

4.10 Experiments on the Effects of Node Movements

Objective of experiment: To test the efficiency of a proxy node in the situation where

a source node moves towards a proxy node; a proxy node moving towards a source

node or a destination node; and a destination node moving towards a proxy node

during the simulation.

Expected outcome: The PART protocol tolerates the effects of node movements in

MANETs, in terms of throughput, delay and overhead. Although the occurrences of

proxy changes could be more often, the PART could adapt to find a new proxy or

give up a proxy duty depending on the movement of nodes.
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For this purpose, we simulate 11 nodes in a simulation area of 1200 × 600 for 120

seconds. A TCP connection starts transmitting from a source to a destination one

second after the simulation starts. During the simulation, each node (i.e. a source or a

destination) starts moving towards the proxy node after 50 seconds at high speed 50

m/s and moderate speeds between 1 to 15 m/s. Later, the proxy node moves towards a

source or a destination node. Figure 4.10 shows the possibility of proxy nodes

between a source and destination pair while the source node (i.e. node 10) is

communicating to the destination node (i.e. node 8).

Figure 4.10 : Possibilities of proxy nodes for a given topology

We measure the following parameters as performance metrics and evaluate the

performance of protocols.

1. Packet Loss Rate (%) ― It is the number of packet loss at the application layer.

= + 1 ∗ 100
2. Average end-to-end delay (Avg. EtE delay) is the sum of delay experienced by

each packet making up the flow per number of packets.

3. Packet delivery fraction (PDF) is the ratio of the packets delivered to the

destinations to those generated from the sources.

= ∗ 100
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4. Routing Overhead is calculated as the total number of control packets sent divided

by the number of data packets delivered successfully.

5. Normalized Routing Load (NRL) is the number of routing packets transmitted per

data packet delivered at the destination.

=
6. Throughput is the rate of successfully delivered data per second to individual

destinations during the network simulation.

4.10.1 Source Node Movement

Figure 4.11 demonstrates the movement of a source node. Even though the source

node moves towards the destination node through the proxy nodes, it can

communicate with the destination without using any proxy node for a path length that

is shorter than 3 hops.

Figure 4.11 : Source node movement

Figure 4.12 shows the throughput measurement of PART and AODV. PART achieves

almost 29% higher throughput than AODV. If we look at the Table 4.2, PART

reduces the average end-to-end delay almost 17% lower than AODV and 72% lower

than DSR. The packet loss rate is 16% lower than AODV, and the routing overhead is
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almost 22% significantly lower than AODV. If we look at the PDF, the performance

differences between AODV and PART are not significant, whereas PART suffers

slightly lower PDF if compared to DSR. Tables 4.3 to 4.8 show the z-test and t-test

results, where the improvements are statistically significant.

Figure 4.12 : Throughput measurement for source node movement

Table 4.2 : Performance measurement for source node movement

Table 4.3 : Throughput measurement across source node movement

Node Speed
Metrics

PART AODV DSR
5m/s 10m/s 15m/s 5m/s 10m/s 15m/s 5m/s 10m/s 15m/s

Average delay 429.32 442.71 465.63 521.89 457.23 581.97 758.78 761.49 779.19
Dropped pkts 160 130 99 179 170 117 16 17 17
Pkt loss (%) 1.29 1.26 0.74 1.73 0.96 1.11 0.08 0.09 0.1
PDF 97.4 97.46 98.48 96.56 98.05 97.77 99.64 99.65 99.64
NRL 0.49 0.39 0.26 0.65 0.33 0.4 0.26 0.2 0.17

z-Test: Two Sample
for Means

AODV PART
Mean 2.0E+04 2.5E+04
Known Variance 7.8E+06 2.7E+07
Observations 5.3E+03 6.8E+03
Hypothesized
Mean Difference 0.0E+00
Z -6.0E+01
P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00
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Table 4.4 : Average end-to-end delay measurement across source node movement

Table 4.5 : Dropped packets measurement across source node movement

Table 4.6 : Packet losses measurement across source node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 1.9E+00 2.0E+00 Mean 1.9E+00 8.4E-02
Variance 3.8E+00 3.8E+00 Variance 3.8E+00 1.1E-03
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 3.8E+00 Pooled Variance 1.9E+00
Hypothesized Mean
Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -1.0E-01 t Stat 2.1E+00
P(T<=t) one-tail 4.6E-01 P(T<=t) one-tail 3.6E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.2E-01 P(T<=t) two-tail 7.2E-02
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 4.0E+02 4.4E+02 Mean 4.0E+02 7.4E+02
Variance 1.4E+04 2.4E+04 Variance 1.4E+04 2.6E+03
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.9E+04 Pooled Variance 8.1E+03
Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -4.9E-01 t Stat -6.1E+00
P(T<=t) one-tail 3.2E-01 P(T<=t) one-tail 1.5E-04
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 6.4E-01 P(T<=t) two-tail 3.0E-04
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 1.9E+02 2.2E+02 Mean 1.9E+02 1.6E+01
Variance 1.9E+04 2.7E+04 Variance 1.9E+04 1.3E+01
Observations 5.0E+00 4.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 2.2E+04 Pooled Variance 9.6E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 7.0E+00 df 8.0E+00
t Stat -3.1E-01 t Stat 2.7E+00
P(T<=t) one-tail 3.8E-01 P(T<=t) one-tail 1.3E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 7.7E-01 P(T<=t) two-tail 2.5E-02
T Critical Two-tail 2.4E+00 T Critical Two-tail 2.3E+00
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Table 4.7 : PDF measurement across source node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 9.6E+01 9.6E+01 Mean 1.9E+00 8.4E-02
Variance 1.4E+01 1.3E+01 Variance 3.8E+00 1.1E-03
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.3E+01 Pooled Variance 1.9E+00
Hypothesized Mean
Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 9.8E-02 t Stat 2.1E+00
P(T<=t) one-tail 4.6E-01 P(T<=t) one-tail 3.6E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.2E-01 P(T<=t) two-tail 7.2E-02
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

Table 4.8 : NRL measurement across source node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 7.3E-01 7.5E-01 Mean 7.3E-01 3.9E-01
Variance 7.3E-01 5.9E-01 Variance 7.3E-01 1.9E-01
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 6.6E-01 Pooled Variance 4.6E-01
Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -5.5E-02 t Stat 7.8E-01
P(T<=t) one-tail 4.8E-01 P(T<=t) one-tail 2.3E-01
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.6E-01 P(T<=t) two-tail 4.6E-01
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

4.10.2 Proxy Node Movement

Figure 4.13 illustrates the movement conditions of the proxy node. As the proxy node

moves rapidly and randomly for a short period, PART suffers a slight throughput

degradation – almost 6% lower than AODV (Figure 4.14). In Table 4.9, PART

reduces the average end-to-end delay by almost 8% lower than AODV and 222%

lower than DSR. However, PART suffers a slightly lower degradation compared to

AODV and DSR in terms of dropped packets and PDF. Tables 4.10 to 4.15 show the
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z-test and t-test results, where the improvements are statistically significant in all

situations, except for the throughput.

Figure 4.13 : Movements of proxy nodes

Figure 4.14 : Throughput measurement for movements of proxy nodes
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Table 4.9 : Performance measurement for proxy node movement

Table 4.10 : Throughput measurement across proxy node movement

Table 4.11 : Average end-to-end delay measurement across proxy node movement

Node Speed
Metrics

PART AODV DSR
5m/s 10m/s 15m/s 5m/s 10m/s 15m/s 5m/s 10m/s 15m/s

Average delay 188.93 199.32 196.09 193.25 235.1 201.51 634.22 619.72 624.94
Dropped pkts 300 291 297 326 260 281 30 31 29
Pkt loss (%) 5.55 5.4 6.02 5.56 5.05 4.81 0.1 0.1 0.09
PDF 89.43 89.76 88.61 89.47 90.35 90.76 98.52 98.25 98.42
NRL 3.92 4.31 4.13 3.43 3.79 3.73 2.37 2.52 2.51

z-Test: Two Sample
for Means

AODV PART
Mean 1.1E+04 1.3E+04
Known Variance 5.8E+07 1.0E+06
Observations 2.5E+03 2.7E+03
Hypothesized
Mean Difference 0.0E+00

z -8.5E+00
P(Z<=z) one-tail 0.0E+00
z Critical one-tail 1.6E+00
P(Z<=z) two-tail 0.0E+00
z Critical two-tail 2.0E+00

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 1.9E+02 2.4E+02 Mean 1.9E+02 6.4E+02
Variance 1.9E+01 4.1E+03 Variance 1.9E+01 8.2E+02
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 2.1E+03 Pooled Variance 4.2E+02
Hypothesized Mean
Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -1.6E+00 t Stat -3.5E+01
P(T<=t) one-tail 7.5E-02 P(T<=t) one-tail 2.6E-10
T Critical one-tail 1.4E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.5E-01 P(T<=t) two-tail 5.2E-10
T Critical Two-tail 1.9E+00 T Critical Two-tail 2.3E+00



100

Table 4.12 : Dropped packets measurement across proxy node movement

Table 4.13 : Packet losses measurement across proxy node movement

Table 4.14 : PDF measurement across proxy node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 8.9E+01 9.0E+01 Mean 8.9E+01 9.8E+01
Variance 1.8E-01 4.1E-01 Variance 1.8E-01 1.0E-02
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 3.0E-01 Pooled Variance 9.4E-02
Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 2.4E+00 t Stat 4.7E+01
P(T<=t) one-tail 2.2E-02 P(T<=t) one-tail 2.2E-11
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 4.4E-02 P(T<=t) two-tail 4.4E-11
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 3.1E+02 2.7E+02 Mean 3.1E+02 3.0E+01
Variance 4.8E+02 3.0E+03 Variance 4.8E+02 8.0E-01
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.7E+03 Pooled Variance 2.4E+02
Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 1.6E+00 t Stat 2.9E+01
P(T<=t) one-tail 7.2E-02 P(T<=t) one-tail 1.2E-09
T Critical one-tail 1.4E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.4E-01 P(T<=t) two-tail 2.3E-09
T Critical Two-tail 1.9E+00 T Critical Two-tail 2.3E+00

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 5.7E+00 5.2E+00 Mean 5.7E+00 9.4E-02
Variance 5.3E-02 1.3E-01 Variance 5.3E-02 3.0E-05
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 9.3E-02 Pooled Variance 2.6E-02
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 2.3E+00 t Stat 5.4E+01
P(T<=t) one-tail 2.4E-02 P(T<=t) one-tail 7.3E-12
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 4.9E-02 P(T<=t) two-tail 1.5E-11
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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Table 4.15 : NRL measurement across proxy node movement

4.10.3 Destination Node Movement

We consider the situation of destination node’s movement as shown in Figure 4.15. If

we look at the throughput, PART does not perform very well at the beginning of the

simulation time, but outperforms the others significantly starting from around 220

seconds as shown in Figure 4.16.

Figure 4.15 : Destination node movement

When the destination node moves towards the source node, the distance between the

source and destination is shorter. Therefore, PART routing protocol operates exactly

like AODV at the beginning. However, as the simulation time progresses, the

possibility of route failures becomes higher. In this situation, the proxy node is able to

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 4.0E+00 3.6E+00 Mean 4.0E+00 2.4E+00
Variance 5.2E-02 6.2E-02 Variance 5.2E-02 4.7E-03
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 5.7E-02 Pooled Variance 2.9E-02
Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 2.8E+00 t Stat 1.5E+01
P(T<=t) one-tail 1.2E-02 P(T<=t) one-tail 2.5E-07
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 2.3E-02 P(T<=t) two-tail 5.0E-07
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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redirect the broken routes quickly, resulting in higher throughput at time 220 s. If we

compare the average throughput throughout the simulation time, PART incurs 18%

higher throughput on average compared to AODV.

Figure 4.16 : Throughput measurement for destination node movement

Table 4.16 shows that although PART reduces the average end-to-end delay up to 4%

lower than AODV and 25% lower than DSR, there is a little difference for other

parameters such as PDF and packet losses. PART allows the nodes to broadcast

RREQ-Pflag packets until the proxy node. The proxy replies to the source after

receiving the packet. In this way, the proxy node reduces overhead lower than AODV.

The z-test and t-test results in Table 4.17 and Table 4.11 show that the performance

improvement is statistically significant.

