#### Appendix I

#### Preliminary study

The Table below includes three polyols-based on palm oil, FA35, AlkOA65N, and AlkOA40N, were used in the preliminary study.

| POLYOL   | OH-V | Equivalent weight | Molecular weight |
|----------|------|-------------------|------------------|
| FA35     | 181  | 309.9             | 930              |
| AlkOA65N | 146  | 397.9             | 1194             |
| AlkOA40N | 140  | 400.7             | 1202             |

During preparation of urethane polymer, one equivalent weight (133.3 g) of methylene diisocyanate needs one equivalent of polyol-based on palm oil, such as 309.9 g of the FA35 or 397.9 g of AKLOA65 or 400.7 g of AlkO40N to produce polyurethane polymer at room temperature. However, polyol AlkOA40N was very viscous compared to FA35 and AKLOA65, which created a sophisticated procedure for urethane polymer production at room temperature, such as solvent and catalyst addition. The solvent evaporation completely and catalyst cytotoxicity will be issued.

The urethane based on AlkO65N polyol was selected to be used as prepolymer for experimental urethane dimethacrylate monomer (UDMA-M). The selections of AlkO65N polyol are related to the following:

-The strength of urethane based on AlkO65N polyol showed better than that of urethane polymer based on FA35 that contain lower reactivity (OH/V =181) and aliphatic fumeric acid, however, the former contain higher (OH/V = 146) and rigid aromatic groups of phatalic anhydride;

-Moreover, the colour of urethane based on AlkO65N polyol was quite reasonable compared to yellow-brownish colour of urethane polymer based on FA35.

### Appendix II

Properties of polyol alkyd (AlkOA65N)



Cognis Chemicals (Malaysia) Sdn Bhd (Co.No. 17069-T) Cognis Rika (M) Sdn Bhd (Co.No. 93282-T)

**Analysis Report** 

Date : 20/11/2006

#### Subject: Polyol Alkyd (AlkOA65N)

| B/N                    | Polyol Alkyd<br>AlkOA65N |            |                      |
|------------------------|--------------------------|------------|----------------------|
| Raw                    | %                        |            |                      |
| materials/Furmulation  |                          |            |                      |
| Oleic Acid (OL 72      | 65.06                    |            |                      |
| 0410447)               |                          |            |                      |
| Phthalic Anhydride     | 14.43                    |            |                      |
| (Merck)                |                          |            |                      |
| Refine Glycerine 99.5% | 20.51                    |            |                      |
| Analysis               | Polyol Alkyd             | Expected   | Method               |
|                        | AlkOA65N                 | Result     |                      |
| Preparation, hours     | 5                        | -          |                      |
| Appearance             | Pale Yellow              | PaleYellow | Visual               |
| IV                     | 66.5                     | -          | AOCS Tg 1-64 :1997   |
| AV, mg KOH/g           | 13.2                     | 10 - 20    | AOCSTe1a-64 : 1997   |
| OH-V, mg KOH/g         | 146.6                    | 130 - 140  | AOCS Cd 13-60 : 1997 |
| Viscosity @ 25°C,      | 980                      | -          | AOCS Ja10-87 : 1997  |
| mPas                   |                          |            |                      |
| Color Lovibond 1" cell | 0.2R 1.5Y                | -          | AOCS Cc13e-92 : 1997 |
| Dry Residue % @        | 99.23                    | -          | In-hse COM CS05      |
| 130°C                  |                          |            |                      |
| Water, Karl Fischer %  | 0.10                     | -          | ISO 760-1978 (E)     |

# Appendix III

# Tabulated water density

|    | 0.0   | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 20 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 |
|    | 203   | 183   | 162   | 141   | 120   | 099   | 078   | 056   | 035   | 013   |
| 21 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
|    | 992   | 970   | 948   | 926   | 904   | 882   | 860   | 837   | 815   | 792   |
| 22 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
|    | 770   | 747   | 724   | 701   | 678   | 655   | 632   | 608   | 585   | 561   |
| 23 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
|    | 538   | 514   | 490   | 466   | 442   | 418   | 394   | 369   | 345   | 320   |
| 24 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
|    | 296   | 271   | 246   | 221   | 196   | 171   | 146   | 120   | 095   | 069   |
| 25 | 0.997 | 0.997 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
|    | 044   | 018   | 992   | 967   | 941   | 914   | 888   | 862   | 836   | 809   |
| 26 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
|    | 783   | 756   | 729   | 703   | 676   | 649   | 621   | 594   | 567   | 540   |
| 27 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
|    | 512   | 485   | 457   | 429   | 401   | 373   | 345   | 317   | 289   | 261   |
| 28 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.995 |
|    | 232   | 204   | 175   | 147   | 118   | 089   | 060   | 031   | 002   | 973   |
| 29 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 |
|    | 944   | 914   | 885   | 855   | 826   | 796   | 766   | 736   | 706   | 676   |
| 30 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 |
|    | 646   | 616   | 586   | 555   | 525   | 494   | 464   | 433   | 402   | 371   |
|    | 0.0   | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |

