CLINICAL AND MECHANICAL EVALUATION OF A NEW ALL-CERAMIC RESTORATIVE MATERIAL TURKOM-CERA™

BANDAR MOHAMMED ABDULLAH AL-MAKRAMANI
B.D.S., H.D.D., MDSc

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CONSERVATIVE DENTISTRY
FACULTY OF DENTISTRY
UNIVERSITY OF MALAYA
KUALA LUMPUR

AUGUST 2010
Abstract

The mechanical properties and clinical performance of Turkom-Cera system were evaluated in this study. The mechanical properties evaluated were; flexural strength, microhardness, shear bond strength, fracture resistance and marginal integrity.

The biaxial flexural strength and hardness of Turkom-Cera compared to two other all-ceramic systems (In-Ceram and Vitadur-N) were investigated. The Turkom-Cera exhibited significantly higher flexural strength (506.8 MPa) than In-Ceram (347.4 MPa) and Vitadur-N (128.7 MPa) ceramic materials. However, In-Ceram core has significantly higher hardness (1116.2 VHN) than Turkom-Cera (1002.1 VHN) and Vitadur-N (812.8 VHN) all-ceramic materials.

In order to find the optimal choice of luting cement and surface treatment for Turkom-Cera all-ceramic material, the shear bond strength of four different luting cements (zinc phosphate, glass ionomer, resin modified glass ionomer and resin cement) to the Turkom-Cera all-ceramic discs was evaluated. In addition, the effect of surface treatments (no treatment as control, sandblasting, silane application and combinations of these treatments) on the shear bond strength of resin cement to Turkom-Cera was also investigated. The shear bond strength increased significantly from zinc phosphate (0.92 MPa), glass ionomer (2.04MPa), resin modified glass ionomer (4.37 MPa) to resin cement (16.42 MPa). Sandblasting followed by silanization of the Turkom-Cera specimens provided the highest bond strength value (19.13 MPa). The control group exhibited significantly lower shear bond strength (10.83 MPa) than the other three groups. However, there were no significant differences in the shear bond strength of the sandblasting (16.42 MPa), silane (16.18 MPa) and sandblasting + silane (19.13 MPa) groups.
The occlusal fracture resistance of Turkom-Cera all-ceramic copings compared to Procera AllCeram and In-Ceram all-ceramic copings was evaluated using metal dies and natural teeth as a supporting structure. In both cases, using metal dies or natural teeth as a supporting structure, the mean load at fracture of Turkom-Cera (2184 N / 1341.9 N) was significantly more than Procera (1953.5 N / 975.0 N) (P<0.05). There were no significant differences in the mean loads at fracture between In-Ceram (2041.7 N / 1151.6 N) and Procera and also between Turkom-Cera and In-Ceram (P>0.05).

The effect of zinc phosphate, glass ionomer and resin cements on the occlusal fracture strength of Turkom-Cera all-ceramic copings were also assessed. The mean load at fracture of Turkom-Cera copings cemented with zinc phosphate, glass ionomer and resin cements were 1537.4 N, 1294.4 N, and 2183.6 N, respectively. There was a significant difference in the mean load at fracture between the three luting cements used (P<0.05). The effect of marginal design (chamfer or shoulder) and artificial ageing (30-day water storage and 500 thermocycles) on the occlusal fracture resistance of Turkom-Cera copings were also investigated. There was no influence of the finish line design and artificial ageing used in this study on the occlusal fracture resistance of Turkom-Cera all-ceramic copings (P<0.05).

The marginal adaptation of Turkom-Cera copings compared to In-Ceram and Procera copings was assessed. The mean marginal discrepancy for Turkom-Cera, In-Ceram and Procera were 49.2 µm, 71.5 µm and 34.4 µm, respectively. It was verified that there was a statistically significant difference among the marginal discrepancy of the three all-ceramic systems (p<0.05). In this study, there were no significant differences in the mean marginal discrepancy of Turkom-Cera crowns between the chamfer (49.2 µm) and shoulder (44.0 µm) groups (p>0.05).
A preliminary prospective study to evaluate the clinical performance of Turkom-Cera crowns was conducted. This study was carried out to complement the different mechanical tests that have been done on the Turkom-Cera all-ceramic material. In this study, 20 Turkom-Cera crowns were evaluated for a mean evaluation period of 21.5 months. During the whole observation period, 1 of the 20 Turkom-Cera crowns was found to have fractured after a service time of 14 months. The veneering porcelain chipped in 3 molar crowns, but did not compromise the integrity of the crowns. The other parameters were rated satisfactory according to the Modified United States Public Health Service (USPHS) criteria. All patients expressed satisfaction with their restorations and did not report any sensitivity during or after treatment.
Declaration

I certify that this thesis is based on my independent work, except where acknowledged in the text or by reference. No part of this work has been submitted for a degree or diploma to this or any other university.