Table 4.16 : Performance measurement for destination node movement

Node Speed
Metrics

PART AODV DSR
5m/s 10m/s 15m/s 5m/s 10m/s 15m/s 5m/s 10m/s 15m/s

Average delay 433.15 464.9 466.29 435.87 477.29 496.33 560.31 576.99 562.89
Dropped pkts 184 137 123 201 136 137 16 16 20
Pkt loss (%) 1.45 1.31 0.91 1.57 1.02 1.01 0.06 0.07 0.08
PDF 97.14 97.4 98.16 96.88 97.97 97.97 99.74 99.75 99.74
NRL 0.48 0.28 0.25 0.53 0.38 0.3 0.21 0.15 0.12
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Table 4.17 : Throughput measurement across destination node movement

Table 4.18 : Average end-to-end delay measurement across destination node movement

Table 4.19 : Dropped packets measurement across destination node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 2.2E+02 2.4E+02 Mean 2.2E+02 2.4E+02
Variance 3.4E+04 3.9E+04 Variance 3.4E+04 3.9E+04
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 3.7E+04 Pooled Variance 3.7E+04
Hypothesized Mean
Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -1.1E-01 t Stat -1.1E-01
P(T<=t) one-tail 4.6E-01 P(T<=t) one-tail 4.6E-01
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.1E-01 P(T<=t) two-tail 9.1E-01
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

z-Test: Two Sample
for Means

AODV PART
Mean 2.7E+04 8.8E+04
Known Variance 6.4E+08 4.3E+08
Observations 8.4E+03 6.9E+03
Hypothesized
Mean Difference 0.0E+00
z -1.6E+02
P(Z<=z) one-tail 0.0E+00
z Critical one-tail 1.6E+00
P(Z<=z) two-tail 0.0E+00
z Critical two-tail 2.0E+00

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 3.8E+02 3.9E+02 Mean 3.8E+02 5.7E+02
Variance 1.5E+04 1.9E+04 Variance 1.5E+04 4.1E+01
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.7E+04 Pooled Variance 7.7E+03
Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -6.9E-02 t Stat -3.4E+00
P(T<=t) one-tail 4.7E-01 P(T<=t) one-tail 4.9E-03
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.5E-01 P(T<=t) two-tail 9.8E-03
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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Table 4.20 : Packet losses measurement across destination node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 2.2E+02 1.5E+01 Mean 2.1E+00 2.1E+00
Variance 3.4E+04 1.3E+01 Variance 4.8E+00 5.6E+00
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.7E+04 Pooled Variance 5.2E+00
Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 2.5E+00 t Stat -8.3E-03
P(T<=t) one-tail 1.8E-02 P(T<=t) one-tail 5.0E-01
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 3.6E-02 P(T<=t) two-tail 9.9E-01
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

Table 4.21 : PDF measurement across destination node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 9.6E+01 9.6E+01 Mean 9.6E+01 1.0E+02
Variance 1.7E+01 1.9E+01 Variance 1.7E+01 3.8E-02
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.8E+01 Pooled Variance 8.4E+00
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat 7.5E-04 t Stat -2.1E+00
P(T<=t) one-tail 5.0E-01 P(T<=t) one-tail 3.6E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.0E+00 P(T<=t) two-tail 7.3E-02
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

Table 4.22 : NRL measurement across destination node movement

t-Test: Two-Sample Assuming
Equal Variances

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSR
Mean 6.4E-01 7.1E-01 Mean 6.4E-01 4.0E-01
Variance 5.8E-01 6.3E-01 Variance 5.8E-01 3.0E-01
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 6.0E-01 Pooled Variance 4.4E-01
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

df 8.0E+00 df 8.0E+00
t Stat -1.3E-01 t Stat 5.9E-01
P(T<=t) one-tail 4.5E-01 P(T<=t) one-tail 2.9E-01
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.0E-01 P(T<=t) two-tail 5.7E-01
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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4.10.4 Random Movement of Nodes

Figure 4.17 illustrates the example of random movements for the performance testing.

The proxy node, destination node and other nodes move randomly during the

simulation. If we measure the performance differences, PART achieves a higher

throughput from the beginning till the end of the simulation time as shown in Figure

4.18. Table 4.23 shows that the throughput improvement is statistically significant.

Figure 4.17 : Random movements of nodes
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The simulation results are as expected, i.e. the PART protocol tolerates the effects of

node (source and destination) movements. However, when the proxy node movement

occurs, slight throughput degradation occurs.

Figure 4.18 : Throughput measurement for random movements of nodes

Table 4.23 : Throughput measurement across random node movement

4.11 Performance Evaluations in the Large-scaled Networks

Objective of experiment: To test the scalability and robustness of PART protocol in

large-scaled networks with random topologies.

z-Test: Two Sample for Means
(random node movement)

AODV PART
Mean 1.3E+04 1.8E+04
Known Variance 6.5E+07 4.3E+08
Observations 2.7E+03 3.5E+03
Hypothesized
Mean Difference 0.0E+00
z -1.3E+01
P(Z<=z) one-tail 0.0E+00
z Critical one-tail 1.6E+00
P(Z<=z) two-tail 0.0E+00
z Critical two-tail 2.0E+00



107

Expected outcome: Although the node density is varied between 100 nodes to 500

nodes, the PART protocol performs very well in terms of packet losses, average

delay, routing overhead and throughput under the large-scaled networks.

The parameters for analysis are listed in Table 4.24. 100 to 500 nodes move randomly

within the 2500 × 1500 area at 10m/s speed for about 600 seconds. 70 TCP

applications are generated with a default window size of 32 and the packet size is 512

bytes. To generate the random movement, NS-2 contains the mobility generator,

called “setdest”, which is generated using the command setdest -n <num_of_nodes> -

p pause_time –s <max_speed> -t <sim_time> -× <max_×> -y <max_y> under the

NS-2 directory ns-2/indep-utils/cmu-scen_gen. To generate the application traffic,

“cbrgen.tcl” under the directory ns-2/indep-utils/cmu-scen_gen is used.

Generation examples are:

For mobility generation  setdest –n 50 –p 0 –s 10 –t 360 –× 1200 –y 600
(50 nodes are moving in the area of 1200 and 600 at 10
m/s speed and no pause time.)

For traffic generation  ns cbrgen.tcl –type cbr –nn 50 –seed 1 –mc 20 –rate 4
(50 pair of nodes generate the 20 connections at 4 packets
per second)

Table 4.24 : Parameters for large-scaled networks

Parameters
Topography areas size 2500 × 1500
Simulation time 600 second
Number of nodes 100 nodes to 500 nodes
Routing protocols PART, AODV, DSR, DSDV, AOMDV, OLSR
Transport protocols TCP
Number of TCP connections 70 FTPs
Window size of TCP 32
Packet size 512 bytes
Average speed 10 m/s with 0 pauses time
Mac protocol Mac/802.11
Antenna OmiAntenna
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4.11.1 Packet Loss Rate Measurement

First, we measure the percentage of packet loss rate. Proactive routing protocols

achieve the lowest losses compared to reactive protocols. Proactive routing protocols

(i.e. DSDV and OLSR) always keep the routing tables and link state information in

hand and the source route caching technique of DSR achieves significantly lower

losses, even though it is a reactive routing. Among the on-demand routing protocols,

PART reduces packet losses 28.70% lower than AODV and 6.90% lower than

AOMDV as shown in Figure 4.19. As the number of nodes increases, the packet loss

rates of proactive routing protocols decrease gradually, whereas the packet loss rates

of reactive routing protocols increase gradually. Table 4.25 shows the t-test results,

where packet loss rate improvement is statistically significant over DSDV, DSR and

OLSR.

Figure 4.19 : Packet loss rate measurement in random topology
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Table 4.25 : Packet losses measurement in large-scaled networks

t-Test: Two-Sample Assuming
Equal Variances

PART AODV PART DSDV PART DSR
Mean 2.9E+00 3.7E+00 Mean 2.9E+00 7.9E-01 Mean 2.9E+00 1.5E-01
Variance 3.8E-01 7.7E-01 Variance 3.8E-01 1.0E-01 Variance 3.8E-01 4.8E-02
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 5.7E-01 Pooled Variance 2.4E-01 Pooled Variance 2.1E-01
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00 df 8.0E+00
t Stat -1.8E+00 t Stat 6.8E+00 t Stat 9.4E+00
P(T<=t) one-tail 5.7E-02 P(T<=t) one-tail 7.2E-05 P(T<=t) one-tail 6.9E-06
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.1E-01 P(T<=t) two-tail 1.4E-04 P(T<=t) two-tail 1.4E-05
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

PART AOMDV PART OLSR
Mean 2.9E+00 3.1E+00 Mean 2.9E+00 3.3E-01
Variance 3.8E-01 3.7E-01 Variance 3.8E-01 1.2E-01
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 3.8E-01 Pooled Variance 2.5E-01
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00
t Stat -5.1E-01 t Stat 8.1E+00
P(T<=t) one-tail 3.1E-01 P(T<=t) one-tail 2.0E-05
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 6.2E-01 P(T<=t) two-tail 3.9E-05
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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4.11.2 Average Delay Measurement

When we measure the average end-to-end delay, the performance of PART and

AOMDV protocols is not so different. AOMDV has a large processing overhead and

memory usage for calculating multiple paths at every node, especially in the large-scale

networks. On the other hand, the performance of PART is almost similar to AOMDV

without having multiple paths resulting in the lower memory usage and energy

consumption. Moreover, PART reduces the average delay 23% lower than DSDV and

22% lower than AODV as shown in Figure 4.20. We encounter that DSR performs the

worst if compared to the others. In the 300-node scenarios, the average end-to-end delay

of DSR is the highest.

A possible explanation for this situation could be the instant use of route caching

technique. In the large-scaled networks, the cache size increases significantly due to the

large amount of nodes, and also the possibilities of the stale routes increase due to the

lack of the detection technique for those stale routes in the route cache of DSR. Table

4.26 shows the t-test results, where delay improvement of PART is statistically

significant over AODV and DSR.

Figure 4.20 : Average delay measurement in random topology
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Table 4.26 : Average end-to-end delay measurement in large-scaled networks

t-Test: Two-Sample Assuming Equal Variances
(large-scale networks)

PART AODV PART DSDV PART DSR
Mean 1.2E+02 1.5E+02 Mean 1.2E+02 1.1E+02 Mean 1.2E+02 3.3E+02
Variance 2.6E+02 5.4E+02 Variance 2.6E+02 3.4E+03 Variance 2.6E+02 5.2E+04
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 4.0E+02 Pooled Variance 1.8E+03 Pooled Variance 2.6E+04
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00 df 8.0E+00
t Stat -2.1E+00 t Stat 3.7E-01 t Stat -2.1E+00
P(T<=t) one-tail 3.5E-02 P(T<=t) one-tail 3.6E-01 P(T<=t) one-tail 3.5E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 7.0E-02 P(T<=t) two-tail 7.2E-01 P(T<=t) two-tail 7.1E-02
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

PART AOMDV PART OLSR
Mean 1.2E+02 1.1E+02 Mean 1.2E+02 1.7E+02
Variance 2.6E+02 3.1E+02 Variance 2.6E+02 1.1E+04
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 2.9E+02 Pooled Variance 5.7E+03
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00
t Stat 6.4E-01 t Stat -1.1E+00
P(T<=t) one-tail 2.7E-01 P(T<=t) one-tail 1.6E-01
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 5.4E-01 P(T<=t) two-tail 3.2E-01
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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4.11.3 Normalized Routing Load Measurement

If we look at the comparison of NRL in Figure 4.21(a), proactive routing protocols (i.e.

DSR and OLSR) perform the worst when the number of nodes increases. To ascertain

the significance of performance improvement in PART, Figure 4.21(b) compares only

PART and AODV. As the number of nodes increases, the NRL of both protocols

increases but PART significantly reduces the NRL 51.3% lower than AODV.

(a)

(b)

Figure 4.21 : NRL measurement in random topology
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In MANETs, route errors happen all the time. 70% of errors are due to collisions at the

MAC layer. Whenever a route error occurs, AODV invokes the route discovery

procedure, resulting in increased controlled packets in the network, which in turn causes

more congestion and collisions. In PART, if the route error is due to collisions, the

proxy node repairs the broken route by broadcasting RREQ-D flag packets to the

destination. If the route error is due to a broken route, the source node re-invokes the

route discovery procedure by broadcasting RREQ-Pflag packets within the limited zone.

Therefore, as the node density increases, PART reduces routing overhead significantly

lower than AODV. Table 4.27 shows the t-test results, where NRL improvement is

statistically significant over AODV and DSR.
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Table 4.27 : NRL measurement in large-scaled networks

t-Test: Two-Sample Assuming Equal Variances
(large-scale networks)

PART AODV PART DSDV PART DSR
Mean 2.4E+00 4.7E+00 Mean 3.1E+00 7.7E+00 Mean 3.1E+00 4.2E+02
Variance 4.1E+00 1.0E+01 Variance 4.1E+00 7.0E+01 Variance 4.1E+00 1.6E+05
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 7.2E+00 Pooled Variance 3.7E+01 Pooled Variance 7.8E+04
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00 df 8.0E+00
t Stat -9.4E-01 t Stat -1.2E+00 t Stat -2.3E+00
P(T<=t) one-tail 1.9E-01 P(T<=t) one-tail 1.3E-01 P(T<=t) one-tail 2.4E-02
T Critical one-tail 3.2E-00 T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 3.8E-01 P(T<=t) two-tail 2.7E-01 P(T<=t) two-tail 4.8E-02
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

PART AOMDV PART OLSR
Mean 3.1E+00 2.7E+00 Mean 3.1E+00 9.7E+01
Variance 4.1E+00 2.8E+00 Variance 4.1E+00 1.3E+04
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 3.4E+00 Pooled Variance 6.7E+03
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00
t Stat 3.3E-01 t Stat -1.8E+00
P(T<=t) one-tail 3.8E-01 P(T<=t) one-tail 5.3E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 7.5E-01 P(T<=t) two-tail 1.1E-01
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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4.11.4 Throughput Measurement

If we look at the measurement of throughput, PART achieves a significantly better

performance than the others. PART performs 4.6 % better than AODV, 4.2 % better

than AOMDV, 56.8% better than DSDV, 70.7% better than DSR, and 51.5% better than

OLSR. In Figure 4.22, PART can mimic AOMDV in terms of not only average delay

and NRL but also throughput without requiring multiple paths at every node. Table 4.28

shows the t-test results, where throughput improvement is more statistically significant

over AODV, DSDV, DSR and OLSR.