Density of Water (g/cm<sup>3</sup>) at Temperatures from 20°C (liquid state) to 30°C by 0.1°C inc.

# Appendix IV

Properties of fillers and monomers (Esstech. Materials data sheet)

# Properties of filler

| Filler                | Properties                                         |
|-----------------------|----------------------------------------------------|
| Туре                  | Silanated barium borosilica glasses                |
| Size of filler (%)    | 0.5 µm (10%) and 1.4 µm (90%)                      |
| Silane coupling agent | 3-(methacryloyloxypropyl) trimethoxysilane (MPTMS) |
| Solubility in water   | Insoluble                                          |
| Specific gravity      | 2.2-3.6                                            |
| appearance            | Fine white powder                                  |

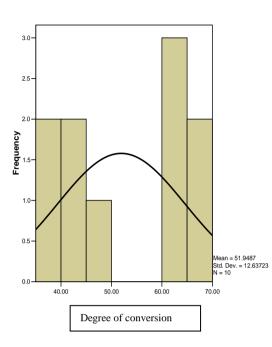
### Properties of monomers

| Materials | Viscosity (cp)                 | Specific gravity       |
|-----------|--------------------------------|------------------------|
| Bis-GMA   | 484.000<br>(300.000-1.100.000) | 1.14<br>(1.12-1.16)    |
| TEGDMA    | (5-30)                         | 1.072<br>(1.065-1.075) |
| Bis-EMA   | 836<br>(800-1200)              | 1.122<br>(1.118-1.124) |

#### Appendix V

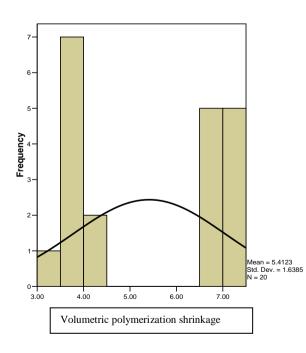
# CellTiter 96® Aqueous One Solution Cell Proliferation reagent composition and properties

Promega currently offers several systems to non-radioactively monitor cell proliferation and cytotoxicity. A new system, the CellTiter 96® AQueous One Solution Cell Proliferation Assay, was recently introduced as a more convenient alternative to the existing CellTiter 96® AQueous Systems. The CellTiter 96® Assay is a nonradioactive, colorimetric assay for measuring the number of viable cells in proliferation, attachment and agent-mediated cytotoxicity assays. Both adherent and suspension cells may be analyzed with this system. The Dye Solution, containing the tetrazolium salt MTT, is added to the cells and is internalized and reduced into an insoluble blue formazan product by cellular metabolism. Only those cells which are living at the time the dye is added will significantly reduce the MTT. The Solubilization Solution is added to lyse the cells and dissolve the formazan dye product. The samples are then read in a 96 well plate reader at 570nm. The intensity of the blue color that appears is directly proportional to the number of viable cells (Rhodes, 1996).


The CellTiter 96<sup>®</sup> AQueous Assay can be used for the same applications as the CellTiter 96<sup>®</sup> Assay. Both systems measure the conversion of a tetrazolium salt into a colored formazan product by the metabolic activity of living cells. The main difference between the two systems is that the CellTiter 96<sup>®</sup> AQueous Assay utilizes MTS\* rather than MTT as the tetrazolium reagent. The system also includes PMS, an electron coupling reagent, which facilitates the reduction of MTS. During the assay, MTS is converted into a soluble formazan product, eliminating the need for addition of Solubilization Solution. After incubating the samples for 1-4 hours, they are quantitated using a 96 well plate reader at 490nm. Since the final product is soluble in culture

medium, samples may be returned to the incubator for further color development if desired (unlike the CellTiter® 96 Assay System) (Rhodes, 1996).

