MECHANICAL PROPERTIES OF LASER WELDED JOINTS IN DISSIMILAR ALLOYS

A dissertation submitted in fulfilment of the requirements for the degree of Master of Dental Science

By

FATHI M. ELMABRUK

Department of Prosthetic Dentistry Faculty of Dentistry, University of Malaya Kuala Lumpur Malaysia 2010

ABSTRACT

Aim

The objectives of the present study were as follows: (i) to investigate the feasibility of laser welding in fusing a dissimilar joint of cobalt-chromium and titanium metal alloys (ii) to evaluate the properties of the welded joints between cobalt-chromium and titanium alloys.

Materials and method

Thirty plastic models of $(1 \times 3 \times 42)$ mm were prepared with conical shoulder shape as following ISO 6871-1dental base metal casting alloys. Models were divided equally into two experimental groups (15 cobalt-chromium and 15 titanium) and one control group of 26 specimens of cobalt-chromium. Each model was invested and moulded into mould rings with a special investment material. The specimens were placed in oven at room temperature. Temperature of the oven was then increased gradually for each alloy following manufacturer's recommendations. Following casting, the specimens were allowed to cool down at room temperature. All cast specimens were then retrieved from the investment and finished. Each specimen was cleaned utilizing acetone solution. All specimens of titanium were then checked by using X-ray to ensure that all specimens were porosity free before cutting and laser welding. Specimens of each alloy were laser welded using Nd-YAG (Manfredi Jewellaser 50, Italy) laser welding machine under power voltage of 270W, pulse duration of 10ms, and welding spot diameter of 1.0mm. Tensile strength and three-point bending tests were carried out using Universal Testing Machine(Shimadzu Autograph AG-X, Japan). Two specimens were selected randomly for examination under Scanning Electron Microscope to investigate the topography of the specimen after laser welding. All data were then statistically analysed using t-test and/or Mann Whitney test.

Results

Tensile strength tests results showed that the value of stress was significantly lower in laser welded specimens 401.87MPa, (124.64) when compared to the control specimens 813.07MPa, (50.075), at p=0.000. The mean flex. strength of laser-welded joints was 714.38MPa (165.73) was significantly less than control unwelded specimens 2211.07MPa (442.64) at p=0.000. However the modulus of elasticity values were not significantly different (p = 0.254)between the welded and control specimens. The *t*-test showed no significant difference in the modulus of elasticity between welded specimens (5046.42MPa ± 2262.52) and control specimens (5635.05MPa± 2138.47). SEM shows some porosity inside laser welding joints.

Conclusion

The results showed that the flexural and tensile strengths in laser welded joint of cobaltchromium and titanium alloys were significantly lower than in control group. However, there were no significant differences between both groups for modulus of elasticity. Fusing titanium and cobalt chromium in removable partial dentures (RPD) would be feasible for repair work.

ACKNOWLEDGEMENTS

First of all, I thank "Allah" for inspiring me with the strength, patience and willingness to perform this work.

I would like to express my sincere gratitude to my supervisor Associate Professor Dr. Wan Adida for her wisdom, patience, encouragement, guidance and continuous valuable scientific suggestions throughout the preparation of my thesis.

I wish to express my most sincere appreciation to all members of staff of the Department of Prosthetic Dentistry for their invaluable advice.

Finally, I would like to thank my family in Malaysia and Libya for encouraging and assisting me throughout the course of my study.

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: FATHI M. ELMABRUK (I.C/Passport No: 991897

Registration/Matric No: DGC040009

Name of Degree: Master of Dental Science /Prosthetic Dentistry

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

MECHANICAL PROPERTIES OF LASER WELDED JOINTS IN DISSIMILAR ALLOYS

Field of Study: Dentistry / Prosthodontics

I do solemnly and sincerely declare that:

- I am the sole author/writer of this Work; (1)
- (2)This Work is original;
- Any use of any work in which copyright exists was done by way of fair dealing and for (3)permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- I do not have any actual knowledge nor do I ought reasonably to know that the making (4)of this work constitutes an infringement of any copyright work:
- I hereby assign all and every rights in the copyright to this Work to the University of (5)Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- I am fully aware that if in the course of making this Work I have infringed any copyright (6)whether intentionally or otherwise. I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Cirfue

Subscribed and solemnly declared before,

Witness's Signature

Name: Omer Farring Tential Designation: Graduate Student Prothetic Department University & Malaya

Date 18-May-2011

Date 18 - May - 204

)

CONTENTS

TITL	E PAGE		i	
ABST	FRACT		ii	
ACK	NOWLE	DGEMENTS	iv	
DEC	LARATI	ON	v	
CON	TENTS		vi	
CHA	PTER O	NE: INTRODUCTION AND OBJECTIVES	1	
1.1	Introd	uction	2	
1.2	Aim of	Aim of the study		
1.3	Object	Objective of the study		
CHA	PTER T	WO:LITERATURE REVIEW	5	
2.1	Titaniu	ım	6	
	2.1.1	Types of titanium	7	
	2.1.2	The use of titanium as dental materials	9	
2.2	cobalt-chromium alloys			
	2.2.1	Physical and Mechanical properties	11	
	2.2.2	cobalt-chromium framework for Removable Partial Dentures (RPD)	12	
	2.2.3	Advantages of cobalt-chromium alloys as RPD base	13	
2.3	Joining of metals		13	
	2.3.1	Electrosoldering	14	
	2.3.2	Torch soldering (conventional torch technique)	15	
	2.3.3	Infrared heat source	15	
	2.3.4	Plasma welding	16	
	2.3.5	Laser welding	16	
		2.3.5.1 Advantages of laser welding	17	
2.4	Laser v	welding of commercially pure titanium (CPTi)	20	
2.5	Joining	Joining / welding of dissimilar materials		
	2.5.1	Laser welding	21	
	2.5.2	Joining / welding of dissimilar materials in dentistry	21	
	2.5.3	Operating parameters	22	
2.6	Mecha	nical Properties	23	

