CYCLIN D1 AMPLIFICATION IN TONGUE AND BUCCAL MUCOSA SQUAMOUS CELL CARCINOMA

DR HAYDAR M. MAHDEY

BDS (BGHD)

This research thesis is submitted in total fulfillment
of the requirements for the degree of

Master of Dental Science (MDSc)

Department of ORAL AND MAXILLOFACIAL SURGERY

FACULTY OF DENTISTRY

UNIVERSITY OF MALAYA

KUALA LUMPUR

2010
UNIVERSITY MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: (I.C./Passport No):

Registration/Metric No:

Name of Degree:

Field of Study:

I do solemnly and sincerely declare that:

1. I am the sole author/writer of this work;
2. This work is original;
3. Any use of any work in which copyright exists was done by way of fair dealing and for permitted purpose and any excerpt or exact from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this work;
4. I do not have any actual knowledge nor do I ought reasonable to know that the making of this work constitutes an infringement of any copyright work;
5. I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
6. I am fully aware that if in the course making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as any be determined by UM.

Candidature’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:

Designation:
ABSTRACT

Introduction

Oral cancer is a significant health problem worldwide with almost 300,000 new cases are diagnosed each year. Despite the numerous studies done, and even with the best treatment option utilized, more than 50% of patients with oral cancer will experience relapse. In search for better options for prognostication, researches are now focusing on the molecular biology of cancer, for instance in search of reliable tumor markers. Among the markers reported in the literatures, Cyclin D1 is actively studied protein. Cyclin D1 regulates the cell cycle progression by forming a complex with different cyclin dependant kinase. Dysregulation of cyclin D1 can result in loss of normal cell growth and tumor development. The aim of this study is to determine and compare the amplification of Cyclin D1 in buccal mucosa and tongue oral squamous cell carcinoma(OSCC) and to associate its amplification in buccal mucosa and tongue OSCC with tumor depth, tumor front, histopathological grading, pathological tumor size, lymph node status, TNM staging and survival rate.

Materials and methods

The study samples were paraffin-embedded OSCC surgical specimens obtained from the archives of the Department of Oral Pathology, Oral Medicin and periodontolgy and Oral Pathology Diagnostic Laboratory. Fifty samples of patients with primary OSCC of buccal mucosa and tongue were included in the study. The sociodemographic and clinical data were obtained from the Malaysian Oral Cancer Tumor and Database System coordinated by the Oral Cancer Research and Coordinating Centre (OCRCC), University of Malaya. There were 31(62%) female and 19(38%) male with the overall age ranging from 26 to 94 years with a mean age of 60 years.
The OSCC samples were from 44(68%) Indians, 10(20%) Malays and 6(12%) Chinese. The fluorescent-in-situ hybridization (FISH) technique was used to detect the amplification of Cyclin D1 using the Vysis protocol. Fluorescence evaluation of Cyclin D1 was performed using the image analyzer where the Cyclin D1 amplification signal appears as a small spot. At least 200 nuclei were scored using a 100X objective in each defined histological area, and each nucleus was assessed for the chromosome copy number. Statistical correlations of Cyclin D1 and certain clinicopathological parameters of OSCC were analyzed using the chi-square method or Fisher’s exact test.

Results

The present study found positive amplification of cyclin D1 in 72% (36) of OSCC. Detection of positive amplification for cyclin D1 was observed in 88% (22) and 56% (14) of the tongue and buccal mucosa OSCC respectively where the difference was statistically significant (p=0.012). There was a significant correlation between Cyclin D1 positivity and ethnicity for the OSCC of the buccal mucosa (p=0.037); larger pathological tumor greatest dimension (pT) (p = 0.019), higher pTNM stages (p=0.014), tumor depth ≥ 5mm in tongue cases (p<0.001) and survival rate (p=0.009) for overall SCC cases and (p<0.001) for buccal mucosa SCC cases.

Conclusion

There is a significant correlation between amplification of Cyclin D1 with tumor depth and size of the tumor for tongue SCC; ethnicity and survival rate for buccal mucosa SCC.
ACKNOWLEDGEMENTS

First of all, I thank Allah the Almighty, for granting me the will and strength to accomplish this modest research. I pray that Allah’s blessing upon me continue throughout my life, and Allah’s blessing and peace be upon the messenger Mohammad.

I would like to express my sincere appreciation and deepest gratitude to my first supervisor Dr. Siti and second supervisor Prof. Dr. Rosnah Binti Mohd Zain for Their inspiration and continuous scientific suggestions throughout the preparation of this thesis. Their efforts are deeply appreciated.

My great thanks and praise goes to the Head of Oral and Maxillofacial Department Prof. Zainal Arif Bin Abdul Rahman whose inspiration and unconditional will to teach enabled me and my fellow trainees to reach this stage.

I also seize this opportunity to thank and appreciate the efforts and moral support presented by the lecturers, my colleagues and the staff of the Department of Oral and Maxillofacial Surgery.

All the staff in Division of Pathology lab was an invaluable asset to my work and I would like to specify Dr Thomas Abraham, Dr. Thomas G. Kallarakkal, Dr. Anand R, Mrs Khoo Guat Sim, Mrs Rusnani Kamal and Mr. Siew Koi Kheong for all their assistance.