Dr. Bandar Mohammed Abdullah AL-Makramani
Date:

Supervisor: Prof. Dato' Dr. Abdul Aziz bin Abdul Razak
Head
Biomaterial and Dental Technology Unit
Faculty of Dentistry,
University of Malaya,
Kuala Lumpur,
Malaysia.

Co-Supervisor: Prof. Dr. Mohamed Ibrahim Abu-Hassan
Dean
Faculty of Dentistry,
Universiti Teknologi MARA,
Selangor,
Malaysia.
Acknowledgements

First of all, I thank Allah, the Almighty, for granting me the will and strength to accomplish this modest research. I pray that Allah's blessing upon me continue throughout my life, and Allah's blessing and peace be upon the messenger Mohammad.

I would like to express my sincere appreciation and deepest gratitude to my supervisor, Prof. Dato’ Dr. Abdul Aziz bin Abdul Razak for his inspiration and continuous scientific suggestions throughout the preparation of this thesis. His efforts are deeply appreciated. His guidance, advice as well as fruitful assistance was of great help to me to finish this thesis. He was generous with his knowledge, experience and time in the supervision of this work.

I would like to express my sincere gratitude to Prof. Dr. Mohamed Ibrahim Abu-Hassan, my co-supervisor, for his valuable help and support. I am grateful for the knowledge he generously shared with me, inexhaustible scientific advice and continuous encouragement. Thanks for providing your place of work at the laboratories of Universiti Technologi MARA.

My great thanks and praise goes to the Dean of the Faculty of Dentistry, University of Malaya, Prof. Dato’ Dr. Ishak bin Abdul Razak for all the care he has shown to facilitate the work of postgraduate students.

I also seize this opportunity to thank and appreciate the efforts and moral support presented by the Head, Assoc. Prof. Dr. Noor Hayaty Abu Kasim, and staff of the Department of Conservative Dentistry.

I am greatly indebted to University of Malaya for granting me the University of Malaya Fellowship Scheme Award 2007/2008.
I also wish to remember my dear friend, Dr. Ghassan for his valuable help, encouragement and support. I am also grateful to everyone who have helped, supported and encouraged me in the University of Sana'a.

I would also like to express my sincere thanks to:

Mr. Nor Hasim, the Assistant Registrar, for his help and valuable advice during my study.

Mr. Zaini, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, for his great help in preparing most of the jigs used in this study.

Ms. Nor’aidah Abas, Ms. Maziah, Ms. Letchmy, Ms, Nurul, Ms. Halimah Rani, Ms. Florence, Ms. Saudah, and Ms. Yatimah for their great help and excellent cooperation during this work.

Mr. Rahim, Mr. Idris, Ms. Yvonne P.W., Mr. Ismail, and Ms. Zarina for their help and excellent cooperation during preparation and testing of specimens of this study.

Dr. Marhazlinda Jamaludin for her assistance with the statistical analysis.

My special thanks go to my wife, Reema, and my children, Afaf, Aziz and Mu'tasim who have always been an inexhaustible source of love, encouragement and support. I am grateful to them for being patient during the period of this work.

Lastly, I extend my acknowledgement to my parents and every member in my family for all that they have done for me.
CONTENTS

Abstract ii
Declaration v
Acknowledgements vi
Table of contents viii
List of figures xvi
List of tables xxii

CHAPTER ONE: INTRODUCTION AND OBJECTIVES OF STUDY 1
1.1 Introduction 2
1.2 Objectives of the study 10

CHAPTER TWO: REVIEW OF LITERATURE 12
2.1 Background 13
2.2 Classification of currently available all-ceramic systems 15
2.2.1 Conventional Powder-Slurry Ceramic 15
2.2.2 Cast glass and polycrystalline ceramics 16
2.2.3 Pressable ceramics 18
2.2.4 Glass infiltrated ceramics 19
2.2.4.1 In-Ceram 20
2.2.4.2 Turkom-Cera Fused Alumina 22
2.2.5 Machinable (CAD/CAM) ceramics 23
2.2.5.1 CAD/CAM systems 23
2.2.5.1.1 The ceramic materials available for the Cerec System 25
2.2.5.2 Copy-milling technique 27
2.2.5.3 Procera AllCeram CAD/CAM system 28
2.3 Strength of All-Ceramic materials 30
2.3.1 In vitro strength tests for modern dental ceramics 31
2.3.2.1 Flexural strength test

