EXPRESSION OF GNA12 AND IFITM3,

AND THEIR ROLES IN ORAL CARCINOGENESIS

GAN CHAI PHEI

FACULTY OF DENTISTRY

UNIVERSITY OF MALAYA

KUALA LUMPUR

AUGUST 2010

EXPRESSION OF GNA12 AND IFITM3,

AND THEIR ROLES IN ORAL CARCINOGENESIS

GAN CHAI PHEI

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN DENTAL SCIENCE

FOR THE DEGREE OF MASTER IN DENTAL SCIENCE

FACULTY OF DENTISTRY UNIVERSITY OF MALAYA KUALA LUMPUR AUGUST 2010

Abstract

Introduction: Oral squamous cell carcinoma (OSCC) is a major health problem worldwide. The heterogeneity of the disease is the main challenge for the improvement of current treatment modalities. Efforts in our laboratory have focused on the molecular profiling of oral cancer in order to understand the mechanisms underlying this disease. Based on the previous microarray data, Guanine nucleotide binding protein alpha-12 (GNA12) and Interferon inducible transmembrane protein 3 (IFITM3) were identified to be up-regulated in oral cancer. **Objectives:** This study aims to validate the expression of GNA12 and IFITM3 at the mRNA and protein levels in oral cancer tissues and to determine the effects of their over-expression on the biology of oral cancer cells. Methodology: Real-time quantitative PCR (QPCR) was conducted for relative quantification of GNA12 and IFITM3 mRNA expression in 47 OSCC in comparison to 18 non-malignant oral tissues. GNA12 and IFITM3 protein expressions were accessed by immunohistochemistry (IHC) on tissue macro-arrays (TMaA) consisting of 44 tumours and 23 non-malignant tissues. Target molecules were exogenously expressed in oral cancer cell lines via virus-transduction, and further examined for in-vitro cell proliferation, migration and invasion to determine their functional roles in oral cancer. Results: In comparison to non-malignant tissues, OSCC tissues exhibited high mRNA levels of GNA12 (p<0.001) and IFITM3 (p=0.003). Over-expression of GNA12 was observed in 55% (n=26) OSCC tissues, and IFITM3 over-expression was found in 46% (n=21) OSCC tissues. Consistently, IHC analysis also detected high levels of GNA12 and IFITM3 protein expressions in 75% (n=33) and 79% (n=34) of OSCC, respectively. Their expression was primarily localized to the cytoplasm. Conversely, more than 80% of the non-malignant cells showed negative staining for GNA12 and IFITM3. Following this, the *in-vitro* functional studies showed that expression of activated

GNA12 (G α Q231L) in oral cancer cell line markedly increased cell migration in monolayer wound healing assay (p<0.001) and invasion through matrigel barrier (p=0.015) but have no effect on cell proliferation. However, IFITM3-transformed oral cancer cells lost the ability to form confluent monolayer and showed inhibition of cell growth. Moreover, over-expression of IFITM3 significantly reduced oral cancer cells migration (p=0.019) and invasion (p=0.004). **Conclusion:** To the best of our knowledge, this is probably the first study that demonstrated the expression of GNA12 and IFITM3 at the mRNA and protein levels in oral cancer. Over-expression of GNA12 and IFITM3 are associated with oral cancer, since high levels of these genes were found to be present in a large proportion of Malaysia's oral cancer patients. Expression of activated GNA12 induced oral cancer cell migration and invasion hence warrant further investigations in the *in-vivo* model to determine if it could be targeted for therapy to prevent the spread of oral cancer. Over-expression of IFITM3 has inhibitory effects on oral cancer cell growth, migration and invasion. Thus, its role as oncogene or antitumour gene remains unclear.

Acknowledgements

It is a pleasure to thank the many people who made this dissertation possible. I am heartily thankful to my supervisors, Prof. Rosnah Zain and Prof. Dr. Cheong Sok Ching, for the invaluable direction, support, encouragement and advice given on this project. I appreciate the excellent grounding that they have given to me in molecular cancer research, as well as the opportunity to become equipped with a range of molecular biology tools.

