CORONAL MICROLEAKAGE OF DIFFERENT POST SYSTEMS USED IN ENDODONTICALLY TREATED TEETH

Dr. FATMA K. OMAR SOLTAN

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF DENTAL SCIENCE IN CONSERVATIVE DENTISTRY

DEPARTMENT OF CONSERVATIVE DENTISTRY
FACULTY OF DENTISTRY
UNIVERSITY OF MALAYA
KUALA LUMPUR
MALAYSIA
2011
ABSTRACT

Objective: The purpose of this study was to investigate the effectiveness of two different traditional luting cements and one adhesive system on the microleakage in endodontically treated teeth restored with different post systems.

Methods: A total of seventy single-rooted mandibular premolar teeth were selected and endodontically treated with standard root length of 14 mm. The teeth were then randomly divided into three groups, two of them consist of 30 teeth and were restored with two different post systems; Fiber Lux ParaPost (F), and ParaPost XH (P). Then each group was subdivided into 3 subgroups of 10 teeth, each one cemented with different luting agents; RelyX™ U100 Self-Adhesive Universal Resin Cement (R), Elite Zinc Phosphate Cement (ZP), and Fuji I- Glass Ionomer Luting Cement (GI). For the third main group which consisted of 10 teeth, only endodontic treatment was done to it and was made as the control group (RCT).

All the samples were then restored with a composite core (Synergy D6 universal composite, Coltene/Whaledent, USA) and then thermocycled. All the specimens were coated with a double layer of nail varnish to cover the entire root surface except for 2mm around the coronal orifice, covered with a tin foil and the apical foramen was sealed with sticky wax. The specimens were immersed in 2% solution of methylene blue dye for 24 hours. The specimens were then cross sectioned perpendicular to the long axis of the root into discs 1mm thick starting from the coronal part and descending corono-apically up to a total of 6 mm. The microleakage was evaluated by investigating the coronal surface of each section under a stereomicroscope (Olympus, Japan) and the data were analyzed with Kruskal–Wallis test and Mann-Whitney U test.
Results: For different types of cements, there was significant differences in microleakage between them and RCT group (p=0.018). Pairwise comparison showed that significant difference in microleakage was only found between glass ionomer cement groups and root canal treatment group (control group) p=0.03 but no significant difference between the other pairs. For post systems, there is a significant difference in microleakage between Fiber Lux ParaPost and ParaPost XH and RCT group (p=0.005).

Conclusions: There was statistically significant difference in coronal microleakage between different types of post systems. However, there was no statistically significant difference in coronal microleakage between the different types of cements.
DECLARATION

I certify that this research is based on my own independent work, except where acknowledged in the text or by reference. No part of this work has been submitted for any degree or diploma to this or any other university.

Dr. Fatma K. Omar Soltan

Date:

Supervisor: Prof Dato’ Dr. Abdul Aziz Abdul Razak

Department of Conservative Dentistry
Faculty of Dentistry
University of Malaya
Kuala Lumpur
Malaysia
ACKNOWLEDGEMENTS

All praise and thanks to ALLAH for inspiring me with the strength and willingness to perform this work.

I would like to express my sincere gratitude to my supervisor Professor Dato’ Dr. Abdul Aziz Razak, for being the best mentor and for his encouragement and guidance throughout the preparation of this study. I personally felt that without time and knowledge that he had given me, it would have been difficult to complete this study.

I am grateful to Dr. Mariam Abdullah, Head of the Department of Conservative Dentistry for her support.

I would like to thank Professor Dr. Rosnah Mohd Zain, Dean of the Faculty of Dentistry, University of Malaya for her continuous support for the postgraduate students.

I wish to convey my most sincere appreciation to all members of staff of the Department of Conservative Dentistry for their support.