	2.6.1	Hardness	23
	CHAPTER TH	IREE MATERIALS AND METHODS	24
3.1	Materials		25
	3.1.1	Commercial pure titanium grade II (CPTi II)	25
	3.1.2	Cobalt-chromium alloy (Co-Cr)	26
3.2	Methods		28
	3.2.1	Titanium (CPTi) specimens preparation	28
		3.2.1.1 Preparation of mould	28
		3.2.1.2 Titanium Investing	29
		3.2.1.3 Titanium casting technique	30
		3.2.1.3.1 Heating cycle	30
		3.2.1.3.2 Casting	31
		3.2.1.3.3 Polishing	33
		3.2.1.3.4 X- Ray checking	34
	3.2.2	Cobalt-chromium(Co-Cr)	34
		3.2.2.1 Investing	34
		3.2.2.2 Casting technique	34
		3.2.2.2.1 Heating cycle	35
		3.2.2.2.2 Casting	35
		3.2.1.2.2.3 Polishing	35
	3.2.3	Welding	36
		3.2.3.1 Preparation of specimens for laser welding	36
		3.2.3.2 Laser welding	38
	3.2.4	Pilot study	41
	3.2.5	Tests	42
		3.2.5.1 Tensile strength	42
		3.2.5.2 Three-points bending test	43
		3.2.5.3 Modulus of elasticity	44
		3.2.5.4 Microscopic examination for microstructure	45
	3.2.6	Statistical analysis	45

CHAPTER FOUR : RESULTS

4.1	Three-points	bending test	47
	4.1.1	Descriptive statistics	49
	4.1.2	Mann-Whitney U for three-points bending test	42
4.2	Tensile streng	gth test	50
4.3	Modulus of el	lasticity test	53
	4.3.1	Levene's test for equality of variances for modulus of elasticity test	53
	4.3.2	Descriptive statistics	54
4.4	Scanning ele	ctron microscope examination results	56

CHAPTER FIVE:DISCUSSION

59

46

5.1	Materials an	nd methods		60
	5.1.1	Materials		60
	5.1.2	Methods		61
		5.1.2.1	Specimens preparation:	61
		5.1.2.2	Titanium investing	61
		5.1.2.3	Titanium casting technique	61
		5.1.2.4	Polishing	62
		5.1.2.5	Laser welding	63
5.2	Results			64
	5.2.1	Three point bending test	t	64
	5.2.2	Tensile strength		65
	5.2.3	Modulus of elasticity		66
	5.2.4	Scanning electron micro	oscopy	67
			CECTE ON C	<i>(</i> 0)

CHAPTER SIX: CONCLUSION AND SUGGESTIONS	69
REFERENCES	71

LIST OF FIGURES

Figs.	Descriptions	Pages
3.1	Commercial pure titanium ingots (Easyti system [®] , Italy)	25
3.2	Cobalt-chromium ingots (Wirobond LFC BEGO, Germany)	26
3.3	Schematic representations of the shape and dimensions of the study specimen (titanium/cobalt-chromium).	28
3.4	Shape of titanium specimens	29
3.5	Investment materials used in the study for casting titanium specimen (TICOAT S+L)	30
3.6	Casting machine	31
3.7	Crucible and mould ring placed in casting machine chamber	32
3.8	Ceramic crucible (C15TI).	33
3.9	Square butt joint	36
3.10	Grinding and polishing machine	37
3.11	Metal flex micrometric adjustable holder	39
3.12	Specimens butted in tight contact manually	39
3.13	Laser welding machine	40
3.14	Universal testing machine (Shimadzu)	42
3.15	Scanning electron microscopy	45
4.1	Mean flexural strength value for control and welded specimens	48
4.2	Mean tensile strength values and standard deviation of welded and control groups.	51
4.3	Mean modulus of elasticity values and standard deviation of welded and control groups	55
4.4	SE Micrograph microstructures of control cobalt-chromium after tensile test (Magnification: 300 X)	56
4.5	SE Micrograph microstructures of welded joint of cobalt-chromium after tensile test (Magnification: 300 X).	57
4.6	SE Micrograph microstructures of welded joint of titanium after tensile test (Magnification: 400 X)	57
4.7	SE Micrograph microstructures of welded joint of titanium after tensile test (Magnification: 300 X)	58

Tables	Descriptions	Pages
2.1	Weight percentage of selected elements found in igneous rock	6
2.2	Types of CPTi (American Society of Testing and Material (ASTM))	7
2.3	Mechanical properties of alloys used in prosthodontics	7
2.4	Mechanical properties of titanium according to the (ASTM)	8
2.5	Physical properties of metals in prosthodontics	8
2.6	Physical properties of titanium	8
2.7	Selected physical and mechanical properties of cobalt-chromium alloys	12
3.1	Commercial pure titanium grade II alloy components	26
3.2	cobalt-chromium compositions (Wirobond LFC BEGO, Germany)	27
3.3	Mean values of tensile strengths of the four groups of titanium-cobalt- chromium welded samples according to laser welding power.	41
4.1	Descriptive statistics for flexural strength (MPa).	48
4.2	The flexural strength value of welded and control specimens in three point bending test	49
4.3	Descriptive statistics for tensile strength value	51
4.4	The difference in tensile strength between welded and control specimens	52
4.5	Test of homogeneity of variances	53
4.6	The difference in modulus of elasticity between welded and control specimens	53
4.7	Descriptive statistics for modulus of elasticity test	55

LIST OF TABLES