I am indebted to the staff in Oral Cancer Research and Coordinating Centre (OCRCC) and the Oral Pathology Diagnostic Laboratory, Faculty of Dentistry, University of Malaya, for their efforts in assisting me in getting patients' clinical information and constructing the Tissue Macro-Arrays for my immunohistochemistry studies. I would also like to thank all staff in CARIF, especially members of the Oral Cancer Team for their valuable support and input on the project. I especially would like to thank Sharifah Hamid and Chong Chan Eng for their unfailing willingness to give advice regarding lab techniques and support.

I am grateful to our international collaborators for their professional advice on the experiments including Dr. Silvio Gutkind for the GNA12 project, and Prof. Dr. Connie Yang and Dr. Marhazlinda Binti Jamaludin for statistical tutorials.

I wish to extend my gratitude to my beloved family, my fiancé – Alan Oh and friends, especially to my late father for his ever-lasting love and support in my pursuing of this study. To them I dedicate this thesis.

Last but not least, I would like to acknowledge and thank Cancer Research Initiatives Foundation (CARIF) for the sponsorship on my MSc. studies and Institute of Research Management and Monitoring (IPPP), University of Malaya for funding this project.

	<u>Contents</u>	PAGE
Title page		i
Abstract		ii
Acknowledg	gement	iv
Contents		V
List of Figu	res	Х
List of Tabl	es	xi
List of Appo	endices	xii
Abbreviatio	ns	xiii
Chapter 1	Introduction	
	1.1 Background	1
	1.2 Aim	2
	1.3 Specific objectives	2
	(A) GNA12	
	(B) IFITM3	
Chapter 2	Literature Review	
	2.1 Oral cancer	3
	2.1.1 Oral cancer incidences: global and Malaysia	3
	2.1.2 Classification of oral cancer	6
	2.1.3 Risk factors associated to oral cancer	7
	2.1.4 Prognosticator for oral cancer	9
	2.1.5 Treatment	10
	2.1.6 Molecular alteration in oral cancer	12

	Contents	PAGE
	2.2 Guanine nucleotide binding protein alpha-12 (GNA12)	13
	2.2.1 Heterotrimeric guanine nucleotide binding proteins	13
	(G-proteins)	
	2.2.2 Heterotrimeric G-proteins of the G12 family	17
	2.2.3 GNA12 and cancer	19
	2.3 Interferon inducible transmembrane protein 3 (IFITM3)	21
	2.3.1 Interferon and interferon inducible genes	21
	2.3.2 The 1-8 ISG family	22
	2.3.3 Features of IFITM3 protein sequence and interacting	25
	partners	
	2.3.4 IFITM3 and cancer	26
Chapter 3	Materials and Methods	
	3.1 Study design	28
	3.2 Clinical specimens and cell lines	28
	3.2.1 Frozen tissues	28
	3.2.2 Paraffin-embedded tissues	29
	3.2.3 Oral cell lines	30
	3.3 Validation of GNA12 and IFITM3 mRNA expression in	30
	oral cancer tissues	
	3.3.1 RNA isolation from frozen tissues	30
	3.3.2 cDNA synthesis	31
	3.3.3 QPCR analysis for the quantification of mRNA	31
	levels of target genes	
	3.4 Validation of GNA12 and IFITM3 protein expression in	32
	oral cancer tissues	
	3.4.1 Immunohistochemistry staining	32
	3.4.2 IHC staining evaluation	33
	3.5 Maintenance of cell lines	33

Contents	Page
3.6 Exogenous expression of target genes in oral cancer cell	34
lines	
3.6.1 Plasmid preparation and propagation	34
(A) GNA12 retroviral expression plasmid	34
(B) IFITM3 lentiviral expression vector	35
3.6.2 Virus transduction to over-express GNA12 in oral	36
cancer cells	
(A) Producing retrovirus in GP-293	36
(B) Retrovirus transduction and analysis	37
3.6.3 Virus transduction to over-express IFITM3 in oral	37
cancer cells	
(A) Producing lentivirus in 293FT	37
(B) Lentivirus transduction and analysis	37
3.6.4 Determining GNA12 and IFITM3 mRNA levels in	38
transduced-cells	
3.6.5 Determining GNA12 and IFITM3 protein expression	38
in transduced-cells	
3.7 Determine the effects of GNA12 and IFITM3 expression	39
in oral cancer cell lines by in-vitro functional assays	
3.7.1 Cell proliferation assay	39
3.7.2 Cell migration assay	40
(A) Monolayer scratch assay	40
(B) Transwell migration assay	40
3.7.3 Matrigel invasion assay	41
3.7.4 Detection of apoptosis by flow cytometry	41
3.8 Statistical analysis	42