2.4 Ideal properties of a luting agent

2.4.1 Adhesion

2.4.2 Working and setting time

2.4.3 Compressive and tensile strength

2.4.4 Solubility

2.4.5 Low-film thickness (low viscosity)

2.4.6 Biocompatibility

2.4.7 Anticariogenic properties

2.4.8 Radiopaque

2.4.9 Ease of manipulation

2.4.10 Aesthetic

2.5 Dental luting agents

2.5.1 Zinc phosphate cement

2.5.2 Glass ionomer and resin-modified glass ionomer cements

2.5.3 Resin-based cements

2.5.4 Self-adhesive resin luting cements

2.6 Factors affecting bonding to ceramics

2.6.1 Acid etching

2.6.2 Silane coupling agents

2.6.3 Air abrasion (sandblasting)

2.7 Marginal integrity of all-ceramic crowns

CHAPTER THREE: FLEXURAL STRENGTH AND HARDNESS OF TURKOM-CERA COMPARSED TO TWO OTHER ALL-CERAMIC MATERIALS

3.1 Introduction

3.2 Materials and methods

3.2.1 Materials used
3.2.2 Methods

3.2.2.1 Preparation of the disc specimens

3.2.2.1.1 Preparation of Turkom-Cera discs

3.2.2.1.2 Preparation of In-Ceram discs

3.2.2.1.3 Preparation of Vitadur-N discs

3.2.2.2 Grinding and polishing of the specimens

3.2.2.2.1 Preparing the specimens for biaxial flexural strength testing

3.2.2.2.2 Preparing the specimens for microhardness testing

3.2.2.3 Testing procedure

3.2.2.3.1 Biaxial flexural strength testing

3.2.2.3.2 Hardness testing

3.2.2.4 Statistical analysis

3.3 Results

3.3.1 Biaxial flexural strength

3.3.2 Vickers microhardness

3.4 Discussion

3.5 Conclusions

CHAPTER FOUR: EFFECT OF LUTING CEMENTS AND SURFACE TREATMENTS ON THE BOND STRENGTH TO TURKOM-CERA ALL-CERAMIC MATERIAL

4.1 Introduction

4.2 Materials and methods

4.2.1 Materials used

4.2.2 Methods

4.2.2.1 Specimen preparation before surface treatment and bonding

4.2.2.2 Surface treatments and sample distribution

4.2.2.3 Bonding procedure
4.2.2.4 Testing procedure 103
4.2.2.5 Assessment of mode of failure 104
4.2.2.6 Statistical analysis 105

4.3 Results 106
4.3.1 Effect of luting cements on the shear bond strength 106
4.3.1.1 Testing mode of failure 107
4.3.2 Effect of surface treatments on the shear bond strength 109
4.3.2.1 Testing mode of failure 110

4.4 Discussion 112
4.4.1 Methodology 112
4.4.2 Effect of luting cements 116
4.4.3 Effect of surface treatments 118
4.4.4 Mode of failure 122

4.5 Conclusions 124

CHAPTER FIVE: EVALUATION OF THE OCCLUSAL FRACTURE RESISTANCE OF TURKOM-CERA COMPARED TO TWO OTHER ALUMINA-BASED CERAMIC SYSTEMS (PART I): EFFECT OF DIFFERENT LUTING CEMENTS ON THE FRACTURE RESISTANCE OF TURKOM-CERA 125

5.1 Introduction 126
5.2 Materials and methods 128
5.2.1 Materials used 128
5.2.2 Methods 129
5.2.2.1 Preparation of the tooth 129
5.2.2.2 Construction of metal dies 131
5.2.2.3 Fabrication of all-ceramic copings 132
5.2.2.3.1 Fabrication of Turkom-Cera copings 132
5.2.2.3.2 Fabrication of In-Ceram copings 134
5.2.2.3.3 Fabrication of Procera AllCeram copings

5.2.2.4 Crown cementation procedures

5.2.2.5 Testing procedure

5.2.2.5.1 Effect of ceramic material on the fracture resistance

5.2.2.5.2 Effect of luting materials on the fracture resistance of Turkom-Cera

5.2.2.6 Assessment of mode of fracture

5.2.2.7 Data Collection and Analysis

5.3 Results

5.3.1 Effect of ceramic material on the fracture resistance

5.3.1.1 Testing mode of fracture

5.3.2 Effect of luting materials on the fracture resistance

5.3.2.1 Testing mode of fracture

5.4 Discussion

5.4.1 Methodology

5.4.2 Effect of ceramic materials

5.4.3 Effect of luting materials

5.5 Conclusions

CHAPTER SIX: EVALUATION OF THE OCCLUSAL FRACTURE RESISTANCE OF TURKOM-CERA COMPARED TO TWO OTHER ALUMINA-BASED CERAMIC SYSTEMS (PART II): AN IN VITRO STUDY

6.1 Introduction

6.2 Materials and methods

6.2.1 Materials used

6.2.2 Methods

6.2.2.1 Specimen collection and storage

6.2.2.2 Preparation of teeth

6.2.2.3 Impression and die preparation
6.2.2.4 Fabrication of all-ceramic copings 172
6.2.2.5 Cementation 172
6.2.2.6 Water storage and thermocycling 173
6.2.2.7 Testing procedure 174
6.2.2.8 Statistical analysis 176