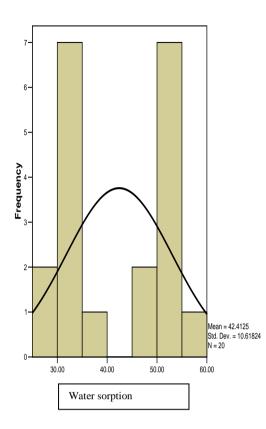
The CellTiter 96<sup>®</sup> AQueous Assay includes the electron carrier phenazine methosulfate (PMS), which mediates the reduction of the tetrazolium salt MTS. The MTS and PMS solutions must be mixed prior to the addition of the dye solution to the cell culture medium. The CellTiter 96<sup>®</sup> AQueous One Solution Assay contains a single solution of MTS and phenazine ethosulfate (PES). The PES component is an alternative electron carrier which is more stable in solution than PMS. The solution containing MTS and PES is supplied pre-mixed, sterile and ready to add to cell culture medium. The formazan product of the CellTiter 96<sup>®</sup> AQueous One Solution Assay is also soluble in tissue culture medium. Comparing the relationship of cell number to color formation, the performance characteristics of these two systems are nearly identical (Rhodes, 1996).


# Appendix VI

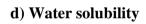
Histogram with normal distributed curve and Shapiro-Wilk test of experimental resins

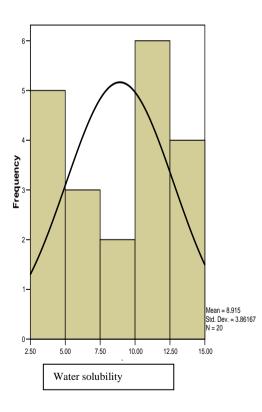


| Shapiro-Wilk |    |      |  |  |
|--------------|----|------|--|--|
| Statistic    | df | Sig. |  |  |
| .837         | 10 | .041 |  |  |


# b) Volumetric polymerization shrinkage

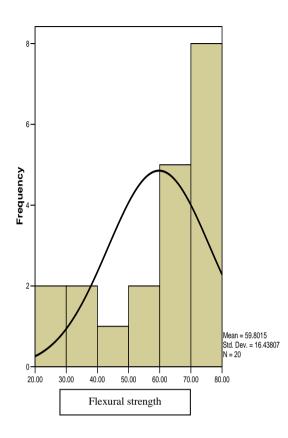



| Shapiro-Wilk      |    |      |  |
|-------------------|----|------|--|
| Statistic df Sig. |    |      |  |
| .762              | 20 | .000 |  |


### a) Degree of conversion

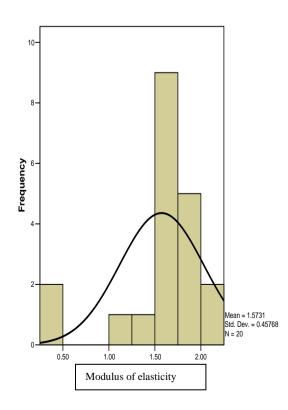
# c) Water sorption




| Shapiro-Wilk      |    |      |  |  |
|-------------------|----|------|--|--|
| Statistic df Sig. |    |      |  |  |
| .836              | 20 | .003 |  |  |

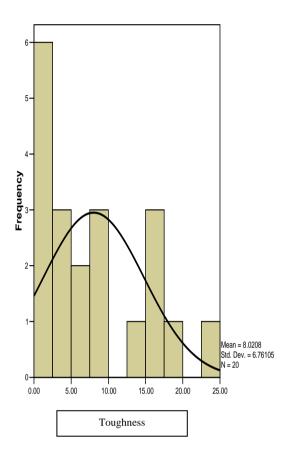





| Shapiro-Wilk      |    |      |  |  |
|-------------------|----|------|--|--|
| Statistic df Sig. |    |      |  |  |
| .923              | 20 | .115 |  |  |