Figure 4.22 : Throughput measurement in random topology

The simulation results are significant as expected — the PART protocol performs very

well in terms of packet losses, average delay, routing overhead and throughput under

the large-scaled networks.
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Table 4.28 : Throughput measurement in large-scaled networks

t-Test: Two-Sample Assuming Equal Variance
(large-scale networks)

PART AODV PART DSDV PART DSR
Mean 6.3E+02 2.4E+02 Mean 1.5E+03 6.0E+02 Mean 1.5E+03 4.0E+02
Variance 5.3E+05 8.2E+05 Variance 8.4E+04 2.9E+05 Variance 8.4E+04 2.6E+05
Observations 1.7E+01 1.7E+01 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 6.8E+05 Pooled Variance 1.9E+05 Pooled Variance 1.7E+05
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 3.2E+01 df 8.0E+00 df 8.0E+00
t Stat 1.4E+00 t Stat 3.3E+00 t Stat 4.1E+00
P(T<=t) one-tail 8.7E-02 P(T<=t) one-tail 5.8E-03 P(T<=t) one-tail 1.6E-03
T Critical one-tail 1.3E+00 T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.7E-01 P(T<=t) two-tail 1.2E-02 P(T<=t) two-tail 3.3E-03
T Critical Two-tail 1.7E+00 T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

PART AOMDV PART OLSR
Mean 1.5E+03 1.4E+03 Mean 1.5E+03 6.7E+02
Variance 8.4E+04 1.1E+05 Variance 8.4E+04 6.3E+05
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 9.7E+04 Pooled Variance 3.6E+05
Hypothesized Mean Difference 0.0E+00 Hypothesized Mean Difference 0.0E+00
df 8.0E+00 df 8.0E+00
t Stat 2.6E-01 t Stat 2.2E+00
P(T<=t) one-tail 4.0E-01 P(T<=t) one-tail 3.1E-02
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 8.0E-01 P(T<=t) two-tail 6.2E-02
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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4.12 Chapter Summary

In MANETs, the route errors happen more often due to collisions and route breaks,

resulting in increased routing overhead and decreased throughput. The nature of on-

demand routing is to re-invoke a route discovery procedure from the beginning. When

we analyze the detail simulation, the route errors due to collisions at the MAC layer are

almost 70%. PART distinguishes the route errors due to collision or route breaks. If it is

a collision, PART simply invokes a proxy repair function without sending error packets.

Otherwise, it sends a route error message to the source node to rediscover a route.

However, as long as a proxy node is still available on the path, it broadcasts the request

packets within the limit of the broadcast zone. Therefore, the participation of a proxy

node is important to adapt to route failures with less overhead and delay not only in the

intermittent connection, but also in every connection in MANETs. The simulation

results show that PART is able to detect the proxy node with the effects of node

movement and outperforms other protocols in most situations. In the large-scale

networks, PART reduces packet losses by almost 30% and NRL by almost 55% if

compared to the others. It has a significantly higher throughput, i.e. almost 70%

compared to others.
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Chapter 5

RESEARCH METHODOLOGY: THE CROSS LAYER

ENHANCEMENT BETWEEN TRANSPORT, ROUTING

AND MAC LAYERS

5.1 Introduction

In this chapter, we propose a local acknowledgement mechanism for a proxy node

(PACK) to improve the reliability and throughput of the transport layer protocols with

the aid of lower layer protocols. The proposed mechanism must satisfy the following

requirements to transmit data efficiently.

Reliable delivery: This mechanism ensures the delivery of all application-layer data

packets to the destination node with the aid of a middle proxy node. Hence, the

protocol guarantees the reliability of data packets and throughput improvement by

detecting the missing TCP sequence numbers and acknowledging them to the source

node in advance during the transmission.

Interoperability with the application layer: The mechanism does not affect the end-

to-end interface for reliable transmission of TCP packets.

Cross-layer information: The protocol requires more than a minimum of cross-layer

information. In particular, it needs the following information:

 The MAC address of upstream nodes for the unicast transmission.

 Proxy selection from the routing layer to detect the missing TCP sequence

numbers.

 Monitoring ACK packets from the TCP destination at the routing layer to

inform the missing sequence number to the source node.
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5.2 Local Acknowledgement Scheme of a Proxy Node

For the reliability of TCP, previous researchers proposed techniques such as hop-by-

hop checking of packets (Heimlicher, 2007) and split-TCP (i.e. using multiple

proxies) (Kopparty et al, 2002). Using multiple proxies for each connection and hop-

by-hop techniques are not cost-effective in MANETs. Instead of doing that, a proxy

node is selected depending on the path length according to the PART routing

protocol, which is proposed in Chapter 4. In the proxy node acknowledgement

scheme (PACK), the proxy node always monitors the TCP sequence number, records

missing sequence numbers, and informs these to the source node. In this way, the

source node can retransmit the missing sequence numbers in advance of end-to-end

acknowledgement that the packets are not received. The following are the research

questions that must be addressed to do so.

1. How does a proxy node know which TCP sequence numbers are missing?

2. How does a proxy node inform the missing sequence numbers to the source?

3. What is the function of the intermediate nodes upon detecting of the missing

sequence numbers?

4. How does the source node retransmit the missing sequence number before the

end-to-end ACK is received?

5.2.1 TCP Packet Header

Figure 5.1 shows the two extra fields added in the TCP’s packet header (Postel, 1981)

to detect missing sequence numbers and how many sequence numbers are missing

while TCP packets are transmitting.

 Missing Sequence Number: 32 bits

 Number of Missing Sequence Number: 32 bits
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Figure 5.1 : TCP header format

5.2.2 Proxy Selection

The proxy selection process is the function of routing protocol (PART). As described

in Chapter 4, a middle node is selected as a proxy according to the path length.

5.2.3 Sequence Number Checking at the Proxy Node

The responsibility of a proxy node for a TCP connection is to

 detect the missing TCP sequence number (miss_seqno) and the number of

missing sequence numbers (num_miss_seqno) by monitoring the data packets

going through the routing layer of a proxy node,

 send a PACK to the source node to inform it of miss_seqno.

To detect the miss_seqno, a proxy node uses a simple algorithm to check the current

sequence number (cur_seqno) which is in the TCP packet header, and the expected

sequence number (exp_seqno) which is increased linearly. In Figure 5.2, while a
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source node is sending TCP data packets to the destination, a proxy node monitors the

sequence number and checks for missing sequence numbers. Then, the proxy node

puts the seqno of the TCP header in the cur_seqno.

Initially, the seqno starts at one. In order to increase exp_seqno linearly, the

cur_seqno and exp_seqno must be the same. However, if the proxy node change

occurs, the seqno may not start from one. Therefore, the value of cur_seqno must be

updated according to the exp_seqno. To detect the proxy change, the current proxy

node ID is recorded in the routing table of each node. In other words, when the proxy

node detects that cur_seqno is equal to one (i.e. the foremost seqno), this proxy

node’s id is added in the now_proxy field in the routing table (line 6 in Algorithm

5.1). Later, if the current proxy is not equal to the now_proxy, this means that a proxy

change event has occurred. The now_proxy field of the routing table is then updated

with a new proxy (line 10 in Algorithm 5.1), and exp_seqno is updated with

cur_seqno. While the TCP seqno is monitored, exp_seqno is increased by one for

every received TCP sequence number, and then the cur_seqno and exp_seqno are

compared.

In Figure 5.2, as long as the cur_seqno and exp_seqno are the same, the proxy node

assumes that there is no missing sequence number. After receiving seqno 4, it is

supposed to receive seqno 5 in cur_seqno according to the exp_seqno, however, it

receives cur_seqno 7. In other words, cur_seqno is greater than exp_seqno, which

indicates a missing sequence number. Therefore, the proxy node adds seqno 5 in the

missing sequence number and calculates the number of missing sequence number by

subtracting cur_seqno and exp_seqno. Then, the exp_seqno is updated by adding

cur_seqno value, for example, in Figure 5.2, exp_seqno is 7 to continue checking the

sequence numbers.
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Figure 5.2 : Sequence number checking algorithm

After receiving seqno 9, the proxy node detects that the cur_seqno and exp_seqno are

not equal, and the cur_seqno is less than exp_seqno, meaning that the retransmitted

missing sequence number is received. Instead of increasing exp_seqno linearly,

exp_seqno is added to zero as shown in Figure 5.2 and line 15 of Algorithm 5.1.

To update exp_seqno for checking the rest of the sequence number, the proxy node

takes the maximum between cur_seqno and exp_seqno as shown in line 25 of

Algorithm 5.1. As soon as the proxy node detects that the sequence numbers are

missing, it sends a PACK packet by adding miss_seqno and num_miss_seqno, which
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is a subtracted value from cur_seqno and exp_seqno, to inform the source node. Line

21 of Algorithm 5.1 calls Algorithm 5.2, which is unicast PACK sending algorithm.

Checking the missing sequence number at the proxy node

1: upon monitoring TCP packet at the proxy node in the routing layer do
2: access tcp_ seqno at the routing layer
3: add tcp_seqno to the cur_seqno field in the routing table
4: if tcp_seqno is the equal to one then
5: add cur_seqno to exp_seqno variable
6: record the current proxy node in now_proxy field of the routing table
7: end if
8: if now_proxy is not equal to    current proxy then
9: add cur_seqno to the exp_seqno
10: record a new proxy in now_proxy in the routing table
11: else if tcp_seqno is greater than one then
12: if cur_seqno is greater than or equal to exp_seqno then
13: add exp_seqno plus one
14: else
15: add exp_seqno plus zero
16: end if
17: if exp_seqno is not equal to cur_seqno &&
18: cur_seqno is greater than exp_seqno then
19: add exp_seqno to first_miss_seqno in the routing table
20: calculate num_miss_seqno = cur_seqno – exp_seqno
21: call Algorithm 5.2
22: add cur_seqno to the exp_seqno to reset value
23: else if exp_seqno is not equal to cur_seqno &&
24: cur_seqno is less than exp_seqno then
25: update exp_seqno = max(exp_seqno, cur_seqno)
26: end if
27: end if
28: end upon

Algorithm 5.1 : Sequence number checking at a proxy node

5.2.4 Cross-layer Information for Unicast PACK

The PACK packet is sent by unicast towards the source node by using the MAC layer

information as shown in Figure 5.3. When a PACK control packet is received, the

intermediate nodes are responsible for checking whether it is the source node. If it is,

it updates its routing table with the miss_seqno. Otherwise, it updates the routing table

and forwards the packet to the next hop towards the source node. Algorithm 5.2

shows the procedure for sending PACK. Before a proxy node sends PACK, it looks at
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the MAC layer address of the upstream nodes, adds it in the next_hop field of the

routing table, and sends PACK with the miss-seqno information to the source node.

Figure 5.3 : Control packets for updating missing sequence numbers

Sending unicast PACK packet from a proxy node to the source node

1: upon forwarding TCP at the proxy node do
2: if packet type is TCP &&
3: packet size is greater than or equal to 512 then
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8: end if
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Algorithm 5.2 : Unicast PACK packet transmission
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miss_seqno, it broadcasts OHPACK packet to its one-hop neighbors as shown in
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throughout the network are shown in Figure 5.3. Two control packets, i.e. PACK and
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OHPACK, assist to attach miss_seqno and num_miss_seqno values in the ACK

packets from the destination to inform to the source node.

5.2.6 Monitoring ACK Packet from the Destination

An important problem to address is how to inform the source node’s transport layer of

the miss_seqno. Because PACK and OHPACK are lower routing layer packets, it is

impossible to send miss_seqno to the upper transport layer. Moreover, all the

functions mentioned above work at the routing layer locally. Therefore, there is only

one way to modify the end-to-end ACK packet, that is by adding new fields in the

TCP packet header. The new fields in the TCP header are shown in Figure 5.1.

When the end-to-end ACK packets are received, the responsibilities of an

intermediate node are to check whether it is the next hop towards the source node. If it

is, the node adds the miss_seqno and num_miss_seqno values to the end-to-end ACK

packets to inform the source node which TCP sequence numbers are missing as

shown in Algorithm 5.3. Otherwise, the node simply forwards the ACK packets.

Receiving ACK packet from the TCP destination

1: if a node is the next hop to the source node then
2: add first_miss_seqno in the routing table   to miss_seqno field of ACK

packet
3: add num_miss_seqno in the routing table   to num_miss_seqno field of

ACK
4: reset the miss_seqno fields in the routing table
5: end if

Algorithm 5.3 : Monitoring ACK from data destination

5.2.7 Functions of TCP Data Source

The TCP data source has to check every received ACK packet. When the miss_seqno

value is not equal to zero, the source node retransmits the miss_seqno, and decides the
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number of missing sequences according to the num_miss_seqno as shown in

Algorithm 5.4. If the num_miss_seqno is equal to one, TCP source adds the

miss_seqno in the TCP’s header, sets the retransmit_timer and sends the TCP packet

in advance before receiving the end-to-end ACKs. Otherwise, the TCP source makes

sure to send all missing sequences by counting the num_miss_seqno. (cf. Algorithm

5.5 and 5.6)

Receiving ACK packet at a source node

1: upon receiving ACK at the source node do
2: if miss_seqno of tcp header is not equal to zero then
3: add miss_seqno to retransmit_miss_seqno variable
4: add num_miss_seqno to num_retransmit_miss_seqno variable
5:
6: if num_retransmit_miss_seqno is equal to one then
7: call Algorithm 5.5
8: else if num_retransmit_miss_seqno is greater than one
9:
10: for the num_retransmit_miss_seqno value is reduced till one do
11: call Algorithm 5.5
12: end for
13: end if
14: end if
15: end upon

Algorithm 5.4 : ACK processing at TCP source

1: if retransmit_miss_seqno is satisfied the seqno checking of TCP’s sender then
2: call Algorithm 5.6
3: else
4: miss_seqno plus one
5: end if

Algorithm 5.5 : Decision upon the retransmit missing sequence number

1: upon receiving    miss_seqno do
2: add miss_seqno to seqno of TCP’s header
3: set   the retransmit-timer
4: send TCP packet
5: end upon

Algorithm 5.6 : Retransmission of missing sequence number

We apply the PACK mechanism to the TCP’s variants, such as TCP-Tahoe, TCP-

New Reno, TCP-Vegas and TCP-Westwood and implement them in NS. Then, we
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analyze the performance of each transport protocol with PART and AODV routing

protocols and different topologies in static environments. Later on, node speeds are

varied to test the efficiency of PACK mechanism in mobile environments. As

performance metrics, throughput, average end-to-end delay, packet loss rates, packet

delivery fraction and routing overhead are measured.

5.3 Implementation of PACK over TCP

A TCP source sends and forwards packets to a lower level network depending on the

user demand from an application. It limits the sending rate (i.e. congestion window) to

control the network congestion. It utilizes an acknowledgement mechanism to provide

the reliability of TCP connections. A TCP destination is responsible for

acknowledging every received TCP packet. A TCP source decides whether the

transmitted packet is lost based on the acknowledgement scheme and retransmits it.