6.3 Results 177

6.3.1 Effect of ceramic material on the fracture resistance 177

6.3.1.1 Mode of fracture 179

6.3.2 Effect of finish line on fracture resistance of Turkom-Cera 180

6.3.3 Effect of water storage and thermocycling on the load at fracture of Turkom-Cera 181

6.4 Discussion 183

6.4.1 Methodology 183

6.4.2 Discussion of results 185

6.5 Conclusions 190

CHAPTER SEVEN: MARGINAL INTEGRITY OF TURKOM-CERA COMPARED TO TWO OTHER ALL-CERAMIC MATERIALS: EFFECT OF FINISH LINE 191

7.1 Introduction 192

7.2 Materials and methods 194

7.2.1 Materials used 194

7.2.2 Methods 194

7.2.2.1 Specimen preparation 194

7.2.2.2 Marginal gap measurement 195

7.2.2.2 Measurement of reliability 199

7.2.2.3 Statistical analysis 200

7.3 Results 201

7.3.1 Effect of ceramic material on the marginal integrity 201
7.3.2 Effect of finish line on the marginal integrity of Turkom-Cera 203

7.4 Discussion 204

7.4.1 Methodology 204

7.4.2 Effect of ceramic materials 207

7.4.3 Effect of finish line 208

7.5 Conclusions 211

CHAPTER Eight: CLINICAL EVALUATION OF TURKOM-CERA ALL-CERAMIC CROWNS 212

8.1 Introduction 213

8.2 Materials and methods 215

8.2.1 Subjects 215

8.2.2 Treatment 217

8.2.2.1 Preparation of teeth, impression making and pouring 217

8.2.2.2 Fabrication of Turkom-Cera copings and veneering 221

8.2.2.3 Try-in and cementation 221

8.2.3 Evaluation criteria 223

8.2.4 Reliability test 226

8.2.5 Statistical analysis 226

8.3 Results 227

8.4 Discussion 232

8.5 limitations 239

8.6 Conclusions 240

CHAPTER NINE: SUMMARY AND RECOMMENDATIONS 241

9.1 Summary 242

9.2 Recommendation for further studies 248

REFERENCES 252

APPENDICES 288
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX I</td>
<td>289</td>
</tr>
<tr>
<td>APPENDIX II</td>
<td>298</td>
</tr>
<tr>
<td>APPENDIX III</td>
<td>301</td>
</tr>
<tr>
<td>APPENDIX IV</td>
<td>306</td>
</tr>
<tr>
<td>APPENDIX V</td>
<td>309</td>
</tr>
<tr>
<td>APPENDIX VI</td>
<td>315</td>
</tr>
<tr>
<td>APPENDIX VII</td>
<td>318</td>
</tr>
<tr>
<td>APPENDIX VIII</td>
<td>327</td>
</tr>
<tr>
<td>APPENDIX IX</td>
<td>329</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>331</td>
</tr>
</tbody>
</table>
List of Figures