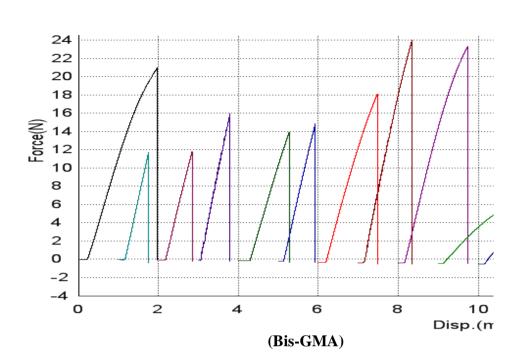
# e) Flexural strength



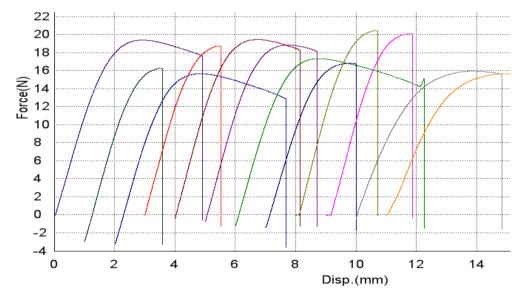

| Shapiro-Wilk      |    |      |  |  |
|-------------------|----|------|--|--|
| Statistic df Sig. |    |      |  |  |
| .848              | 20 | .005 |  |  |

f) Modulus of elasticity




| Shapiro-Wilk      |    |      |  |
|-------------------|----|------|--|
| Statistic df Sig. |    |      |  |
| .822              | 20 | .002 |  |

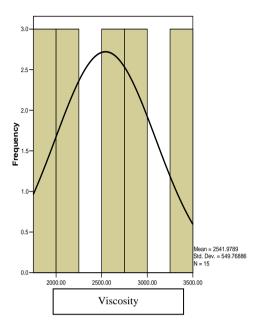
# g) Toughness




| Shapiro-Wilk      |    |      |  |
|-------------------|----|------|--|
| Statistic df Sig. |    |      |  |
| .890              | 20 | .027 |  |

# Appendix VII

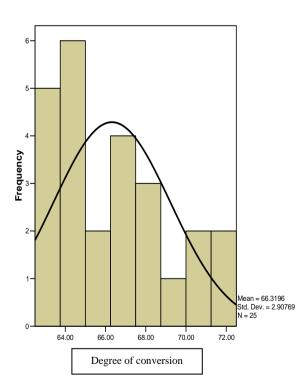



Stress/strain curve showed the toughness of Bis-GMA and UAM



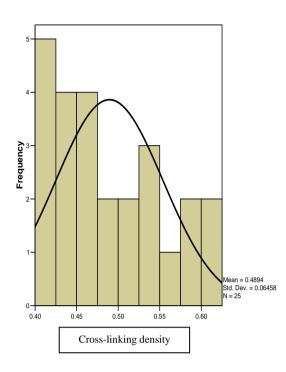
(UAM)

# Appendix VIII


Histogram with normal distributed curve and Shapiro-Wilk test of experimental resin systems

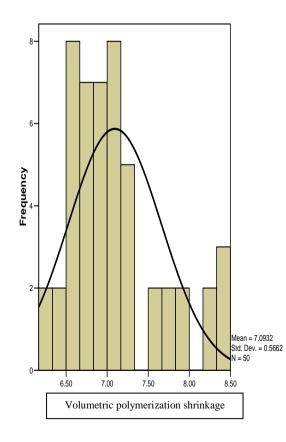


a) Viscosity


| Shapiro-Wilk      |    |      |  |  |  |  |
|-------------------|----|------|--|--|--|--|
| Statistic df Sig. |    |      |  |  |  |  |
| .902              | 15 | .103 |  |  |  |  |

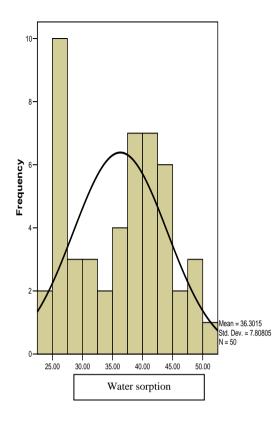
# b) Degree of conversion



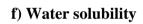

| Shapiro-Wilk      |    |      |  |  |  |
|-------------------|----|------|--|--|--|
| Statistic df Sig. |    |      |  |  |  |
| .898              | 25 | .017 |  |  |  |

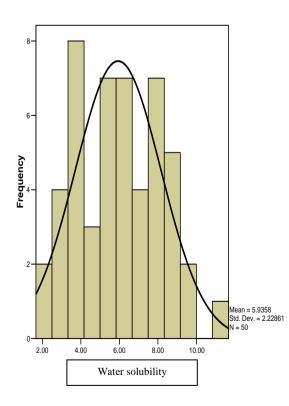
# c) Cross-linking density




| Shapiro-Wilk      |    |      |  |  |
|-------------------|----|------|--|--|
| Statistic df Sig. |    |      |  |  |
| .906              | 25 | .025 |  |  |