Figure 5.4 : TCP packet transmission and acknowledgement mechanisms

(Issariyakul and Hossain, 2008)
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Figure 5.4 shows the basic procedures of TCP. The packet transmission procedure

begins when a user executes the file transfer application (FTP) by invoking the

sendmsg function of the TCP agent. The TCP agent from the sender side sends

packets to its downstream nodes by executing target_. The low-level network layer

delivers them to reach the destination node, which in turn forwards the packets to the

TCP agent from the receiver side installed in the demultiplexer (i.e. dmux_). Once the

TCP packet is received, the TCP receiver sends an ACK packet across the lower level

network and forwards it via its demultiplexer.

5.3.1 Local Acknowledgement Mechanism

As we perform the sequence number checking at the routing layer, the nodes in the

routing layer monitor TCP packets before forwarding them. Therefore, we add the

packet type checking process in forward function of PART as shown in Program 5.1.

The missing sequence checking techniques are done in forward function of PART. In

addition, sendPACK and sendOHPACK voids assist to inform the missing seqno to

the source node. The intermediate nodes that receive those packets update their

routing tables. However, as we created these packets at the routing layer, it is

impossible to send missing seqno information to the transport layer of the source

node. Therefore, all intermediate nodes that know the missing seqno monitor the ACK

packet from the destination and attach the missing value in the packet header as

shown in Program 5.2 and 5.3.

Program : 5.1 //~ns/part/part.cc
1: void
2: PART::forward(part_rt_entry *rt, Packet *p, double delay){
3: struct hdr_cmn *ch = HDR_CMN(p);
4: struct hdr_ip *ih = HDR_IP(p);
5: struct hdr_mac802_11 *mh = HDR_MAC802_11(p);
6: //check whether the node is proxy or not.
7: if (ch->ptype()== PT_TCP && ch->direction()==hdr_cmn::UP
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8: &&(ch->proxy_hop_ == here_.addr_)&&(ch->size() >= 512)){
9: rt->rt_upstream = ETHER_ADDR(mh->dh_ta);
10: hdr_tcp *tcpr = hdr_tcp::access(p);
11: rt->rt_tcp_cur_seqno = tcpr->seqno();
12: // seqno is the first for the first proxy node, current
13: //and expected must the the same.
14: if(rt->rt_tcp_cur_seqno == 1) {
15: rt->rt_tcp_exp_seqno = rt->rt_tcp_cur_seqno;
16: // record the first proxy node’s id
17: rt->rt_now_proxy = ch->proxy_hop_;
18: // when the proxy node changes occur, exp_seqno is reset
19: if(rt->rt_now_proxy != ch->proxy_hop_) {
20: rt->rt_tcp_exp_seqno = rt->rt_tcp_cur_seqno;
21: rt->rt_now_proxy = ch->proxy_hop_;
22: }
23: // Later, current and expected seqno are greater than 1.
24: else if(rt->rt_tcp_cur_seqno > 1)   {
25: // exp_seqno is increased linearly as long as the seqno is
26: // received in order.
27: if (rt->rt_tcp_cur_seqno >= rt->rt_tcp_exp_seqno)
28: rt->rt_tcp_exp_seqno = rt->rt_tcp_exp_seqno + 1;
29:
30: // exp_seqno is not increased if miss_seqno is received.
31: else if (rt->rt_tcp_cur_seqno < rt->rt_tcp_exp_seqno)
32: rt->rt_tcp_exp_seqno = rt >rt_tcp_exp_seqno + 0;
33: /* If current and expected values are not equal && current
34: * is greater than expected, Add missing value (expected
35: * value) in first_miss_seqno. To know how many seqnos are
36: * missing, substract (current-expected. Inform the source
37: * node by adding first_miss and no: of miss in PACK.Reset
38: * the expected value by adding current seqno: to continue
39: * checking.
40: */
41: if( (rt->rt_tcp_exp_seqno != rt->rt_tcp_cur_seqno)  &&
42: (rt->rt_tcp_cur_seqno > rt->rt_tcp_exp_seqno) )  {
43: rt->rt_first_miss_seqno = rt->rt_tcp_exp_seqno;
44: rt->rt_num_miss_seqno = rt->rt_tcp_cur_seqno –
45: rt->rt_tcp_exp_seqno;
46: send_PACK(ih->saddr(), rt->rt_upstream,
47: rt->rt_first_miss_seqno, rt->rt_num_miss_seqno);
48:
49: //To make sure that miss_seqno reaches to the source node
50: // send another one hop broadcast.
51: sendOHPACK(rt->rt_first_miss_seqno,
52: rt->rt_num_miss_seqno);
53: rt->rt_tcp_exp_seqno = rt->rt_tcp_cur_seqno;
54: }
55: /* If current and expected values are not equal && current
56: * is less than expected, that means, retransmit
57: * miss_seqno are received. As mentioned above, no incre
58: * ment can be done by adding zero. To successfully check
59: * the rest seqno:, we need to reset the exp_seqno by
60: * taking maximum value of (exp_seq and cur_seq)
61: */
62: else if((rt->rt_tcp_exp_seqno != rt->rt_tcp_cur_seqno)
63: &&(rt->rt_tcp_cur_seqno < rt->rt_tcp_exp_seqno) )  {
64: rt->rt_tcp_exp_seqno = max(rt->rt_tcp_exp_seqno,
65: rt->rt_tcp_cur_seqno);
66: }
67: }
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When a TCP source node receives the ACK packets, it checks whether any missing

sequence number is included in it. If it is, the source node retransmits the missing

sequence number instead of waiting for duplicate ACK and timeout period. Note that,

we do not violate the original end-to-end checking mechanism at the TCP receiver

and sender.

This mechanism is applied to the variants of TCP, such as TCP-Tahoe, New Reno,

Vegas and Westwood. When an ACK packet is received with non-zero miss_seqno,

Program 5.4 calls the retransmit_miss_seqno()function (Program 5.5) that checks

Program : 5.2 //~ns/part/part.cc
1: void
2: PART::recv(Packet *p, Handler*)
3: {
4: struct hdr_cmn *ch = HDR_CMN(p);
5: struct hdr_ip *ih = HDR_IP(p);
6:
7: /*****************************************************
8: * If packet type is ACK
9: ****************************************************/
10: if(ch->ptype() == PT_ACK && ch->size_ == 40 )
11: {
12: recvACK(p);
13: }

Program : 5.3 //~ns/part/part.cc
1: void
2: PART::recvACK(Packet *p)
3: {
4: struct hdr_cmn *ch = HDR_CMN(p);
5: struct hdr_ip *ih = HDR_IP(p);
6: part_rt_entry *rt;
7: if(rt->rt_dst == ih->daddr()) {
8: hdr_tcp *tcpr = hdr_tcp::access(p);
9: if(rt->rt_first_miss_seqno != 0)
10: {
11: tcpr->miss_seqno_ = rt->rt_first_miss_seqno;
12: tcpr->no_miss_seqno_ = rt->rt_num_miss_seqno;
13: rt->rt_first_miss_seqno = 0;
14: rt->rt_num_miss_seqno = 0;
15: }
16: }
17: }
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whether the sequence number is fresh enough to retransmit. If it is, program 5.6

retransmits the miss_seqno.

Program : 5.4 //~ns/tcp/*.cc (tcp, newreno, vegas, westwood)
1: void
2: TcpAgent::recv(Packet *pkt, Handler*)
3: {
4: hdr_tcp *tcph = hdr_tcp::access(pkt);
5: int valid_ack = 0;
6: if (tcph->miss_seqno_ != 0) {
7: retransmit_miss_seqno_ = tcph->miss_seqno_;
8: no_retransmit_miss_seqno_ = tcph->no_miss_seqno_;
9: if (no_retransmit_miss_seqno_ == 1) {
10: retransmit_miss_seqno_ = tcph->miss_seqno_;
11: retransmit_miss_seqno();
12: }
13: else if (no_retransmit_miss_seqno_ > 1) {
14: for (int i = -1 ; i < no_retransmit_miss_seqno_; i++)
15: retransmit_miss_seqno_ = tcph->miss_seqno_ + i;
16:
17: }
18: }

Program : 5.5 //~ns/tcp/tcp.cc
1: void
2: TcpAgent:: retransmit_miss_seqno()
3: {
4: If (retransmit_miss_seqno_ <= highest_ack_+ wnd_ &&
5: retransmit_miss_seqno_ < curseq_ &&
6: retransmit_miss_seqno_ <= highest_ack_+ cwnd_+dupacks_
7: {
8: handle_seqno(retransmit_miss_seqno_);
9: }
10: return;
11: }

Program : 5.6 //~ns/part/part.cc
1: Void
2: TcpAgent::handle_seqno(int miss_seqno) {
3: Packet* p = allocpkt();
4: hdr_tcp *tcph = hdr_tcp::access(p);
5: tcph->seqno() = miss_seqno;
6: tcph->ts() = Scheduler::instance().clock();
7: send(p,0);
8:
9: }
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5.4 Experimental Analysis

Objective of experiment: We analyze the performance of the PACK scheme with the

TCP variants by changing the hop distances in the chain topologies (Figure 5.5), the

grid sizes in the grid topologies and random topologies with node movements.

Expected outcome: The sequence number checking of the PACK mechanism

positively influences the best performance for TCP variants in terms of the

throughput, delay and packet delivery fraction and number of collisions at the MAC

layer.

5.4.1 Chain Topology in Static Network

We use NS-2 to carry out the simulations. All nodes are allocated in the respective

simulation area, and the simulation time is set to 360 seconds. Each node has a

transmission range of 200 m, and the default bandwidth is set to 11Mbps. The FTP

application is generated. The TCP packet size is 512 bytes. Firstly, we measure the

performance throughput for all hop distances across the TCP-Tahoe, New Reno,

Vegas and Westwood by using AODV and PART as based routing protocols. We

apply the PACK mechanism to all TCP variants by using PART as a base protocol.

Figure 5.5 : Analysis of hop distance changes
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5.4.1.1 Throughput Measurements across Variants of TCP

We measure the throughput of each TCP variant with different routing protocols, and

Figure 5.6 shows the throughput comparisons for Tahoe. As the path length is longer,

the throughput of Tahoe gradually decreases. Tahoe-PACK over PART outperforms

Tahoe almost by 15% in 4 hops, 16% in 5 hops, 51% in 7 hops and 50% in 8 hops

over AODV. Moreover, Tahoe over AODV incurs a higher fluctuation, especially

when the hop count is higher.

(a) 4 hops (b) 5 hops

(c) 7 hops (d) 8 hops

Figure 5.6 : Throughput measurement across TCP-Tahoe
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Even though we analyze the performance in a static network, the route errors happen

more often due to the collision at the MAC layer. As we use the fast retransmission of

PACK mechanism with the PART protocol, the significant performance improvement

can be seen in Figure 5.6. Again, as we examine the PACK mechanism over New

Reno, similar improvements are encountered. While New Reno-PACK maintains a

stable throughput, the oscillation of New Reno is higher with AODV. The route errors

happen at all time due to the collision even in the static networks.

(a) 4 hops (b) 5 hops

(c) 7 hops (d) 8 hops

Figure 5.7 : Throughput measurement across TCP-New Reno

The PACK mechanism has the ability to retransmit the missing sequence number in

advance after checking them at a proxy node. Therefore, New Reno-PACK over
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PART improves performance almost by 15% in 4 hops, 16% in 5 hops, 67% in 7 hops

and 39% in 8 hops better than New Reno over AODV as shown in Figure 5.7.

We perform similar measurements across Vegas and Westwood. In Figure 5.8, the

Vegas-PACK is only slightly better than AODV in terms of throughput: around 0.7%

in 5 hops, 0.9% in 7 hops and 0.2% in 8 hops.

(a) 4 hops (b) 5 hops

(c) 7 hops (d) 8 hops

Figure 5.8 : Throughput measurement across TCP-Vegas

The PACK mechanism for the window-based TCP protocols is not as effective as

Vegas in terms of throughput. Because Vegas has problem re-routing packets, the

sequence number checking algorithm at the proxy node may not always work when a
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connection changes. Therefore, the performance of PACK mechanism is almost the

same over AODV and PART routing.