Chapter 4 Results

4.1 GNA12	43
4.1.1 Validation of GNA12 expression in OSCC	43
(A) Over-expression of GNA12 at the mRNA level	43
(B) Over-expression of GNA12 at the protein level	43

Contents	Page
4.1.2 Modification of oral cancer cell line for GNA12	47
expression	
(A) GNA12 plasmids propagation and extraction	47
(B) Exogenous expression of GNA12 in oral cancer cell	47
line ORL150	
4.1.3 In-vitro functional assays to determine the effects of	49
GNA12 expression in oral cancer cells	
(A) Effects of GNA12 expression on oral cancer cell	49
proliferation	
(B) Effects of GNA12 on cell migration and invasion	50
4.2 IFITM3	52
4.2.1 Validation of IFITM3 expression in OSCC	52
(A) Over-expression of IFITM3 at the mRNA level	52
(B) Over-expression of IFITM3 at the protein level	52
4.2.2 Modification of oral cancer cell line for IFITM3	56
expression	
(A) Cloning IFITM3 into lentiviral expression vector	56
(B) Exogenous expression of IFITM3 in oral cancer cell	57
line ORL188	
4.2.3 In-vitro functional assays to determine the effects of	58
IFITM3 expression in oral cancer cells	
(A) Effects of IFITM3 expression on oral cancer cell	58
proliferation	
(B) Effects of IFITM3 over-expression on cell apoptosis	59
(C) Effects of IFITM3 on cell migration and invasion	60
Discussion	
5.1 GNA12	62

J.I GNAIZ	62
5.1.1 Expression of GNA12 in oral cancer	62
5.1.2 Effects of GNA12 in oral cancer	63
5.2 IFITM3	65
5.2.1 IFITM3 expression in oral cancer	65
5.2.2 Effects of IFITM3 in oral cancer	66

Chapter 5

Chapter 6 Conclusion

6.1 Summary	69
6.2 Study limitation	70
6.3 Recommendations for future research	70
6.3.1 GNA12	70
6.3.2 IFITM3	72

Bibliography	73

A	p	p	en	d	ic	es
	r	r	~	~		00

92

	List of Figures	PAGE
Figure 2.1	Mouth cancer international comparisons	5
Figure 2.2	Tongue cancer international comparisons	6
Figure 2.3	Diversity of GPCR and G-proteins signaling	16
Figure 2.4	Activation and inactivation of G-protein signaling	16
Figure 2.5	G12 signaling model	21
Figure 2.6	Sequence and main features of the 1-8 groups of genes	23
Figure 2.7(A)	Amino acid sequence of IFITM3	25
Figure 2.7(B)	IFITM3 secondary structure	25
Figure 4.1	GNA12 mRNA levels in OSCC relative to oral mucosa	44
	tissues	
Figure 4.2	IHC staining of GNA12 in TMaA	46
Figure 4.3	Agarose gel electrophoresis of purified plasmids	47
Figure 4.4	GNA12 expression in the transformed-ORL150 cells after 14	48
	days of G418 selection	
Figure 4.5	Growth curve for ORL150/G α 12QL and ORL150/pLXRN	49
Figure 4.6	GNA12 induces cancer cell migration and invasion	51
Figure 4.7	IFITM3 mRNA levels in OSCC relative oral mucosa tissues	53
Figure 4.8	IHC staining of IFITM3 in TMaA	54
Figure 4.9	Agarose gel electrophoresis of IFITM3 purified PCR product	56
Figure 4.10	Analyzing IFITM3-transformed E. coli on agarose gel	57
	electrophoresis	
Figure 4.11	Agarose gel electrophoresis for IFITM3 expression plasmid	57
Figure 4.12	IFITM3 expression in ORL188 cells after blasticidin	58
	selection	
Figure 4.13	Effects of IFITM3 expression on oral cancer cell	59
	proliferation	
Figure 4.14	Cell apoptosis analyzed by flow cytometry	60
Figure 4.15	ORL188/IFITM3 and ORL188/pLenti6.3 in cell culture	61
Figure 4.16	Effects of IFITM3 on cell migration and invasion	61