<p>| Figure 3.1 | The perspex mould used (A), and the perspex mould after 24 hours of placing Turkom-Cera alumina gel (B) | 65 |
| Figure 3.2 | The dried Turkom-Cera non sintered discs (A), and sintering using the Programat p300 furnace (B) | 65 |
| Figure 3.3 | Mixing the Turkom-Cera crystal powder (A) and the sintered Turkom-Cera discs with crystal powder on top (B) | 66 |
| Figure 3.4 | Turkom-Cera disc before removal of excess crystals (A) and the finished Turkom-Cera disc after removal of excess crystals (B) | 66 |
| Figure 3.5 | The perspex mould used for In-Ceram discs preparation | 67 |
| Figure 3.6 | Preparation of the In-Ceram alumina slip and vibration using the In-Ceram Vitasonic unit | 67 |
| Figure 3.7 | Vita In-Ceramat furnace used for the firing of In-Ceram discs | 68 |
| Figure 3.8 | The brass split mould and compactor used for the preparation of the Vitadur-N disc specimens | 69 |
| Figure 3.9 | The brass split mould with the condensed slurry of Vitadur-N | 69 |
| Figure 3.10 | Multimat-Touch & Press furnace used for the firing of Vitadur-N discs | 70 |
| Figure 3.11 | The grinding machine used (A) and the diamond disc fixed in the grinding machine (B) | 71 |
| Figure 3.12 | The ceramic discs fixed to the specimen holder (A) and the specimen holder during grinding (B) | 72 |
| Figure 3.13 | The diamond paste, lubricant and polishing cloth used | 72 |
| Figure 3.14 | Ultrasonic cleaner machine used | 73 |
| Figure 3.15 | The Mitutoyo digital caliper used | 73 |
| Figure 3.16 | Specimens for microhardness testing mounted inside the epoxy resin | 74 |
| Figure 3.17 | Instron Universal Testing Machine | 75 |
| Figure 3.18 | The 1.6 mm loading pin used (A) and the specimen’s mounting jig used (B) | 75 |</p>
<table>
<thead>
<tr>
<th>Figure Reference</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.19</td>
<td>HMV Micro Hardness Tester used</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.20</td>
<td>Vickers diamond pyramid indenter while indent is being placed</td>
<td>78</td>
</tr>
<tr>
<td>Figure 3.21</td>
<td>Micrograph of Vickers indentation in one of the ceramic discs tested</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Perspex mould with five holes of 10 mm diameter and 3 mm thickness</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Turkom-Cera disc fixed to the plastic mould before embedding with the die stone</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.2 (A & b)</td>
<td>Turkom-Cera disc fixed to the plastic mould before embedding with the die stone</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Turkom-Cera disc embedded in the die stone</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Lapping the specimen with a Metaserv® 2000</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Front (A) and lateral (B) views of the shear bond test apparatus used</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.5 (A & b)</td>
<td>Front (A) and lateral (B) views of the shear bond test apparatus used</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Open (A) and closed (B) views of the cylindrical split brass mould used</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.6 (A & b)</td>
<td>Open (A) and closed (B) views of the cylindrical split brass mould used</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Brass mould adapted to the bonding jig (A), and cement placement (B)</td>
<td>101</td>
</tr>
<tr>
<td>Figure 4.7 (A & b)</td>
<td>Brass mould adapted to the bonding jig (A), and cement placement (B)</td>
<td>101</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Load application during bonding</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Bonded specimen</td>
<td>102</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Shear jig (A) attached to the Instron Universal testing Machine (B)</td>
<td>103</td>
</tr>
<tr>
<td>Figure 4.10 (A & b)</td>
<td>Shear jig (A) attached to the Instron Universal testing Machine (B)</td>
<td>103</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Specimen during shear bond strength testing</td>
<td>104</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>The mean shear bond strength (MPa) of the four treatment groups</td>
<td>109</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Zinc phosphate cement Elite (left) and glass ionomer cement Fuji Plus (right) used</td>
<td>128</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Panavia F resin luting cement (left) and Clearfil silane coupling agent (right) used in this study</td>
<td>129</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>The embedded tooth</td>
<td>130</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>The dental surveyor used for positioning and preparation of the tooth</td>
<td>130</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Different views of the stone die</td>
<td>131</td>
</tr>
</tbody>
</table>
Figure 5.6 The acrylic patterns with their wax bases and the mounting jig 132
Figure 5.7 The six metal dies used 132
Figure 5.8 Taking impression of the metal die (a) and the stone dies (b) 133
Figure 5.9 Preparation of the In-Ceram slip using the In-Ceram Vitasonic unit 134
Figure 5.10 Application of the In-Ceram alumina slip (a) and firing using Vita Inceramat furnace (b and c) 135
Figure 5.11 Application of the In-Ceram glass powder (a) and firing using Vita Inceramat furnace (b) 135
Figure 5.12 The Procera AllCeram Scanner connected to a computer and modem (a) and the die during scanning process (b) 136
Figure 5.13 Determination of the finish line and coping design 137
Figure 5.14 Schematic drawings of Procera AllCeram fabrication 138
Figure 5.15 Application of the load during cementation using the Makramani Load 140
Figure 5.16 Loading of a crown with a 1.6 mm stainless steel bar 141
Figure 5.17 Description of modes of fracture 142
Figure 5.18 Most common mode of fracture for ceramic copings (minimal fracture) 154
Figure 6.1 The tooth embedded in the epoxy resin 163
Figure 6.2 The paralleling apparatus used 164
Figure 6.3 Two views of the specimen fixture 165
Figure 6.4 The jig used to fix the handpiece to the vertical arm of the apparatus 165
Figure 6.5 Schematic illustration of the paralleling apparatus 166
Figure 6.6 The jig used to set the degree of taper 167
Figure 6.7 The diamond bur oriented at 3° to the vertical axis 167
Figure 6.8 The tooth during axial preparation 168
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9 a & b</td>
<td>The tooth before (a) and after (b) occlusal reduction</td>
<td>169</td>
</tr>
<tr>
<td>6.10 a & b</td>
<td>Occlusal (a) and buccal views (b) of the finished preparation</td>
<td>169</td>
</tr>
<tr>
<td>6.11 a & b</td>
<td>The impression material, tooth model and plastic cap (a); and impression of the prepared tooth (b)</td>
<td>170</td>
</tr>
<tr>
<td>6.12 a & b</td>
<td>Boxing of the impression (a) and pouring with die stone (b)</td>
<td>171</td>
</tr>
<tr>
<td>6.13</td>
<td>The die numbered according to its respective tooth</td>
<td>171</td>
</tr>
<tr>
<td>6.14</td>
<td>Specimens during thermocycling</td>
<td>174</td>
</tr>
<tr>
<td>6.15</td>
<td>The universal testing machine used</td>
<td>175</td>
</tr>
<tr>
<td>6.16</td>
<td>The specimen during testing</td>
<td>175</td>
</tr>
<tr>
<td>7.1</td>
<td>Front view of the holding jig used</td>
<td>195</td>
</tr>
<tr>
<td>7.2</td>
<td>Specimen fixed in the holding jig</td>
<td>196</td>
</tr>
<tr>
<td>7.3</td>
<td>The upper screw connected to the digital torque control motor</td>
<td>196</td>
</tr>
<tr>
<td>7.4</td>
<td>The computer system used to record the measurements</td>
<td>197</td>
</tr>
<tr>
<td>7.5</td>
<td>The jig-coping-tooth assembly on the table of the stereomicroscope</td>
<td>198</td>
</tr>
<tr>
<td>7.6</td>
<td>Marginal discrepancy image of one specimen (x30) on computer monitor</td>
<td>199</td>
</tr>
<tr>
<td>7.7</td>
<td>Marginal discrepancy evaluation using Cell^B image processing software</td>
<td>200</td>
</tr>
<tr>
<td>7.8</td>
<td>Marginal integrity (μm) of the three tested ceramics (Mean + SD)</td>
<td>201</td>
</tr>
<tr>
<td>7.9</td>
<td>Marginal gap (μm) of the Turkom-Cera with two finish lines</td>
<td>203</td>
</tr>
<tr>
<td>8.1</td>
<td>Buccal view of prepared lower right first molar</td>
<td>218</td>
</tr>
<tr>
<td>8.2</td>
<td>The cast after sectioning</td>
<td>219</td>
</tr>
<tr>
<td>8.3</td>
<td>The master casts mounted on the articulator</td>
<td>220</td>
</tr>
<tr>
<td>8.4</td>
<td>The provisional crown on lower right first molar</td>
<td>220</td>
</tr>
<tr>
<td>8.5</td>
<td>Distribution of the Turkom-Cera crowns done in relation to observation time in months</td>
<td>227</td>
</tr>
</tbody>
</table>
Figure I.1 A Turkom-Cera Fused Alumina kit 289
Figure I.2 Preparation of the stone die 290
Figure I.3 Holding and heating the foils (A), and dipping of the die in the silicone putty (B) 291
Figure I.4 Removing the die (A), cutting the foils (B), and placing the red foil on the stone die (C) 291
Figure I.5 Adapting the red foil on the die using the heated transparent foil 292
Figure I.6 The diagram showing the adaptation of a single or double red plastic foil 292
Figure I.7 Isolating the stone die with varnish (A) and separating oil (B) 293
Figure I.8 Applying the alumina gel to the margin area (A), and dipping the die in the gel (B) 294
Figure I.9 The die after applying alumina gel (A), removing the excess alumina (B), and removing the coping from the stone die (C) 294
Figure I.10 Sintering (A), finishing (B), and adjusting the coping (C) 295
Figure I.11 Applying the crystal powder to the sintered alumina coping 296
Figure I.12 Two views of the crystal hardened coping (A & B), and removing the excess crystal (C) 297
Figure II.1 Histogram of biaxial flexural strength (MPa) 298
Figure II.2 Histogram of Vickers microhardness (VHN) 299
Figure III.1 Histogram of shear bond strength (MPa) (Effect of luting cements) 301
Figure III.2 Histogram of shear bond strength (MPa) (Effect of surface treatments) 304
Figure IV.1 Histogram of the load at fracture (N) (Effect of ceramic materials) 306
Figure IV.2 Histogram of the load at fracture (N) (Effect of luting cements) 307
Figure V.1 Histogram of load at fracture (N) of Turkom-Cera, In-ceram and Procera 309
| Figure V.2 | Histograms of the effect of finish line on load at fracture (N) of Turkom-Cera copings | 310 |
| Figure V.3 | Histograms of the effect of water storage and thermocycling on load at fracture (N) of Turkom-Cera copings | 312 |
| Figure VI.1 | Histogram of marginal integrity (µm) of Turkom-Cera, Inceram and Procera | 315 |
| Figure VI.2 | Histograms of the effect of finish lines on marginal integrity (µm) | 316 |
List of Tables