(a) 4hops (b) 5hops

(c) 7hops (d) 8hops

Figure 5.9 : Throughput measurement across TCP-Westwood

Figure 5.9 shows the comparison for Westwood. Westwood-PACK over PART shows

a significantly higher throughput: almost 22% in 4 hops, 35% in 5 hops, 27% in 7

hops and 44% in 8 hops compared to Westwood over AODV. Westwood monitors the

ACK packets to control the slow start threshold and estimate bandwidth for the

congestion window adjustment. Tables 5.1 to 5.4 show the z-test results, where the

improvements are statistically significant across TCP variants in chain topologies.
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Table 5.1 : Throughput measurement of TCP-Tahoe across a chain topology in a static network

z-Test: Two Sample for Means
(4 hops)

z-Test: Two Sample for Means
(5 hops)

z-Test: Two Sample for Means
(7 hops)

z-Test: Two Sample for Means
(8 hops)

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

Mean 1.5E+04 1.4E+04 Mean 1.3E+04 1.2E+04 Mean 1.1E+04 7.8E+03 Mean 1.1E+04 8.2E+03
Known Variance 8.0E+05 9.5E+05 Known Variance 9.4E+05 3.9E+05 Known Variance 4.6E+05 3.8E+05 Known Variance 4.6E+05 3.3E+05
Observations 8.5E+03 7.4E+03 Observations 7.5E+03 6.5E+03 Observations 6.2E+03 4.3E+03 Observations 6.2E+03 4.3E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 1.3E+02 Z 1.2E+02 Z 2.7E+02 Z 2.6E+02
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00

Table 5.2 : Throughput measurement of TCP-New Reno across a chain topology in a static network

z-Test: Two Sample for Means
(4 hops)

z-Test: Two Sample for Means
(5 hops)

z-Test: Two Sample for Means
(7 hops)

z-Test: Two Sample for Means
(8 hops)

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

Mean 1.5E+04 1.3E+04 Mean 1.3E+04 1.2E+04 Mean 1.2E+04 7.0E+03 Mean 1.1E+04 8.3E+03
Known Variance 7.7E+05 8.4E+05 Known Variance 9.3E+05 3.1E+05 Known Variance 5.0E+05 5.4E+05 Known Variance 4.6E+05 3.0E+05
Observations 8.6E+03 9.0E+03 Observations 7.5E+03 7.7E+03 Observations 6.4E+03 4.6E+03 Observations 6.2E+03 5.4E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 1.5E+02 Z 1.4E+02 Z 3.4E+02 Z 2.6E+02
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00
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Table 5.3 : Throughput measurement of TCP-Vegas across a chain topology in a static network

z-Test: Two Sample for Means
(4 hops)

z-Test: Two Sample for Means
(5 hops)

z-Test: Two Sample for Means
(7 hops)

z-Test: Two Sample for Means
(8 hops)

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

Mean 1.5E+04 1.4E+04 Mean 1.3E+04 1.3E+04 Mean 1.2E+04 1.2E+04 Mean 1.2E+04 1.1E+04
Known Variance 8.0E+05 9.5E+05 Known Variance 5.6E+05 5.1E+05 Known Variance 4.2E+05 5.0E+05 Known Variance 5.0E+05 4.1E+05
Observations 8.5E+03 7.4E+03 Observations 9.4E+03 9.4E+03 Observations 8.6E+03 8.5E+03 Observations 6.9E+03 8.2E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 1.3E+02 Z 2.9E+00 Z 2.6E+01 Z 9.8E+00
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 1.8E-03 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 3.7E-03 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00

Table 5.4 : Throughput measurement of TCP-Westwood across a chain topology in a static network

z-Test: Two Sample for Means
(4 hops)

z-Test: Two Sample for Means
(5 hops)

z-Test: Two Sample for Means
(7 hops)

z-Test: Two Sample for Means
(8 hops)

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

Mean 1.4E+04 1.2E+04 Mean 1.3E+04 1.0E+04 Mean 1.1E+04 7.0E+03 Mean 1.1E+04 8.3E+03
Known Variance 8.2E+05 3.9E+05 Known Variance 6.6E+05 4.2E+05 Known Variance 4.5E+05 5.4E+05 Known Variance 3.7E+05 3.0E+05
Observations 9.6E+03 7.8E+03 Observations 8.6E+03 5.5E+03 Observations 7.3E+03 4.6E+03 Observations 5.8E+03 5.4E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 2.1E+02 Z 2.1E+02 Z 2.7E+02 Z 2.8E+02
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00
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5.4.1.2 Average Delay Measurements across Variants of TCP

We measure the average delay for all TCP variants as shown in Figure 5.10.

Tahoe-PACK over PART offers a lower delay almost 10% if compared to Tahoe

over AODV. Although New Reno-PACK performs almost 4% in 5 hops, 2% in 6

hops and 7 hops, 9% in 8 hops better over PART than AODV, it suffers almost 3%

higher delay in the 4-hop chain topology. The worst situations are encountered in

Vegas-PACK that suffers 41% higher delay in 4 hops and 33% in 6 hops because

of the window-based PACK mechanism. The mechanism performs worse in terms

of average end-to-end delay in chain topology, whereas Westwood-PACK

achieves almost 11% lower delay over PART protocol.

Figure 5.10 : Average delay measurement across TCP variants
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5.4.1.3 Packet Delivery Fraction Measurements across Variants of TCP

Finally, we analyze the packet delivery fraction (PDF) for all TCP variants using

PART and AODV. If we look at Figure 5.11, PACK with PART mechanism shows

significant performance improvement for all TCP variants, especially in Tahoe,

New Reno and Westwood if compared to AODV. Tahoe-PACK over PART

achieves almost 5% higher PDF than AODV. New Reno-PACK improves PDF

around 3% compared to AODV and Westwood-PACK also obtains almost 4%

higher PDF if compared to Westwood over AODV. However, among the TCP

variants, the delivery rate of Vegas is the highest because the rate-based algorithm

of Vegas benefits on the delivery rate well. Vegas attempts to reduce the sending

rate before the actual congestion occurs and uses packet delay as a signal of

congestion. Table 5.5 shows the t-test results, where the improvements are

statistically significant across TCP variants in chain topologies.

Figure 5.11 : PDF measurement across TCP variants
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Table 5.5 : PDF measurement of TCP Variants across a chain topology

in a static network

t-Test: Two-Sample Assuming
Equal Variances (Tahoe)

t-Test: Two-Sample Assuming
Equal Variances (New Reno)

PACK
with

PART AODV

PACK
with

PART AODV
Mean 9.7E+01 9.4E+01 Mean 9.7E+01 1.9E+02
Variance 7.1E-02 1.8E-01 Variance 2.2E-01 1.0E+03
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.2E-01 Pooled Variance 3.5E-01
df 8.0E+00 df 8.0E+00
t Stat 1.3E+01 t Stat 7.6E+00
P(T<=t) one-tail 5.2E-07 P(T<=t) one-tail 3.1E-05
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.0E-06 P(T<=t) two-tail 6.1E-05
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00

t-Test: Two-Sample Assuming
Equal Variances (Vegas)

t-Test: Two-Sample Assuming
Equal Variances (Westwood)

PACK
with

PART AODV

PACK
with

PART AODV
Mean 1.0E+02 1.0E+02 Mean 9.7E+01 9.5E+01
Variance 1.1E-02 1.5E-02 Variance 6.4E-02 9.8E-01
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.3E-02 Pooled Variance 5.2E-01
df 8.0E+00 df 8.0E+00
t Stat -2.7E-02 t Stat 5.5E+00
P(T<=t) one-tail 4.9E-01 P(T<=t) one-tail 2.7E-04
T Critical one-tail 1.9E+00 T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.8E-01 P(T<=t) two-tail 5.5E-04
T Critical Two-tail 2.3E+00 T Critical Two-tail 2.3E+00
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5.4.2 Grid Topology in Static Network

To ascertain the efficiency of the PACK mechanism, we analyze its performance in

a grid topology with different grid sizes, for example 5 × 5 grid (25 nodes) and 7 ×

7 grid (49 nodes), as shown in Figures 5.12 and 5.13. We set the simulation area to

3500 m × 500 m field for 5 × 5 grid topology and 6000 m × 2000 m for 7 × 7 grid

topology. The simulations are run for 360 seconds. The FTP applications are

executed between each pair of source and destination. We examine the PACK

mechanism with TCP variants across PART and AODV by measuring throughput,

delay and packet loss rates as performance metrics.

Figure 5.12 : 5 × 5 grid topology

Figure 5.13 : 7 × 7 grid topology
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5.4.2.1 Throughput Measurements across Variants of TCP

We investigate the throughput of TCP variants with PACK mechanism by varying

grid sizes. Tahoe-PACK over PART still performs 22% better in 5 × 5 and 47%

better in 7 × 7 if compared to Tahoe over AODV in Figure 5.14. Also in Figure

5.15, New Reno-PACK offers a higher throughput — almost 49% in 5 × 5 grid and

55% in 7 × 7 if compared to New Reno over AODV.

(a) 5 × 5  grid topology (b) 7 × 7 grid topology

Figure 5.14 : Throughput measurement across TCP-Tahoe

(a) 5 × 5 grid topology (b) 7 × 7  grid topology

Figure 5.15 : Throughput measurement across TCP-New Reno

However, like in the chain topology, the performance of PACK mechanism is

worse than Vegas with PART as shown in Figure 5.16. As it suffers a slightly
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lower throughput 0.6% in 5 × 5 grid, it also suffers a higher throughput

degradation about 12% lower in 7 × 7 grid in Figure 5.16. Figure 5.17 shows better

performance of PACK mechanism over Westwood, in terms of throughput. Table

5.6 shows the z-test results, where the improvements are statistically significant

across TCP variants in grid topologies.

(a) 5 × 5  grid topology (b) 7 × 7  grid topology

Figure 5.16 : Throughput measurement across TCP-Vegas

(a) 5 × 5  grid topology (b)7 × 7  grid topology

Figure 5.17 : Throughput measurement across TCP-Westwood
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Table 5.6 : Throughput measurement of TCP Variants across a grid topology in a static network

z-Test: Two Sample for Means
Tahoe (5×5 grid)

z-Test: Two Sample for Means
Tahoe (7×7 grid)

z-Test: Two Sample for Means
New Reno (5×5 grid)

z-Test: Two Sample for Means
New Reno (7×7 grid)

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

Mean 8.7E+03 6.0E+03 Mean 1.1E+04 8.8E+03 Mean 8.7E+03 4.8E+03 Mean 1.2E+04 6.8E+03
Known Variance 1.7E+06 1.5E+06 Known Variance 7.6E+05 3.4E+05 Known Variance 1.7E+06 9.7E+05 Known Variance 4.7E+05 6.1E+05
Observations 8.2E+02 6.0E+02 Observations 8.3E+03 5.7E+03 Observations 8.1E+02 5.4E+02 Observations 7.6E+03 4.9E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 4.1E+01 Z 2.0E+02 Z 6.4E+01 Z 3.5E+02
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00

z-Test: Two Sample for Means
Vegas (5×5 grid)

z-Test: Two Sample for Means
Vegas (7×7 grid)

z-Test: Two Sample for Means
Westwood (5×5 grid)

z-Test: Two Sample for Means
Westwood (7×7 grid)

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

PACK
with
PART AODV

Mean 7.9E+03 7.8E+03 Mean 9.5E+03 1.1E+04 Mean 7.9E+03 4.8E+03 Mean 11002.36 7347.275
Known Variance 1.4E+06 1.5E+06 Known Variance 2.8E+05 7.6E+05 Known Variance 1.5E+06 7.0E+05 Known Variance 457606.4 3380350
Observations 8.0E+02 8.1E+02 Observations 6.8E+03 7.7E+03 Observations 7.3E+02 4.9E+02 Observations 7645 215
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Hypothesized Mean
Difference 0.0E+00

Hypothesized
Mean Difference 0

Z 1.8E+00 Z -1.1E+02 Z 5.2E+01 Z 29.09448
P(T<=t) one-tail 3.8E-02 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00 Z Critical one-tail 1.644854
P(T<=t) two-tail 7.7E-02 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00 Z Critical two-tail 1.959964
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5.4.2.2 Average Delay Measurements across Variants of TCP

When we measure the average delay across grid topologies, PACK mechanism

maintains optimum delay almost similar to AODV in 5 × 5 grid, whereas it incurs

a slightly higher delay if compared to AODV for Westwood. In the 7 × 7 grid, all

TCP variants with PACK perform worse than AODV as shown in Figure 5.18. In

the grid topologies, nodes are close to one another, making it easy for them to

exchange information. A proxy node assists to increase throughput by checking for

missing sequence numbers and retransmitting the missing packets in advance.

However, this checking may cause longer delay in the grid topologies.

Figure 5.18 : Average delay measurement across TCP variants

5.4.2.3 Packet Loss Rate Measurements across Variants of TCP

Even though PACK does not significantly reduce delay, PACK reduces the

percentage of packet loss rates for the grid topologies as shown in Figure 5.19.

Tahoe-PACK over PART reduces packet losses by almost 58% in 5 × 5 and by

13% in 7 × 7 topologies. Also a significant achievement of New Reno-PACK is

observed where it reduces packet losses by almost 34% in 5 × 5 and 46% in 7 × 7
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grid topologies. The percentages of packet loss rate for Westwood-PACK over

PART are 36% lower in 5 × 5 grid and 54% lower in 7 × 7 grid topologies if

compared to Westwood over AODV. Although the PACK mechanism does not

provide a significant performance improvement in Vegas in terms of throughput

and delay, it reduces the packet losses significantly by almost 16% in 5 × 5 grid

and 28% in 7 × 7 grid topologies when the performances are compared to the

AODV.

Figure 5.19 : Packet loss rate measurement across TCP variants

5.4.3 Random Topology in Mobile Network

To assure the effectiveness of the PACK mechanism, the random topologies are

simulated across the mobile environment, and the performance metrics measured.

For this purpose, we run 30 nodes in 1500m x 300m simulation area for 360

seconds. The 10 FTP applications are exchanged between each pair of source and

destination. We vary node speed from 1m/s to 20m/s with pause time 100 seconds.

The random movements are generated using “setdest” command under NS-2

directory, which is described in Chapter 4.
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5.4.3.1 Throughput Measurements across Variants of TCP

When we measure the performance of throughput by varying node speeds, Tahoe-

PACK over PART outperforms Tahoe over AODV by 3% higher at 1m/s, 7%

higher at 10m/s, 22% higher at 15m/s and 11 % higher at 20m/s as shown in Figure

5.20.

(a) Node speed 1m/s (b) Node speed 10m/s

(c) Node speed 15m/s (d) Node speed 20m/s

Figure 5.20 : Throughput measurement across TCP-Tahoe

As the node speed increases, the possibility of route errors increases due to the

collisions and route breaks. However, the base protocol, PART, reduces the

possibility of route breaks with the assistance of proxy nodes.
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Tables 5.7 and 5.8 show the number of collisions and route breaks. Tahoe-PACK

over PART reduces the amount of collisions and route breaks, resulting in

increased throughput.

Table 5.7 : Number of collisions at the MAC layer

Table 5.8 : Number of route breaks at the MAC layer

In Figure 5.21, New Reno-PACK over PART outperforms AODV by almost 1%

higher at 1m/s, 14% higher at 10m/s, 8% higher at 15m/s and 4% higher at 20m/s.