	List of Tables	PAGE
Table 2.1	G-proteins: their receptors and effectors	15
Table 2.2	Protein features of the 1-8 ISG group	24
Table 3.1	Primers sequence for QPCR	32
Table 3.2	Primers sequence for pLXRN vector primers	34
Table 3.3	Primers used for cloning IFITM3 into pLenti6.3	36
Table 4.1	Differential expression of GNA12 in oral tissues	45
Table 4.2	Demographic data of 44 OSCC cases used for GNA12 IHC	45
	analysis	
Table 4.3	Association of GNA12 expression to clinicopathological	45
	features of 44 patients with OSCC	
Table 4.4	Differential expression of IFITM3 in oral tissues	55
Table 4.5	Demographic data of 43 OSCC cases used for IFITM3 IHC	55
	analysis	
Table 4.6	Association of IFITM3 expression to clinicopathological	62
	features of 43 patients with OSCC	

	List of Appendices	PAGE
Appendix I	Project work flow	92
Appendix II	Frozen tissues specimens used in mRNA QPCR analysis	93
Appendix III	TMaA specimens used for IHC staining	95
Appendix IV	Cell line information	97
Appendix V	RNA extraction	98
Appendix VI	Positive control for IHC staining	99
Appendix VII	Maintenance of cell line	100
Appendix VIII	Bacteria transformation	101
Appendix IX	SDS-PAGE and Western Blots	102
Appendix X	Selection of oral cancer cell line for in-vitro functional	105
	studies	
Appendix XI	pLXRN retroviral vector information (Clontech)	107
Appendix XII	pLenti6.3 lentiviral vector information (Invitrogen)	108
Appendix XIII	Normality test on sample distribution	109

List of Symbols and Abbreviations

- °C: Degree celcius
- µg: Micro-gram
- µl: Micro-litre
- bp: Base-pair
- cDNA: complementary DNA
- CO₂: Carbon dioxide
- Ct: Cycle threshold
- DAB: 3, 3'-diaminobenzidine

DMEM/F-12 HAM's: Dulbecco's Modified Eagle's Medium/Nutrient mixture F-12

- DNA: Deoxyribonucleic acid
- dNTP: Deoxynucleotide Triphosphate

EDTA: Ethylene diamine tetra-acetic acid

- FBS: Fetal bovine serum
- FEP: Fibro epithelial polyp
- FFPE: Formalin-fixed parraffin-embedded
- GAPDH: Glyceraldehyde 3-phosphate dehydrogenase
- GDP: Guanosine diphosphate
- GNA12: Guanine nucleotide binding protein alpha-12
- GPCR: G-protein coupled receptor
- GTP: Guanosine triphosphate
- HNSCC: Head and neck squamous cell carcinoma
- ICD: International classification of disease
- IFITM3: Interferon inducible transmembrane protein 3
- IHC: Immunohistochemistry
- ISG: Interferon-stimulable gene
- ISRE: Interferon-stimulable response element
- LB: Luria-Bertani
- mg: Milli-gram
- MgCl₂: Magnesium chloreide
- min: Minute
- ml: Milli-litre

mm: Milli-metre

NaOH: Sodium hydroxide

ng: Nano-gram

nm: Nano-metre

OSCC: Oral squamous cell carcinoma

PBS: Phosphate buffer saline

PCR: Polymerase chain reaction

RGS: Regulators of G-protein signaling

RIN: RNA integrity number

RIPA: Radio-Immunoprecipitation Assay

RNA: Ribonucleic acid

rpm: Revolutions per minute

QPCR: Quantitative polymerase chain reaction

SDS: Sodium dodecyl sulfate

sec: Second

TAE: Tris-acetate-EDTA

TBS: Tris-buffered saline

TBST: Tris-buffered saline with 0.1% tween20

TMaA: Tissue macro-array

WHO: World Health Organization