Finally, I cannot imagine going through this study without my lovely husband Ehab and my sweet daughter, Noor Asmaa. They provided me with support and patience.
CHAPTER ONE: INTRODUCTION, AIM AND OBJECTIVE

1.1 Introduction 2
1.2 Aim 4
1.3 Objectives 5

CHAPTER TWO: LITERATURE REVIEW

2.1 Restoration of endodontically treated teeth 7
 2.1.1 Restorative factors affecting the prognosis of endodontic treatment 7
2.2 Dentine in bonding 8
 2.2.1 Dentine permeability and dentine adhesion 10
 2.2.3 Types of dentine permeability 10
 2.2.4 Theoretical model of dentine bonding 11
 2.2.5 Dentine permeability and microleakage 12
2.3 Dentine bonding agent 13
 2.3.1 Classification of dentine bonding agent 13
2.4 Microleakage 18

6
2.4.1 Causes of microleakage
2.4.2 Consequence of microleakage
2.4.3 Significance of microleakage
2.4.4 Coronal microleakage
2.4.5 Microleakage tests
 2.4.5.1 Direct observation
 2.4.5.2 Organic dyes
 2.4.5.3 Fluorescent dyes
 2.4.5.4 Radioisotopes
 2.4.5.5 Bacterial penetration
 2.4.5.6 Fluid filtration or transportation
 2.4.5.7 Dye extraction method
2.5 Luting cements
 2.5.1 Resin luting cement
 2.5.1.1 Structure
 2.5.1.2 Classification
 2.5.1.2.1 Self/Auto-cured resin cement
 2.5.1.2.2 Light-cured resin cement
 2.5.1.2.3 Dual-cured resin cement
 2.5.1.3 Properties of resin luting cement
 2.5.1.3.1 Adhesion
 2.5.1.3.2 Polymerization shrinkage
 2.5.1.3.3 Film thickness
 2.5.1.3.4 Radiopacity
 2.5.1.3.5 Biocompatibility
2.5.1.4 Advantages of resin luting cement
2.5.1.5 Disadvantages of resin luting cement
2.5.2 Glass ionomer cement
2.5.3 Zinc phosphate cement
2.6 Post systems
2.6.1 Function of posts
2.6.2 Indication of posts
2.6.3 Classification of posts
2.6.4 Metal posts versus non-metal posts
2.6.5 Post space preparation
2.6.5.1 Post length
2.6.5.2 Post diameter
2.6.5.3 Post cementation
2.6.6 Post aesthetics
2.6.7 Retrievability

CHAPTER THREE: MATERIALS AND METHODS
3.1 Materials
3.2 Methods
3.2.1 Tooth collection
3.2.2 Tooth selection
3.2.3 Decoronation of teeth
3.2.4 Root canal preparation and obturation
3.2.5 Groups
3.2.6 Removing gutta-percha and post space preparation
3.2.7 Post cementation

3.2.8 Core build up

3.2.9 Thermocycling procedure

3.2.10 Evaluation of microleakage
 3.2.10.1 Preparation prior to immersion in dye solution
 3.2.10.2 Microleakage test
 3.2.10.3 Sectioning of specimens
 3.2.10.4 Microleakage evaluation procedure

3.2.11 Reliability test

3.2.12 Data analysis

CHAPTER FOUR: RESULTS

4.1 Evaluation of coronal microleakage among different types of cements
 4.1.1 Descriptive statistic
 4.1.2 Statistic analysis

4.2 Evaluation of coronal microleakage among different types of post
 4.2.1 Descriptive statistic
 4.2.2 Statistic analysis

CHAPTER FIVE: DISCUSSION

5.1 Methodology
 5.1.1 Tooth collection
 5.1.2 Tooth selection
 5.1.3 Root canal preparation
 5.1.4 Post space preparation
5.1.5 Post cementation 75
5.1.6 Post systems 76
5.1.7 Thermocycling 77
5.1.8 Evaluation of microleakage 78
 5.1.8.1 Preparation prior to immersion in dye solution 78
 5.1.8.2 Microleakage test 79
 5.1.8.3 Sectioning of specimens 79
 5.1.8.4 Assessment of microleakage 80
5.2 Results 81
5.3 Limitations of the study 85

CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDIES 86

6.1 Conclusions 87
6.2 Clinical recommendations 88
6.3 Recommendations for further studies 89

References 90

Appendices 103
Appendix I 104
Appendix II 105
Appendix III 106
Appendix IV 107
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Post systems used in this study</td>
<td>39</td>
</tr>
<tr>
<td>3.2</td>
<td>RelyX™ U100 Self-Adhesive Universal Resin Cement</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Fuji I – Glass Ionomer Luting Cement</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Elite Zinc Phosphate Cement</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Synergy D6 universal composite</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>Mesiodistal and buccolingual radiographs</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Decoronation of teeth</td>
<td>44</td>
</tr>
<tr>
<td>3.8</td>
<td>Chemomechanical preparation of the teeth</td>
<td>46</td>
</tr>
<tr>
<td>3.9</td>
<td>Gutta-percha cones</td>
<td>46</td>
</tr>
<tr>
<td>3.10</td>
<td>Pulpdent Root Canal Sealer</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Groups of the study</td>
<td>48</td>
</tr>
<tr>
<td>3.12</td>
<td>Parapost XH with matching drill</td>
<td>49</td>
</tr>
<tr>
<td>3.13</td>
<td>Fiber Lux ParaPost with matching drill</td>
<td>49</td>
</tr>
<tr>
<td>3.14</td>
<td>Tooth with its composite core</td>
<td>51</td>
</tr>
<tr>
<td>3.15</td>
<td>Thermocycling machine</td>
<td>52</td>
</tr>
<tr>
<td>3.16</td>
<td>Tooth covered with a tin foil</td>
<td>52</td>
</tr>
<tr>
<td>3.17</td>
<td>The samples immersed in dye solution</td>
<td>55</td>
</tr>
<tr>
<td>3.18</td>
<td>Low speed cutting machine</td>
<td>55</td>
</tr>
<tr>
<td>3.19</td>
<td>Six equal transversal sections</td>
<td>56</td>
</tr>
<tr>
<td>3.20</td>
<td>Stereomicroscope</td>
<td>56</td>
</tr>
<tr>
<td>3.21</td>
<td>Microscopic observations of the dye penetration</td>
<td>57</td>
</tr>
<tr>
<td>3.22</td>
<td>Microscopic observations of the dye penetration</td>
<td>58</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of coronal microleakage (%) between 3 different cements and RCT group</td>
<td>65</td>
</tr>
</tbody>
</table>
4.2 Comparison of coronal microleakage (%) between 2 different post and RCT
LIST OF TABLES

<table>
<thead>
<tr>
<th>Tables</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Components of post systems used in this study</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>The components of three different cements used in the study</td>
<td>42</td>
</tr>
<tr>
<td>3.3</td>
<td>The components of the composite core build up material</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>The mean percentages value of the dye infiltration for the resin cement</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>groups for both fibre and metal posts</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>The mean percentages value of the dye infiltration for the zinc phosphate</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>cement groups for both fibre and metal posts</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>The mean percentages value of the dye infiltration for the glass ionomer</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>cement groups for both fibre and metal posts</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>The mean percentages value of the dye infiltration for the root canal</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>treatment groups (control group)</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of coronal microleakage between 3 different cements and RCT</td>
<td>65</td>
</tr>
<tr>
<td>4.6</td>
<td>Pairwise comparison of microleakage between different types of cement</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>and RCT</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Comparison of coronal microleakage between 2 different posts and RCT</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Pairwise comparison of microleakage between different types of post and</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>RCT</td>
<td></td>
</tr>
<tr>
<td>I.1</td>
<td>List of materials used in this study</td>
<td>104</td>
</tr>
<tr>
<td>II.1</td>
<td>List of equipments used in this study</td>
<td>105</td>
</tr>
<tr>
<td>III.1</td>
<td>Reliability test</td>
<td>106</td>
</tr>
<tr>
<td>IV.1</td>
<td>Intra-class Correlation Coefficient</td>
<td>107</td>
</tr>
</tbody>
</table>