Also in Figure 5.22, Vegas-PACK over PART performs 3% higher at 1m/s, 7%

higher at 10m/s, 22% higher at 15m/s and 11 % higher at 20m/s when compared to

Vegas over AODV. Although we have encountered the weakness of PACK

mechanism over Vegas in the static chain and grid topologies, the significant

throughput improvements are observed as the node movements and TCP traffic are

randomized. Caasetti et al., 2002 pointed out that Westwood performs well over

lossy links. Our simulation results also show that Westwood’s performance is more

significant when the node speed increases. In Figure 5.23, Westwood-PACK

performs 10% higher at 10m/s, 11% higher at 15m/s and 11 % higher at 20m/s if

compared to AODV. Tables 5.9 to 5.11 show the t-test results, where the

improvements are significant across TCP variants in random topologies.

Speed
Protocols 1m/s 5m/s 10m/s 15m/s 20m/s
Tahoe-PACK with PART 22,685 31,447 15,856 19,934 25,012
Tahoe with AODV 25,342 40,136 23,565 31,321 31,516

Speed
Protocols 1m/s 5m/s 10m/s 15m/s 20m/s
Tahoe-PACK with PART 21 27 41 15 34
Tahoe with AODV 45 144 68 69 98
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(a) Node speed 1m/s (b) Node speed 10m/s

(c) Node speed 15m/s (d) Node speed 20m/s

Figure 5.21 : Throughput measurement across TCP-New Reno

Table 5.9 : Number of collisions of TCP Variants in a mobile network

t-Test: Two-Sample Assuming Equal Variances
(Tahoe)

PACK
with

PART AODV
Mean 2.3E+04 3.0E+04
Variance 3.4E+07 4.2E+07
Observations 5.0E+00 5.0E+00
Pooled Variance 3.8E+07
df 8.0E+00
t Stat -1.9E+00
P(T<=t) one-tail 4.8E-02
T Critical one-tail 1.9E+00
P(T<=t) two-tail 9.5E-02
T Critical Two-tail 2.3E+00
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Table 5.10 : Number of route breaks of TCP Variants in a mobile network

(a) Node speed 1m/s (b) Node speed 10m/s

(c) Node speed 15m/s (d) Node speed 20m/s

Figure 5.22 : Throughput measurement across TCP-Vegas

t-Test: Two-Sample Assuming Equal Variances
(Vegas)

PACK
with

PART AODV
Mean 2.8E+01 8.5E+01
Variance 1.1E+02 1.4E+03
Observations 5.0E+00 5.0E+00
Pooled Variance 7.8E+02
df 8.0E+00
t Stat -3.2E+00
P(T<=t) one-tail 5.9E-03
T Critical one-tail 1.9E+00
P(T<=t) two-tail 1.2E-02
T Critical Two-tail 2.3E+00
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(a) Node speed 1m/s (b) Node speed 10m/s

(c) Node speed 15m/s (d) Node speed 20m/s

Figure 5.23 : Throughput measurement across TCP-Westwood
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Table 5.11 : Throughput measurement of TCP Variants across a random topology

in a mobile network

z-Test: Two Sample for Means
Tahoe

z-Test: Two Sample for Means
New Reno

PACK
with
PART AODV

PACK
with
PART AODV

Mean 1.6E+04 1.5E+04 Mean 1.6E+04 1.5E+04
Known Variance 5.7E+05 8.1E+05 Known Variance 6.6E+05 9.0E+05
Observations 3.8E+03 3.5E+03 Observations 3.8E+03 3.6E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 6.6E+01 Z 5.8E+01
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00

z-Test: Two Sample for Means
Vegas

z-Test: Two Sample for Means
Westwood

PACK
with
PART AODV

PACK
with
PART AODV

Mean 1.7E+04 1.5E+04 Mean 1.4E+04 1.2E+04
Known Variance 5.3E+05 1.1E+06 Known Variance 5.2E+05 3.3E+05
Observations 4.1E+03 3.7E+03 Observations 3.3E+03 2.8E+03
Hypothesized
Mean Difference 0.0E+00

Hypothesized
Mean Difference 0.0E+00

Z 7.5E+01 Z 1.2E+02
P(T<=t) one-tail 0.0E+00 P(T<=t) one-tail 0.0E+00
Z Critical one-tail 1.6E+00 Z Critical one-tail 1.6E+00
P(T<=t) two-tail 0.0E+00 P(T<=t) two-tail 0.0E+00
Z Critical two-tail 2.0E+00 Z Critical two-tail 2.0E+00
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5.4.3.2 Average Delay Measurements across Variants of TCP

The PACK mechanism over TCP variants suffers a higher delay at moderate

speeds (i.e. 1 and 5m/s) and starts achieving a lower delay starting from 10m/s

speed. Figure 5.24 shows the average delay measurement with TCP variants. On

average, the PACK mechanism reduces the average delay about 10% lower in

Tahoe, 5% lower in New Reno, 8% lower in Vegas and 9% lower in Westwood

over PART protocol compared to AODV.

Figure 5.24 : Average delay measurement across TCP variants

5.4.3.3 Routing Overhead Measurements across Variants of TCP

Finally, we investigate the effects of node speed on the PACK mechanism with

TCP variants while the nodes move randomly. As shown in Figure 5.25, TCP

variants with PACK over PART achieve a significantly lower overhead than

AODV. Whenever route errors occur, AODV invokes the route discovery

procedure and discovers a new route across the whole network. On the contrary,

the PART protocol has a special mechanism depending on the types of route error.
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If the route errors occur due to the collision, PART repairs the route locally instead

of sending route error messages to the source node. These upshots affect PART

protocol over variants of TCP with PACK. Moreover, PACK is able to retransmit

the missing sequence number as soon as possible. Figure 5.25 shows that the

PACK mechanism with TCP variants reduces routing overhead almost 66% lower

in Tahoe, 68% lower in New Reno, 83% lower in Vegas and 95% lower in

Westwood over PART when compared to AODV. The simulation results are

significant as expected — the sequence number checking of PACK positively

influences the best performance for TCP variants.

Figure 5.25 : Routing overhead measurement across TCP variants
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5.5 Chapter Summary

We present a new mechanism called local acknowledgement from proxy (PACK)

that detects the missing sequence number between each pair of source and

destination. The PACK mechanism is applied to the variants of TCP, such as

Tahoe, New Reno, Vegas and Westwood. We measured the performance

differences by varying network topologies, such as the chain, grid and random in

static and mobile ad hoc environments. Simulation results show that PACK

provides a better performance with TCP variants over PART protocol. In the chain

topology, as the path length increases, PACK achieves a significantly greater

throughput up to 50% over Tahoe, 70% over New Reno and 45% over Westwood.

Moreover, PACK with TCP variants reduces the average delay up to 10% and

increases the PDF almost 5% over PART. In the grid topology, PACK over PART

with TCP variants provides a better throughput up to 55% and a lower packet loss

up to 60%. In random topology, the node speeds are varied from 1m/s to 20m/s.

Simulation results show that PACK with TCP variants has a higher throughput up

to 22%, a lower delay up to 10% and a lower routing overhead up to 95% over

PART as the nodes move randomly in the network.
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Chapter 6

ANALYTICAL STUDIES OF THE INTERACTION BETWEEN

MOBILITY MODELS AND ROUTING PROTOCOLS

6.1 Introduction

As mentioned in Chapters 2 and 3, routing and transport protocols have been a subject

of research in the networking community for many years. The responsibilities of a

routing protocol are to detect route failure, maintain an optimal route, and support data

transmission efficiently. So far, many ad hoc routing protocols have been proposed and

each protocol is developed with some advantage over the others. However, as we

mentioned in our paper (Oo and Othman, 2011), protocols are not equally good across

all metrics, such as average delay, throughput, routing overhead and so on. For

example, Oo and Othman (2011) clarified that on-demand routing protocols do not

always perform better than table-driven ones. Likewise, the multipath routing protocols

are not always able to reduce routing overhead compared to the single path routing

protocols when the node speed increases.

Routing protocols for MANETs have been tested and evaluated in so many literatures.

Broch et al. (1998) compared four routing protocols: DSR, AODV, DSDV and TORA,

and performed experiments using a realistic physical layer measurement and the IEEE

802.11 protocol with Distributed Coordination Function (DCF). Divecha et al. (2007)

also studied the effects of various mobility models with two routing protocols.

For realistic measurement, Johansson et al. (1999) compared DSDV, AODV and DSR

by introducing three realistic scenarios to test the protocols in more specialized

contexts. Prabhakaran et al. (2006) incorporated more realistic mobility models,

including entity mobility models and group mobility models in the multipath fading
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environments and studied the performance metrics such as the energy goodput, packet

delivery ratio, and control overhead packets generated by using AODV.

Most performance measurements are based on CBR traffic, whereas Oo and Othman

(2011) examined the performance comparisons based on the application traffic (i.e.

TCP and CBR traffic) with various mobility models, single path and multipath

(Proactive and Reactive) routing protocols. In general, DSR is better than AODV due to

the source routing technique. However, as the network size increases, AODV performs

better due to its quick adaptation.

The performance measurements among routing protocols discussed in Chapter 4 were

done without applying any mobility models. The objective of this chapter is to

incorporate mobility models and build an analytical framework that evaluates the

performance of PART against other protocols in terms of topology changes, various

TCP traffic types, and node movement patterns (i.e. using different mobility models).

6.2 Overview of Mobility Models

In this section, we give a brief overview of mobility models. It is very important to

measure the mobility models together with the routing protocols for the realistic

movements of mobile users.

6.2.1 Random Waypoint Mobility Model (RWP)

The Random waypoint mobility model (RWP) (Camp et al, 2002) has been used to

evaluate the ad hoc routing protocols because of its simplicity and wide availability.

The RWP Model includes pause times, minimum speed and maximum speed. A pause

time is chosen between changes in direction and/or speed. A node starts moving from a

randomly chosen position and stay in one location for a certain period of time (i.e. a
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pause time). Once this time expires, the node chooses a destination and moving speed

randomly. This speed is uniformly distributed between minimum speed and maximum

speed [minspeed, maxspeed]. The node then moves toward the newly chosen destination

at the selected speed. Upon arrival at the destination, the above process is started over

again. The movement pattern of this model is illustrated in Figure 6.1. The RWP model

is used in many prominent simulation studies of ad hoc network protocols. Due to its

flexibility, it appears to create realistic mobility patterns for the way people might move

in, for example, a conference setting or museum.

Figure 6.1 : Movement patterns of RWP model (Camp et al, 2002)

6.2.2 Manhattan Grid Mobility Model (MG)

MG represents a street network to model a city section and uses a grid road topology as

shown in Figure 6.2 (Jayakumar and Gopinath, 2008). This model is considered to

apply in realistic movements representing node movements in an urban area, where the

streets are organized along the grid of horizontal and vertical directions on the urban

map. At the intersection, the mobile nodes choose between moving on the same street,

or turning left or right based on a probability.
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Figure 6.2 : Movement patterns of MG model (Jayakumar and Gopinath, 2008)

6.2.3 Gauss-Markov Mobility Model

Liang and Hass (2003) proposed this model. It adapts to different levels of randomness

via one tuning parameter.  Initially, each node is assigned a current speed and direction.

Later, the movement of a node is updated based on its past speed and direction. By

allowing past directions to influence future directions, Gauss-Markov eliminates sudden

stops and sharp turns.

6.2.4 Reference Point Group Mobility Model (RPGM)

RPGM (Hong et al., 1999) is a group model which represents the random movement of

a group and each node within the group. Group movements of nodes are based on a

logical center, which defines the group motion behavior including location, speed,

acceleration, etc. There are two vectors: group motion vector and individual motion

vector to define the movement of each node in the network. Each individual node

within the group has a reference point that follows the group movement. The group

motion is specified with check points.  By changing the check points, the various

moving scenarios are created. Usually, nodes are uniformly distributed within the
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geographic scope of a group. A node is randomly placed in the neighborhood of its

reference point at each step. Whenever the group reaches its destination, all nodes

inside the group pause for a specific time and then start moving again. The sample

movement of RPGM model is shown in Figure 6.3.

Figure 6.3 : Movement patterns of RPGM model (Camp et al, 2002)

6.3 Generation of Mobility Models with NS-2

There is a separate mobility generator, called BonnMotion, which was developed by the

Communication Systems group at the Institute of Computer Science IV of the

University of Bonn, Germany (BonnMotion: a Mobility Scenario Generation and

Analysis Tool 2009). It is a very useful tool for GloMoSim/QualNet and NS-2.

The BonnMotion supports many mobility models: Random Waypoint (Camp et al.,

2002), Gauss-Markov (Liang and Haas, 2003), Manhattan Grid (Buruhanudeen et al.,

2007), Reference Point Group Mobility Model (Hong et al., 1999), Disaster Area Model

(Aschenbruck et al, 2009), Random Street (Aschenbruck and Schwamborn, 2010),

Random Direction (Camp et al, 2002), Random Walk, Probabilistic Random Walk

Model (Camp et al. 2002), Column Mobility Model (Camp et al, 2002), Nomadic
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Community (Camp et al, 2002) and Purse Mobility Model (Camp et al, 2002) are

generated using the following command.

“bm –f <output_name> <model_type> -n <numbers_of_node> -d <sim_time> -

i<default_value> -x <simulation area (x-axis)> -y <simulation area (y-axis)>”

For Random Waypoint  bm –f scenario1 RandomWaypoint –n 100 –d 900 –i 3600

–x 1200 –y 600

The “i” is the cutting value, and must be a high default value because nodes have a

higher probability of being near the center of the simulation area, while they are initially

distributed over the simulation area. The “n” is the number of nodes and the “d” is the

simulation seconds. The “x and y” are the simulation areas.

6.4 Analytical Framework for Network Performance Tests

Figure 6.4 shows an analytical framework that illustrates an analysis structure to test the

overall network performance. The FTP applications are generated by the application

layer protocol. Different transport layer protocols, such as Tahoe, New Reno and Vegas,

are used by the applications. Then, the movement patterns of nodes are generated

according to the mobility models used. As the performance metrics, the properties of

mobility models, such as average node degree, average number of partitions, link

duration, etc. are measured first. Finally, the performance of the routing protocols is

examined by utilizing the mobility models and TCP variants together.