Table 3.1	The mean and median biaxial flexural strength (MPa) of Turkom-Cera, In-Ceram and Vitadur N	79
Table 3.2	Comparison of biaxial flexural strength (MPa) between Turkom-Cera, In-Ceram and Vitadur N by Kruskal Wallis Test	80
Table 3.3	Multiple pairwise comparisons of bi-axial flexural strength (MPa) using Mann-Whitney Test with Bonferroni correction	81
Table 3.4	The mean Vickers microhardness (VHN) of Turkom-Cera, In-Ceram and Vitadur N	81
Table 3.5	Comparison of Vickers microhardness (VHN) between Turkom-Cera, In-Ceram and Vitadur N by One Way ANOVA	82
Table 3.6	Multiple pairwise comparisons of microhardness (VHN) by Tukey's HSD	82
Table 4.1	Luting materials used	94
Table 4.2	The mean and median shear bond strength (MPa) for the four luting cements used	106
Table 4.3	Comparison of shear bond strength (MPa) between Elite, Fuji I, Fuji Plus and Panavia F by Kruskal Wallis Test	106
Table 4.4	Multiple pairwise comparisons of shear bond strength (MPa) of the four luting cements using Mann-Whitney Test with Bonferroni correction	107
Table 4.5	Distribution of modes of failure in each treatment group (Elite, Fuji I, Fuji Plus and Panavia F)	108
Table 4.6	Descriptive summary for modes of failure and shear bond strengths (MPa) (effect of luting cements)	108
Table 4.7	Comparison of shear bond strength (MPa) between the four surface treatments by One Way ANOVA	109
Table 4.8	Multiple pairwise comparisons of shear bond strength (MPa) of the four surface treatments using Tukey's HSD Test	110
Table 4.9	Distribution of modes of failure in each treatment group	111
Table 4.10	Descriptive summary for modes of failure and shear bond strengths (MPa) (effect of surface treatments)	111
Table 5.1	Luting materials used in this study	128
Table 5.2	Modes of fracture	142
Table 5.3 The mean load at fracture (N) of Procera AllCeram, Turkom-Cera and In-Ceram copings