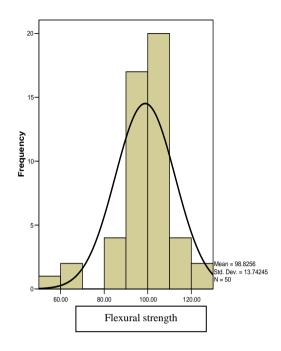
# d) Volumetric polymerization shrinkage





| Shapiro-Wilk      |    |        |  |  |  |
|-------------------|----|--------|--|--|--|
| Statistic df Sig. |    |        |  |  |  |
| .903              | 50 | < .001 |  |  |  |

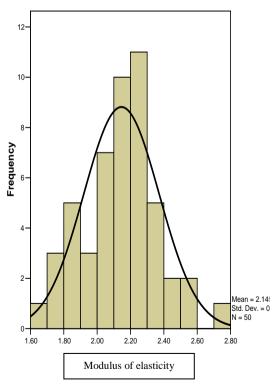
# e) Water sorption




| Shapiro-Wilk      |    |      |  |  |
|-------------------|----|------|--|--|
| Statistic df Sig. |    |      |  |  |
| .942              | 50 | .016 |  |  |






| Shapiro-Wilk      |    |      |  |  |  |
|-------------------|----|------|--|--|--|
| Statistic df Sig. |    |      |  |  |  |
| .974              | 50 | .339 |  |  |  |

# g) Flexural strength



| Shapiro-Wilk      |    |      |  |  |  |
|-------------------|----|------|--|--|--|
| Statistic df Sig. |    |      |  |  |  |
| .926              | 50 | .004 |  |  |  |

h) Modulus of elasticity



| Shapiro-Wilk      |      |  |  |  |
|-------------------|------|--|--|--|
| Statistic df Sig. |      |  |  |  |
| .983              | .668 |  |  |  |

# i) Toughness



| Shapiro-Wilk      |    |      |  |  |
|-------------------|----|------|--|--|
| Statistic df Sig. |    |      |  |  |
| .951              | 50 | .038 |  |  |

#### **Appendix IX**

#### Homogeneity of variances test

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 2.294            | 4   | 10  | .131 |

a) Test of homogeneity of variances of viscosity for experimental resin systems

**b**) Test of homogeneity of variances of water solubility for experimental resin systems

| Levene statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| .962             | 4   | 45  | .438 |

c) Test of homogeneity of variances of water solubility for experimental resin systems

| Levene statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 4.075            | 4   | 45  | .007 |

d) Test of homogeneity of variances of volumetric change for flowable composites

| Levene statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 2.994            | 4   | 45  | .028 |

\_

\_

e) Test of homogeneity of variances of water solubility for flowable composites

| Levene statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 1.024            | 4   | 45  | .405 |

|                   | Levene<br>Statistic | df1 | df2 | Sig. |
|-------------------|---------------------|-----|-----|------|
| Flexural strength | 1.861               | 4   | 45  | .172 |
| Toughness         | 2.191               | 4   | 45  | .085 |

f) Test of homogeneity of variances of flexural strength and toughness for flowable composites

# g) Test of homogeneity of variances of viable cells for flowable composites

| Levene statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 1.609            | 5   | 48  | .176 |

#### Appendix X

Calculations of familywise error and familywise alpha value

Familywise error (FWE) represents the probability that any one of a set of comparisons or significance is a Type I error. The FWE can be estimated with the following formula:

$$\propto FWE \leq 1 - (1 - \propto EC)c$$

where by

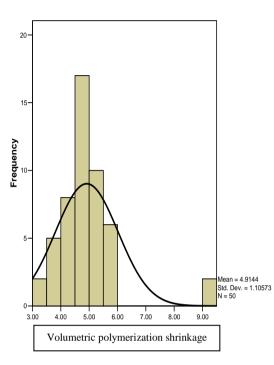
Alpha<sub>FEW</sub> = familywise error rate  $\propto EC$  = alpha rate for an individual test (.05) <sup>C</sup> = exponent (where C is the total number of pairwise comparisons) In this study, the calculation is shown as:

$$\propto FWE \leq 1 - (1 - .5)10$$

$$\propto FWE \leq 1 - (.599)$$

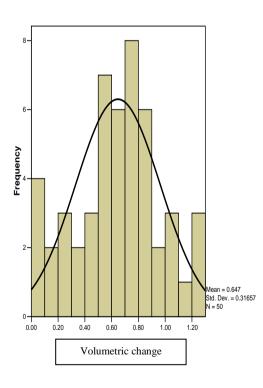
 $\propto FWE \leq .40$ 

The Bonferroni simply calculates a new pairwise alpha to keep the familywise alpha value at .05 (or another specified value). The formula for doing this is as follows:


$$\alpha_{B} = \frac{\alpha_{FWE}}{c}$$

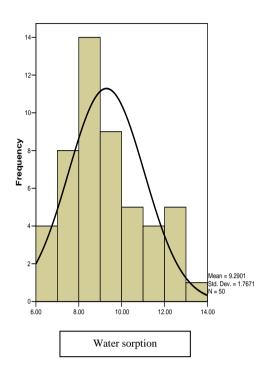
where  $\alpha_{\rm B}$  is the new alpha based on the Bonferroni test that should be used to evaluate each comparison or significance test,  $\alpha_{\rm FWE}$  is the familywise error rate as computed in the first formula, and *c* is the number of comparisons (statistical tests).

Therefore the bonferroni of alpha in this study is .04:


# Appendix XI

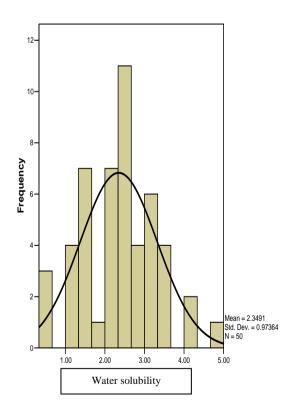
Histogram with normal distributed curve and Shapiro-Wilk test of flowable composites



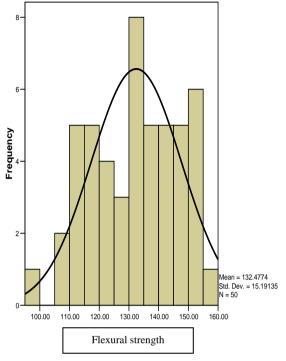

| Shapiro-Wilk      |    |        |  |
|-------------------|----|--------|--|
| Statistic df Sig. |    |        |  |
| .771              | 50 | < .001 |  |

b) Volumetric change



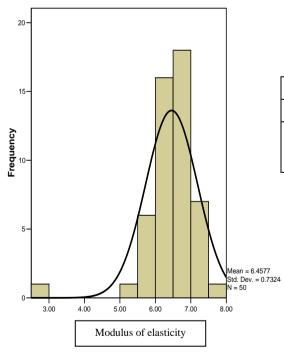

| Shapiro-Wilk |    |      |  |
|--------------|----|------|--|
| Statistic    | df | Sig. |  |
| .972         | 50 | .289 |  |

# c) Water sorption



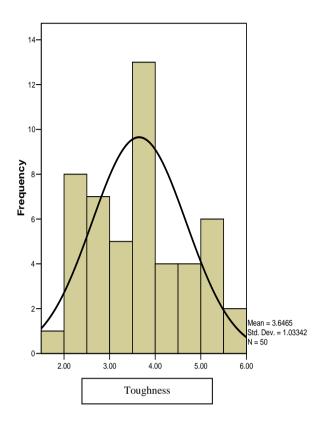

| Shapiro-Wilk |      |      |  |
|--------------|------|------|--|
| Statistic    | e df | Sig. |  |
| .942         | 50   | .016 |  |

# d) Water solubility



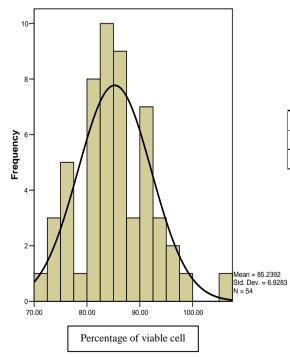

| Shapiro-Wilk      |    |      |  |
|-------------------|----|------|--|
| Statistic df Sig. |    |      |  |
| .982              | 50 | .658 |  |




| Shapiro-Wilk |    |      |  |
|--------------|----|------|--|
| Statistic    | df | Sig. |  |
| .969         | 50 | .220 |  |