The analytical framework contains mobility models (RWP, Manhattan, Gauss-Markov

and RPGM), routing protocols (PART, AODV, DSR, OLSR, and AOMDV), and traffic

types (Tahoe, New Reno and Vegas) for FTP applications that are combined as an

integrated framework to compare the overall performance of the network.
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Figure 6.4 : Analytical framework for overall network performance

6.5 Comparison of Mobility Models’ Properties

Objective of experiment: To ascertain how the properties of mobility models vary with

different node velocities.

Expected outcome: The properties of mobility models depend on the variations of node

speed, which in turn, affect the link conditions of the mobility models.

Routing layer protocols

File transfer applications
Application layer

traffic

Transport layer protocols

TCP (Tahoe, New Reno, Vegas)

RWP Manhattan Gauss Markov RPGM
Mobility models

Single path Multiple paths
PART AODV

DSR OLSR AOMDVReactive Proactive Reactive

1. Properties of mobility models
1. Interaction between mobility models and routing protocols

Performance metrics
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We simulated the mobility models using Bonnmotion version 1.3a. We run each

simulation for 600 s with the following parameters to measure the properties of mobility

models with speed changes.

 In RWP, the pause time is set to zero for the continuous movement of nodes and

node speed is set to either one of the following: 1m/s (low speed), 10 m/s

(medium speed) and, 20 m/s, 30 m/s and 40 m/s (high speed) with the simulation

area (1200 x 600).

 In Gauss-Markov, initially each mobile node is assigned a speed and direction.

At fixed time intervals, movement occurs by updating the speed and direction of

mobile nodes. Specifically, the value of speed and direction is calculated based

on the value of current speed and direction. Therefore, we set a standard

deviation of velocity changes to 0.5 and the update frequency of speed and

direction is 2.5.

 In Manhattan, we define a grid of 3 blocks at the horizontal axis and 2 blocks at

the vertical axis, an update distance equal to 5 m, a turn probability equal to 0.5,

a speed change probability equal to 0.2, pause probability equal to 0.

 In RPGM, when a node comes into the area of another group, it switches to this

new group with a probability of 0.01. The maximum distance is equal to 2.5 m.

To measure the properties of mobility models, the following parameters are analyzed.

 An average node degree (ND) is defined as the number of neighbor nodes

averaged over the number of nodes at every instant time. Two nodes are

neighbors if they are within transmission range of each other.

1 1
( , )

.

T N

t a
N a t

ND
T N

 


(1)
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where, N is the number of nodes, T is the simulation time, and N(a, t) is the

number of neighbor nodes for node a at time t (Lu et al, 2004).

 An average number of partitions define that if the number of partitions that

exists in the network after the occurrence of event e is denoted as ( )e , then

the average number of partitions over the time interval T is defined as follows:

max min

1( )
avg

T
t t


( ) 1

1
( ( 1). ( ). ( ( ))

partE T

a
a t a t a





      (2)

where  ( ) | .partE T e e t T  , the set of partition events in T. (Hahner et al, 2007)

 The Link Duration (LD) is an average duration that a link exists between two

nodes and . It is a measurement of link stability. Formally,
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 The average link duration is the value of ( , )LD a b averaged over node pairs.

(Bai et al, 2003). Formally,
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where is the number of pairs ( , )a b and ( , )LC a b is number of link changes for

a pair of nodes.
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(5)

 Link breaks are how many links break down during the simulation time.

 Total links are the total number of links during the simulation time.
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We compare the average node degree, average number of partitions, link breaks,

average link duration and total links of four mobility models within a 100-m

transmission range by varying the node speed. In all mobility models, while the average

node degree and the average number of partitions are approximately constant for all

speed rates, the link breaks increase immediately. The average link duration decreases

at once when the node speed increases as shown in Table 6.1.

Not surprisingly, the average node degree and the average link duration of the RPGM

are the highest and the average number of partitions is the lowest due to its group

movement pattern. The nodes in the RWP merge together to the center quickly due to

the zero pause time and having more neighbors result in a higher average node degree

compared to the other two models. Similar to (Liang and Haas, 2003), the average node

degree of Manhattan model is almost the same at different speeds due to the restrictions

imposed by the map (e.g. streets) to limit node deployment.

The RWP model has lower average numbers of partitions, although its movement

pattern is random when compared to the Gauss-Markov and Manhattan models.

Sometimes, the random movement patterns may reduce the number of network

partitions because nodes randomly move close to the center within the predefined area

in an organized manner. The closer the node moves, the lesser the number of partitions.

The average node degree and the number of partitions are inversely proportional. In the

Gauss Markov, the average node degree is the least and the number of partitions is the

highest.

Although Gauss-Markov incurs the largest number of partitions, its average link

duration is higher than the RWP model because it takes more time to calculate the new

speed and direction in comparison to RWP. The average link duration increases in the

Manhattan model because the duration of a link depends on the directions that the nodes
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choose at crossings. Larger blocks result in a long connection period for nodes that take

the same turn at a crossing. Apart from our results, Hahner et al, (2007) also discovered

that the size of blocks in the Manhattan model has a major impact on link stability. The

RWP model incurs less average link duration because of its randomness.

Table 6.1 : Performance comparison of the mobility models

The link break conditions of the RWP, Manhattan and RPGM models are not much

different from each other. In Gauss-Markov, the growing network partition results in an

increased number of average link breaks. Setting the pause time to zero makes the

frequency of updating previous speed and direction higher. Similar to our analysis,

Metric Node Speed (m/s) RWP Gauss Markov Manhattan RPGM

Average node degree

1
10
20
30
40

Mean
SD

1.5
1.7
1.8
1.8
1.7
1.7
0.1

1.0
1.2
1.2
1.1
1.1
1.1
0.1

1.5
1.5
1.5
1.5
1.5
1.5
0.0

4.7
5.2
4.8
4.5
5.0
4.8
0.3

Average number of  partitions

1
10
20
30
40

Mean
SD

19.6
20.1
19.9
19.6
20.4
19.9
0.3

26.3
25.4
26.1
28.1
26.2
26.6
1.0

20.4
22.8
24.0
23.6
23.0
22.8
1.4

10.2
12.2
11.4
11.4
10.6
11.2
0.8

Average link duration

1
10
20
30
40

Mean
SD

128.9
31.1
18.7
15.3
10.6
40.9
49.8

179.2
21.7
10.7
6.0
5.7

44.9
75.4

255.6
33.7
16.2
11.5
9.0

65.4
106.8

296.5
86.4
42.1
40.4
36.2

100.5
111.4

Link beaks

1
10
20
30
40

Mean
SD

83
724

1329
1718
2254
1222
847

45
783

1659
2267
2964
1544
1161

41
591

1212
1889
2460
1239
971

73
780

1489
1543
1824
1141
710
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Hahner et al, (2007) also outlines that in the Gauss-Markov mobility model, if a link

between two nodes moving in opposite direction breaks, the number of links goes down

because a node takes more time to traverse another node’s coverage area with the

typical relative speed.

Two factors affect the dynamics of links between nodes: the distance between the nodes

and the relative speed between them. If two nodes are connected and are moving away

then the links between them will break. As nodes move closer to each other, a link is

created. Our simulation results show that Gauss-Markov is the worst, especially for the

average number of partitions and link breaks when the node velocity increases in the

network.

6.6 Interaction between Routing Protocols and Mobility Models

Objective of experiment: To examine the interaction between routing protocols and

mobility models.

Expected outcome: The interaction between mobility patterns and routing protocols

contributes significantly to the overall network performance.

In MANETs, civilian and military applications play a vital role for users who move

round and share information with each other. The movement of users varies depending

on the environment, e.g. people may move randomly in different directions (Random

waypoint model); or walk, run and drive in two directions in the street (Manhattan

Mobility Model); or move as a group (Reference Point Group Mobility model).

Table 6.2 lists the simulation parameters that were examined. The 100 nodes move

within the 2500 x 1500 simulation area at various speeds for about 600 seconds. 70 FTP

(File Transfer Protocol) applications of TCP are generated with default TCP window

size 32 and the packet size 512 bytes. We test five speeds: 1m/s for walking, 5m/s for
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driving a motorcycle, 10m/s, 15m/s and 20m/s for driving cars. The mobility and traffic

generations are done by using a Bonnmotion and network simulator. We evaluate the

performance of routing protocols with each mobility model.

Table 6.2 : Simulation parameters for the performance tests

6.6.1 Performance Evaluations of Routing Protocols in RWP Model

Firstly, we measure the average end-to-end delay to investigate the effect of node

velocity on the relative rankings of routing protocols with TCP traffic. Figure 6.5 shows

that PART incurs the lowest average delay compared to AODV and DSR as the node

speed increases. DSR always suffers the highest delay due to its source routing.

On the other hand, PART could not mimic the multipath routing protocols, such as

AOMDV and OLSR, at high speed. Although PART performs 16.2% better than

AODV and 174.3% better than DSR, it encounters 5.8% higher delay than AOMDV

and 14.1 % higher delay than OLSR.

Parameters across RWP, Manhattan, RPGM mobility models
Topography areas size 2500 x 1500
Simulation time 600 second
Number of nodes 100
Routing protocols Single path - PART, AODV, DSR, DSDV,

Multipath - AOMDV, OLSR
Transport protocols TCP
Number of TCP connections 70 FTPs
Window size of TCP 32
Packet size 512 bytes
Maximum speed 1, 5, 10, 15, 20 m/s
Pause time 0 (continuous move)
Wireless channel Two Ray Ground
Mac protocol Mac/802.11
Antenna OmiAntenna



170

Figure 6.5 : Average delay measurement in RWP model

(a) DSR included

(b) without DSR

Figure 6.6 : NRL measurement in RWP model
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Secondly, the performance comparisons of NRL are discussed for all routing protocols.

As shown in Figure 6.6 (a), DSR incurs the worst routing overhead and suffers almost

600% higher overhead compared to the others as the node speed increases. PART

reduces the routing overhead 27.9% lower than AODV, 13.4% lower than AOMDV and

6.3% lower than OLSR. Figure 6.6(b) compares the overhead without including DSR so

that the performance comparisons of other routing protocols can be seen in the graph.

If a primary route fails in AOMDV and the backup routes cannot be provided, invoking

a route discovery from the very beginning and building multiple paths tend to incur a

greater routing overhead (Oo and Othman, 2011). While nodes move at a moderate

speed, the chances of route failures are less and proactive routing protocols, like OLSR,

can provide a ready route due to its topology-based routing information whenever route

error messages are received. Even if route breaks occur under a moderate speed, its

proactive routing nature allows it to provide routes at once. However, as node speed

increases, the topology changes occur quickly, and thus the proactive protocols have

fewer chances to provide routes at once.

Figure 6.7 : Packet loss rate measurement in RWP model
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Thirdly, we measure packet loss rates with velocity changes. As the node speed

increases, the packet loss rates also increase, especially for reactive routing protocols.

Even though DSR is also a reactive protocol, it reduces packet loss rates compared to

the other reactive protocols. The routing caching technique of DSR suffers the highest

delay as the node speed and node density increases, but it reduces packet losses. In

Figure 6.7, although PART reduces the packet loss almost 19% lower than AODV and

AOMDV, it suffers a higher loss rate of almost 80% higher than DSR and OLSR.

Figure 6.8 : Throughput measurement in RWP model

Finally, we measure the throughput of the routing protocols. PART performs 1.9%

better than AODV, 31.5% better than DSR and 10.3% better than OLSR as shown in

Figure 6.8. As the node speed increases, the performance of DSR and OLSR suffers due

to the stale route problem and rapid topology changes.

The important participation of a proxy node can be seen in most situations. The

assistance of proxy node succeeds not only in lowering the routing overhead, but also in

reducing collisions and congestion problems due to its limited broadcast zone while

maintaining optimum throughput. Table 6.3 shows the t-test results, where the

improvement is statistically significant in RWP model.
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Table 6.3 Performance comparisons of routing protocols in RWP model

6.6.2 Performance Evaluations of Routing Protocols in MG Model

This mobility model is more realistic and is employed for node movements within a

city. When we analyze the average delay, PART incurs a lower delay if compared to

DSR and AODV. The average delay of PART and AOMDV is almost similar.

However, the topology-based OLSR incurs 8.7% lower delay than PART as shown in

Figure 6.9. Needless to say, the topology information does not change very much in

such a mobility model. As usual, DSR suffers the highest delay.

If we examine the routing overhead, PART reduces the overhead far better when

compared to others (i.e. 13.8% lower than AODV, 92.2% lower than DSR, 106.9%

lower than AOMDV, 64.7% lower than OLSR) as shown in Figure 6.10.

t-Test: Two-Sample Assuming
Equal Variances (delay)

t-Test: Two-Sample Assuming
Equal Variances (overhead)

PART DSR PART DSR
Mean 9.5E+01 2.6E+02 Mean 5.2E-01 3.6E+00
Variance 2.0E+02 9.4E+03 Variance 8.6E-02 7.9E+00
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 4.8E+03 Pooled Variance 4.0E+00
df 0.0E+00 df 0.0E+00
t Stat 8.0E+00 t Stat 8.0E+00
P(T<=t) one-tail -3.8E+00 P(T<=t) one-tail -2.5E+00
T Critical one-tail 2.7E-03 T Critical one-tail 2.0E-02
P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00
T Critical Two-tail 5.4E-03 T Critical Two-tail 3.9E-02

t-Test: Two-Sample Assuming
Equal Variances (packet losses)

t-Test: Two-Sample Assuming
Equal Variances (packet losses)

PART DSR PART OLSR
Mean 1.8E+00 3.7E-01 Mean 1.8E+00 7.0E-01
Variance 1.2E+00 3.0E-02 Variance 1.2E+00 6.7E-02
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 6.2E-01 Pooled Variance 6.4E-01
df 0.0E+00 df 0.0E+00
t Stat 8.0E+00 t Stat 8.0E+00
P(T<=t) one-tail 2.9E+00 P(T<=t) one-tail 2.2E+00
T Critical one-tail 9.6E-03 T Critical one-tail 2.9E-02
P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00
T Critical Two-tail 1.9E-02 T Critical Two-tail 5.8E-02
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Figure 6.9 : Average delay measurement in MG model

Figure 6.10 : NRL measurement in MG model

In the situation of realistic movements, the huge routing overhead of AOMDV is

encountered as shown in Figure 6.10. By virtue of focusing on nodes moving along

horizontal or vertical streets, the source routes of DSR and multiple routes of AOMDV

cause the network to be congested as node speed and the number of TCP connections

increase. Then these effects drive the stale and unusable route problems leading to the

increased routing overhead.
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Figure 6.11 : Throughput measurement in MG model

If we look at the throughput measurement in Figure 6.11, the best performance of

PART can be seen. It achieves a significantly higher throughput: about 4.1% better than

AODV, 3.4% better than DSR, 6.0% better than AOMDV and 18.2% better than OLSR.