Table 5.4 Comparison of load at fracture (N) between Procera AllCeram, Turkom-Cera and In-Ceram by One Way ANOVA

Table 5.5 Multiple pairwise comparisons of load at fracture (N) using Scheffe’s Test

Table 5.6 Distribution of modes of fracture in each treatment group (Procera, Turkom-Cera and In-Ceram)

Table 5.7 Descriptive summary for modes of fracture and mean load at fracture (N) (effect of ceramic materials)

Table 5.8 The mean and median load at fracture (N) of the three luting cements used

Table 5.9 Comparison of load at fracture (N) of Turkom-Cera copings between Elite, Fuji I and Panavia F cements by Kruskal-Wallis Test

Table 5.10 Multiple pairwise comparisons of load at fracture (N) using Mann-Whitney Test with Bonferroni correction

Table 5.11 Distribution of modes of fracture in each treatment group (Elite, Fuji I and Panavia F)

Table 5.12 Descriptive summary for modes of fracture and mean load at fracture (N)

Table 6.1 The mean load at fracture (N) and standard deviation for Procera AllCeram, Turkom-Cera, and In-Ceram copings

Table 6.2 Comparison of load at fracture between Procera AllCeram, Turkom-Cera and In-Ceram copings by One Way ANOVA

Table 6.3 Multiple pairwise comparisons of fracture load (N) using Tukey HSD Test

Table 6.4 Distribution of modes of fracture in each treatment group (Procera, Turkom-Cera and In-Ceram)

Table 6.5 Descriptive summary for modes of fracture and mean load at fracture (N)

Table 6.6 The mean and median load at fracture (N) of Turkom-Cera (Chamfer) and Turkom-Cera (Shoulder) groups

Table 6.7 Comparison of load at fracture (N) between Turkom-Cera (Chamfer) and Turkom-Cera (Shoulder) groups by Mann-Whitney Test
Table 6.8 The mean and median load at fracture (N) of Turkom-Cera (no aging) and Turkom-Cera (with aging) groups 182

Table 6.9 Comparison of load at fracture (N) between Turkom-Cera (no aging) and Turkom-Cera (with aging) groups using the Mann-Whitney Test 182

Table 7.1 Compare marginal integrity (µm) between Turkom-Cera, In-Ceram and Procura AllCeram copings by One Way ANOVA 202

Table 7.2 Multiple pairwise comparisons of marginal integrity (µm) of Turkom-Cera, In-Ceram and Procura AllCeram copings using Tukey's HSD Test 203

Table 7.3 Comparison of marginal integrity (µm) of the two groups using Independent t-test 204

Table 8.1 Location and observation time of the 20 crowns placed in 16 patients 216

Table 8.2 Overview of the clinical protocol 217

Table 8.3 Criteria for Modified USPHS rating used in this study 224

Table 8.4 Criteria for postoperative sensitivity and patient satisfaction 225

Table 3.5 The mean time ± SD (month) in service for all restorations 228

Table 8.6 Scores of clinical evaluation (%) at baseline, year 1 and year 2 228

Table 8.7 Postoperative sensitivity in 16 crowns placed on vital teeth 231

Table 8.8 Results of patient satisfaction 231

Table II.1 Normality test for biaxial flexural strength 298

Table II.2 Comparison of biaxial flexural strength (MPa) between Turkom-Cera and In-Ceram using Mann-Whitney Test with Bonferroni correction 298