# f) Modulus of elasticity




| Shapiro-Wilk |    |      |
|--------------|----|------|
| Statistic    | df | Sig. |
| .736         | 50 | .000 |

# g) Toughness



| Shapiro-Wilk |    |      |  |
|--------------|----|------|--|
| Statistic    | df | Sig. |  |
| .956         | 50 | .061 |  |

h) Percentage of viable cell



| Shapiro-Wilk |    |      |
|--------------|----|------|
| Statistic    | df | Sig. |
| .976         | 54 | .354 |

# Appendix XII

Esthet.X flow liquid micro hybrid flowable composite composition and properties (Dentsply Caulk data sheet)

### Composition and properties of Esthet.X flow flowable composite

| Resin                    | Bis-GMA/TEGDMA                                                                                         |  |
|--------------------------|--------------------------------------------------------------------------------------------------------|--|
|                          | Barium fluoroboroaluminosilicate glass and silica nanofiller.                                          |  |
| Type, Size and % filler  | The particles size range is 0.01 to 5 $\mu$ m and average approximately 0.9 $\mu$ m.                   |  |
|                          | The filler load approximately 61 % by weight                                                           |  |
| Flexural strength        | 112 MPa                                                                                                |  |
| Modulus of<br>elasticity | 5.622                                                                                                  |  |
| Fluoride release         | From ~ 50 $\mu$ g/gm in the first week to 200 $\mu$ g/gm in the twenty fifth week in de-ionized water. |  |

#### Appendix XIII

#### Contributions of this study

#### **Published contributions**

- Radzi, Z., Abu Kasim, NH., Yahya, NA., Gan, SN, A. Fadhel. (2007). Impact strength of an experimental polyurethane-based polymer. Annal Dent Univ Malaya; 14: 46–51.

- Al sanabani, F., Abu Kasim, N. H., Gan, S.N. (2008). Conversion of a new monomer for dental resin application. Abstract; International Association Dental Research (IADR), Manila-Philippine, 8-10 October.

- Al sanabani, F., Abu Kasim, N. H., Gan, S.N. (2009). Mechanical properties of BP-UDMA and its copolymer for dental resin. Abstract; International Association Dental Research (IADR), Wuhan-China, 22-24September.
- Al sanabani, F., Abu Kasim, N. H., Gan, S.N. (2010). Sorption and solubility of BP-UDMA-based resins for dental composite. Abstract; International Association Dental Research (IADR), UKM-Malaysia, 5-6 February.
- Al sanabani, F., Abu Kasim, N. H., Gan, S.N. (2010). Conversion and mechanical properties of dental resin system base don a new monomer derived from palm oil-based polyol. international Conference on Functional Materials & Devices (ICFMD), Terengganu-Malaysia, 13-17 June.
- Abu Kasim, N. H., Al-sanabani, F., Muhamed, S. and Gan, S.N. (2010). Cytotoxicity of polyurethane dimethacrylate derived from palm oil. Abstract; International Association Dental Research-IADR, Barcelona-Spain, 14-17 July.

#### **Conferences and Exhibitions**

- Gan, SN., Abu Kasim, N. H., Al-sanabani, F. (2008). Development of polyurethane oligomer derived from palm oil polyol for application in restorative dentistry. Malaysian Technology Exhibition (MTE), Silver Medal. Kuala Lumpur-Malaysia, 21-23 February.
- Abu Kasim, N. H., Gan, SN., Al-sanabani, F. (2009). A novel resin system based on palm oil polyol for dental composites. Malaysian Technology Exhibition (MTE), Silver Medal. Kuala Lumpur-Malaysia, 19-21 February.
- Abu Kasim, N. H., Gan, SN., Al-sanabani, F. (2009). A novel polymer for restorative dentistry. University of Malaya EXPO (UMEXPO), Gold Medal. Kuala Lumpur-Malaysia, 13-15 January.
- Abu Kasim, N. H., Gan, S.N., Al sanabani, F. (2008). Properties of novel polyurethane dimethacrylate based on palm oil for dental application. Invention

& New Product Exposition (INPEX). Gold Medal (Therapeutic Category). Pittsburg-USA, 11-14 June.

### Patent

- Polyurethane oligomers for use in restorative dentistry. Malaysia Patent Application; PI 20092415. Inventors; Gan Seng Neon, Noor Hayaty Abu Kasim, Fadhel Alsanabani, Zamri Radzi, and Noor Azlin Yahya.