PART performs very well under the realistic mobility model in terms of throughput.

Table 6.4 shows the t-test results, where the improvement is statistically significant in

the MG model.
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Table 6.4 : Performance comparisons of routing protocols in MG model

t-Test: Two-Sample Assuming
Equal Variances (throughput)

t-Test: Two-Sample Assuming
Equal Variances (throughput)

t-Test: Two-Sample Assuming
Equal Variances (throughput)

t-Test: Two-Sample Assuming
Equal Variances (throughput)

PART AODV PART DSR PART AOMDV PART OLSR
Mean 2.4E+03 1.9E+03 Mean 2.4E+03 1.9E+03 Mean 2.4E+03 1.9E+03 Mean 2.4E+03 1.6E+03
Variance 1.5E+05 1.6E+05 Variance 1.5E+05 2.1E+05 Variance 1.5E+05 2.7E+05 Variance 1.5E+05 5.0E+05
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 1.5E+05 Pooled Variance 1.8E+05 Pooled Variance 2.1E+05 Pooled Variance 3.2E+05
df 0.0E+00 df 0.0E+00 df 0.0E+00 df 0.0E+00
t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00
P(T<=t) one-tail 1.8E+00 P(T<=t) one-tail 1.6E+00 P(T<=t) one-tail 1.8E+00 P(T<=t) one-tail 2.1E+00
T Critical one-tail 5.5E-02 T Critical one-tail 7.7E-02 T Critical one-tail 5.7E-02 T Critical one-tail 3.7E-02
P(T<=t) two-tail 1.4E+00 P(T<=t) two-tail 1.4E+00 P(T<=t) two-tail 1.4E+00 P(T<=t) two-tail 1.4E+00
T Critical Two-tail 1.1E-01 T Critical Two-tail 1.5E-01 T Critical Two-tail 1.1E-01 T Critical Two-tail 7.4E-02

t-Test: Two-Sample Assuming
Equal Variances (overhead)

t-Test: Two-Sample Assuming
Equal Variances (overhead)

t-Test: Two-Sample Assuming
Equal Variances (packet losses)

t-Test: Two-Sample Assuming
Equal Variances (packet losses)

PART DSR PART DSR PART AOMDV PART OLSR
Mean 2.3E-01 4.4E-01 Mean 2.3E-01 3.8E-01 Mean 1.3E+00 1.8E+00 Mean 1.3E+00 5.7E-01
Variance 7.9E-03 8.3E-02 Variance 7.9E-03 3.9E-02 Variance 1.5E-01 2.8E-01 Variance 1.5E-01 1.6E-02
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 4.5E-02 Pooled Variance 2.3E-02 Pooled Variance 2.2E-01 Pooled Variance 8.5E-02
df 0.0E+00 df 0.0E+00 df 0.0E+00 df 0.0E+00
t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00
P(T<=t) one-tail -1.6E+00 P(T<=t) one-tail -1.5E+00 P(T<=t) one-tail -1.7E+00 P(T<=t) one-tail 3.9E+00
T Critical one-tail 7.9E-02 T Critical one-tail 8.2E-02 T Critical one-tail 6.8E-02 T Critical one-tail 2.4E-03
P(T<=t) two-tail 1.4E+00 P(T<=t) two-tail 1.4E+00 P(T<=t) two-tail 1.4E+00 P(T<=t) two-tail 1.9E+00
T Critical Two-tail 1.6E-01 T Critical Two-tail 1.6E-01 T Critical Two-tail 1.4E-01 T Critical Two-tail 4.9E-03



177

6.6.3 Performance Evaluations of Routing Protocols in RPGM Model

We analyze the performance of routing protocols with the group mobility model and

measure the throughput and delay. As shown in Figure 6.12, there is not much

performance difference between PART, AODV and DSR in terms of throughput.

However, PART performs slightly better than the multipath AOMDV and OLSR

routing protocols. If we look at the performance of average delay, the similar

performances of PART and AODV can be seen in Figure 6.13, where PART reduces the

average delay almost 38% lower than DSR and 7% lower than AOMDV and OLSR.

The simulation results are significant as expected. Table 6.5 shows the t-test results,

where the improvements are statistically significant in the RPGM model.

Figure 6.12 : Throughput measurement in RPGM model

Figure 6.13 : Average delay measurement in RPGM model
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Table 6.5 : Performance comparisons of routing protocols in RPGM model

t-Test: Two-Sample Assuming
Equal Variances (throughput)

t-Test: Two-Sample Assuming
Equal Variances (throughput)

t-Test: Two-Sample Assuming
Equal Variances (throughput)

t-Test: Two-Sample Assuming
Equal Variances (throughput)

PART AODV PART DSR PART AOMDV PART OLSR
Mean 6.2E+03 6.0E+03 Mean 6.2E+03 6.0E+03 Mean 6.2E+03 5.9E+03 Mean 6.2E+03 5.9E+03
Variance 5.0E+05 4.8E+05 Variance 5.0E+05 4.5E+05 Variance 5.0E+05 4.7E+05 Variance 5.0E+05 4.5E+05
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 4.9E+05 Pooled Variance 4.7E+05 Pooled Variance 4.8E+05 Pooled Variance 4.8E+05
df 0.0E+00 df 0.0E+00 df 0.0E+00 df 0.0E+00
t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00
P(T<=t) one-tail 3.3E-01 P(T<=t) one-tail 3.6E-01 P(T<=t) one-tail 6.8E-01 P(T<=t) one-tail 6.4E-01
T Critical one-tail 3.8E-01 T Critical one-tail 3.6E-01 T Critical one-tail 2.6E-01 T Critical one-tail 2.7E-01
P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00
T Critical Two-tail 7.5E-01 T Critical Two-tail 7.3E-01 T Critical Two-tail 5.2E-01 T Critical Two-tail 5.4E-01

t-Test: Two-Sample Assuming
Equal Variances (delay)

t-Test: Two-Sample Assuming
Equal Variances (delay)

t-Test: Two-Sample Assuming
Equal Variances (delay)

t-Test: Two-Sample Assuming
Equal Variances (delay)

PART AODV PART DSR PART AOMDV PART OLSR
Mean 3.7E+02 3.7E+02 Mean 3.7E+02 6.0E+02 Mean 3.7E+02 3.5E+02 Mean 3.7E+02 4.0E+02
Variance 2.7E+03 2.8E+03 Variance 2.7E+03 2.5E+03 Variance 2.7E+03 4.1E+02 Variance 2.7E+03 2.1E+03
Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00 Observations 5.0E+00 5.0E+00
Pooled Variance 2.8E+03 Pooled Variance 2.6E+03 Pooled Variance 1.6E+03 Pooled Variance 2.4E+03
df 0.0E+00 df 0.0E+00 df 0.0E+00 df 0.0E+00
t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00 t Stat 8.0E+00
P(T<=t) one-tail -2.0E-01 P(T<=t) one-tail -7.2E+00 P(T<=t) one-tail 7.7E-01 P(T<=t) one-tail -1.0E+00
T Critical one-tail 4.2E-01 T Critical one-tail 4.5E-05 T Critical one-tail 2.3E-01 T Critical one-tail 1.7E-01
P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00 P(T<=t) two-tail 1.9E+00
T Critical Two-tail 8.4E-01 T Critical Two-tail 9.0E-05 T Critical Two-tail 4.7E-01 T Critical Two-tail 3.4E-01
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6.7 Chapter Summary

Our first analysis for the properties of mobility models clearly shows that the node

speed variations do affect the link conditions of the mobility models, which in turn,

impacts the performance of the routing protocols in different ways. As node speed

increases, the link stability of the RPGM is the best due to its group movement pattern.

Apart from this model, Manhattan Grid is the best and a more realistic model because it

is based on grid road topology. Even though Gauss-Markov eliminates the sudden stop

and sharp turn behaviors, it suffers a greater number of partitions and link breaks when

the node speed increases. RWP stands as a moderate model among them.

The second analysis shows the performance analysis of routing protocols for each

mobility model. In RWP, although PART incurs the lowest delay as the node speed

increases, it could not mimic the multipath routing protocols. Its delay is almost 180%

lower compared to DSR. PART reduces the routing overhead by almost 30% lower than

other protocols. When comparing the packet loss rate, PART incurs almost 20% lower

losses than on-demand routing protocols, whereas it suffers higher losses compared to

proactive routing protocols. In addition, PART’s throughput is almost 35% higher than

the others for the RWP model. For the Manhattan model, PART incurs almost 110%

lower delay and routing overhead compared to the others. The performance of PART is

the best under this realistic model. In the RPGM model, although the throughput

comparison of PART is not highly significant compared to the others, PART reduces

average delay almost 40% lower than the others.
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Chapter 7

CONCLUSION AND FUTURE DIRECTION

7.1 Conclusion

We propose two mechanisms for the routing layer and transport layer enhancements.

The first mechanism involves designing and developing a new routing layer protocol,

named proxy-assisted routing (PART), for efficient data transmission. The assistance

of a proxy node is used, depending on the distance between a source and destination.

The responsibilities of a proxy node are to avoid invoking a new route discovery

procedure for route failures that occur due to collisions at the MAC layer and repair

the route errors locally. Furthermore, the proxy node defines a broadcasting zone and

only nodes within the zone are allowed to forward the control packets to reduce the

routing overhead. Without using additional control packets, a proxy node is defined

depending on the hop count information by adding new fields in the reply packet.

After defining a proxy node, the intermediate nodes between a proxy and source node

update their routing tables by adding the proxy node’s id. Intermediate nodes are

informed about the proxy using a unicast transmission that includes the MAC layer

information.

In MANETs, nodes may move in different directions. For example, a node that is

assigned as a proxy node at 0.5 seconds may not be able to act as a proxy a few

moments later. We use a node as a proxy node during one TCP connection. As the

number of TCP connections increases, the number of proxy nodes may increase if the

path lengths are longer. We inherit the basic route discovery of AODV because it can

adapt to route failures quickly and it works well under high mobility.
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To ensure that the objectives listed in Section 1.4 are achieved, we carried out

experiments to test the effects of node movements. In Chapter 4, we compare the

performance of the proposed proxy-based routing protocols in large-scaled networks

for robustness and scalability. The simulation results prove that PART protocol not

only reduces average delay and routing overhead, but also increases throughput.

The second mechanism, proposed in Chapter 5, involves a proxy local

acknowledgement (PACK) mechanism. The proxy node monitors the sequence

numbers of the packets it receives. As soon as the proxy detects a missing sequence

number, it attaches the information about the missing packets in the ACK packets it

receives from the destination to inform the source node of the missing packets. This

mechanism requires the cooperation between the routing layer protocol, PART and

MAC layer, and is applied to the transport layer protocols, i.e. Tahoe, New Reno,

Vegas and Westwood.

The experiment results in Section 5.4 prove our hypothesis that PACK is able to

increase the throughput of TCP packets in both static and mobile networks with

different topologies.

Finally, an analytical framework is proposed to compare the performance of routing

protocols by incorporating mobility models. The properties of mobility models and

their influence on routing protocols are analyzed in Chapter 6. The experiment results

in Section 6.6 prove our hypothesis that PART is able to improve the performance

with different mobility models, in terms of throughput, delay, packet loss rate and

routing overhead.
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7.2 Significance of Contribution

The proxy node plays an important role in adapting to route failures with less

overhead and delay. It also supports fast route adaptation in a MANET and

successfully limits the broadcast zone. Even when the proxy has moved out of range

or is unavailable due to power failures, the source node is able to discover a new

proxy immediately without extra overhead. The PART protocol is capable of

improving the throughput by up to 75% in a large-scaled network and even mimics

the multipath routing protocol, AOMDV, with much lower overhead.

The proxy node combined with the PACK mechanism improves performance

significantly over various TCP variants. PACK is able to detect missing TCP

sequence numbers and inform the source node of missing packets in advance of the

end-to-end acknowledgement. As the path length increases, the performance

improvement of PACK becomes more significant due to its ability to initiate fast

retransmission of lost packets. Because the source node knows the missing TCP

sequence number in advance, it results in a significant performance in static and

mobile environments. PACK increases throughput up to 70% in chain topology, 60%

in grid topology of static network, and 25% in random topology of mobile network. It

also performs well when combined with the various TCP variants, showing higher

throughput and lower delay in a static ad hoc network.

An analytical framework that incorporates mobility models with single path and

multiple paths routing protocols shows that PART performs well, resulting in higher

throughput and lower delay in mobile environments.

In a nutshell, all of the stated objectives have been successfully achieved.
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7.3 Future Direction

This work focuses on single-path protocols only. An interesting future work to

explore is the effectiveness of PART and PACK when applied to multipath protocols.

In the proposed PACK mechanism, the proxy node monitors TCP packets to detect

missing sequence numbers. The source node is responsible for retransmitting missing

packets after it is notified by the proxy. A useful extension to the PACK mechanism

would be to allow the proxy to buffer packets and retransmit missing packets.