Table II.3 Comparison of biaxial flexural strength (MPa) between Turkom-Cera and In-Ceram using Mann-Whitney Test with Bonferroni correction 299

Table II.4 Comparison of biaxial flexural strength (MPa) between In-Ceram and Vitadur N using Mann-Whitney Test with Bonferroni correction 299

Table II.5 Normality test for Vickers hardness 300

Table II.6 Test of Homogeneity of Variances for Vickers microhardness 300
Table II.7 Multiple Comparisons of Vickers microhardness (VHN) mean values using Tukey HSD Test

Table III.1 Normality test for shear bond strength (effect of luting cements)

Table III.2 Comparison of shear bond strength (MPa) between Elite and Fuji I using Mann-Whitney U Test with Bonferroni correction

Table III.3 Comparison of shear bond strength (MPa) between Elite and Fuji Plus using Mann-Whitney U Test with Bonferroni correction

Table III.4 Comparison of shear bond strength (MPa) between Elite and Panavia F using Mann-Whitney U Test with Bonferroni correction

Table III.5 Comparison of shear bond strength (MPa) between Fuji I and Fuji Plus using Mann-Whitney U Test with Bonferroni correction

Table III.6 Comparison of shear bond strength (MPa) between Fuji I and Panavia F using Mann-Whitney U Test with Bonferroni correction

Table III.7 Comparison of shear bond strength (MPa) between Fuji Plus and Panavia F using the non-parametric Mann-Whitney U Test

Table III.8 Chi-square test between treatment groups ((Elite, Fuji I, Fuji Plus and Panavia F) and modes of failure

Table III.9 Normality test for shear bond strength (effect of surface treatments)

Table III.10 Levene's Test of equality of error variances

Table III.11 Multiple comparisons between the 4 treatment groups using Tukey HSD

Table III.12 Chi-square test between treatment group and mode of fracture

Table IV.1 Shapiro-Wilk test for the load at fracture (Effect of ceramic materials)

Table IV.2 Levene's Test of equality of error variances

Table IV.3 Multiple Comparisons of load at fracture (N) between Procera, Turkom-Cera and In-Ceram copings using Scheffe’s Test
Table IV.4	Chi-square test between treatment group (Procera, Turkom-Cera and In-Ceram) and modes of fracture	307
Table IV.5	Shapiro-Wilk test for the load at fracture (Effect of luting cements)	308
Table IV.6	Comparison of load at fracture (N) between Elite and Fuji I using Mann-Whitney Test with Bonferroni correction	308
Table IV.7	Comparison of load at fracture (N) between Elite and Panavia F using Mann-Whitney Test with Bonferroni correction	308
Table IV.8	Comparison of load at fracture (N) between Fuji I and Panavia F using Mann-Whitney Test with Bonferroni correction	308
Table IV.9	Chi-square test between treatment group and modes of fracture	308
Table V.1	Levene's Test of equality of error variances	309
Table V.2	Multiple Comparisons of load at fracture (N) using Tukey’s HSD	309
Table V.3	Chi-square test between treatment groups and modes of fracture	310
Table V.4	Shapiro-Wilk test for the effect of finish line design on load at fracture of Turkom-Cera copings	311
Table V.5	Comparison of load at fracture (N) between Turkom-Cera (Chamfer) and Turkom-Cera (Shoulder) groups using the Mann-Whitney Test	311
Table V.6	Shapiro-Wilk test for the effect of water storage and thermocycling on load at fracture of Turkom-Cera copings	312
Table V.7	Comparison of load at fracture (N) between Turkom-Cera (no aging) and Turkom-Cera (with aging) groups using Mann-Whitney Test	312
Table V.8	Teeth dimensions (mm) and load at fracture (N) for Procera group specimens with chamfer finish line	313
Table V.9	Teeth dimensions (mm) and mean load at fracture (N) for Turkom-Cera group specimens with chamfer finish line	313
Table V.10	Teeth dimensions (mm) and mean load at fracture (N) for In-Ceram group specimens with chamfer finish line	313
Table V.11	Teeth dimensions (mm) and mean load at fracture (N) for Turkom-Cera group specimens with shoulder finish line	314
Table V.12 Teeth dimensions (mm) and mean load at fracture (N) for Turkom-Cera group specimens subjected to artificial ageing 314

Table VI.1 Shapiro-Wilk test for marginal integrity of Turkom-Cera, In-ceram and Procera 315

Table VI.2 Test of homogeneity of variances 315

Table VI.3 Multiple Comparisons of marginal integrity by Tukey's HSD Test 316

Table VI.4 Shapiro-Wilk test for the effect of finish lines on marginal integrity 317