Last but not least, my parents for believing in me and for their continuous support. I dedicate this thesis to them.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
</tr>
<tr>
<td>Contents</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1: Introduction and Objectives</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2: Literature Review</td>
<td>7</td>
</tr>
<tr>
<td>2.1. Aetiology and risk factors</td>
<td>8</td>
</tr>
<tr>
<td>2.1.1. Genetic and familial factors</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2. Ultraviolet radiation</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3. Tobacco</td>
<td>9</td>
</tr>
<tr>
<td>2.1.4. Quid chewing</td>
<td>10</td>
</tr>
<tr>
<td>2.1.5. Alcohol</td>
<td>10</td>
</tr>
</tbody>
</table>
2.1.6. Infection:
 2.1.6.1. Viral Infection
 2.1.6.2. Fungal
 2.1.6.3. Bacterial

2.1.7. Others:
 2.1.7.1. Diet
 2.1.7.2. Occupation
 2.1.7.3. Immune defense
 2.1.7.4. Mouthwashes
 2.1.7.5. Maté
 2.1.7.6. Ethnicity

2.2. Molecular Basis of Cancer:
 2.2.1. Cell Cycle & carcinogenesis
 2.2.2. Apoptosis (Cellular death)

2.3. Prognostic indicators in oral cancer:
 2.3.1. Patient-related factors:
 2.3.1.1. Age distribution of oral cancer
 2.3.1.2. Delayed diagnosis
 2.3.2. Anatomical site:
2.3.2.1. Tongue cancer
2.3.2.2. Buccal mucosa and lip cancer
2.3.2.3. Floor of the mouth cancer
2.3.2.4. Gingiva and Palate cancer
2.3.3. TNM staging of oral cancer
2.3.4. Tumor Depth
2.3.5. Histopathology grading of oral cancer
2.3.6. Tumor front:
2.3.7. Molecular marker:
2.3.7.1. Oncogenes:
2.3.7.1.1. Cyclin D1
2.3.7.2. Proto-Oncogene
2.3.7.3. Tumor-suppressor genes
2.4. Survival rate for oral cancer patients
2.5. Techniques of Identification of Molecular marker:
2.5.1. Immunohistochemistry
2.5.2. FISH technique
CHAPTER 3: Materials and Methods
3.1. Materials

viii
3.1.1. Criteria of inclusion

3.1.2. Criteria of exclusion

3.1.3. Clinicopathological characteristics

 3.1.3.1. Modified Broder’s malignancy grading system

 3.1.3.2. Pattern of invasion

 3.1.3.3. TNM staging

3.2. Methods

 3.2.1. Probe of FISH technique

 3.2.2. Analysis of chromosome copy number

 3.2.3. Specimen processing

 3.2.4. Principle

 3.2.5. FISH technique evaluation criteria

3.3. Statistical analysis

3.4. Expected output

CHAPTER 4: Results

 4.1. Introduction

 4.1.1. FISH technique evaluation criteria

 4.1.2. Image analysis

 4.2. Sociodemographic characteristic
4.3. Clinicopathological features

4.3.1. Tumor site

4.3.2. Broder’s classification

4.3.3 Pattern of invasion

4.3.4. Tumor size (pT)

4.3.5. Lymph node metastasis

4.3.6. pTNM stage

4.3.7 Tumor depth

4.4. Cyclin D1 amplification using FISH technique

4.4.1. Association between sociodemographic characteristic and cyclin D1 amplification

4.4.1.1. Association between age and cyclin D1 amplification based on tumor site

4.4.1.2. Association between gender and cyclin D1 amplification based on tumor site:

4.4.1.3. Association between ethnicity and cyclin D1 amplification based on tumor site

4.4.2. Association between clinicopathological features and cyclin D1 amplification
4.4.2.1. Association between Tumor site and Cyclin D1 amplification (Tongue and Buccal Mucosa SCC) 55

4.4.2.2. Association between modified Broder’s grading and cyclin D1 amplification based on tumor site 56

4.4.2.3. Association between pattern of invasion and cyclin D1 amplification based on tumor site 57

4.4.2.4. Association between tumor greatest dimension (pT) and cyclin D1 amplification 58

4.4.2.5. Association between lymph node metastasis (pN) and cyclin D1 amplification 60

4.4.2.6 Association between pathological TNM staging (pTNM) and cyclin D1 amplification based on tumor site 61

4.4.2.7. Association between tumor depth and cyclin D1 amplification based on tumor site 62

4.5.1. Kaplan-Meier survival analysis (KMSA) 63

4.5.2. Kaplan-Meier survival analysis (KMSA) based on tumor site 64

4.5.3. Kaplan-Meier survival analysis (KMSA) of cyclin D1 amplification in Tongue SCC 66

4.5.4. Kaplan-Meier survival analysis (KMSA) of cyclin D1 amplification in Buccal mucosa SCC 67
CHAPTER 5: Discussion

5.1. Sociodemographic characteristic

5.1.1. Age

5.1.2. Gender

5.1.3. Ethnicity

5.2. Clinicopathological characteristic

5.2.1. Tumor site

5.2.2. Tumor depth

5.2.3. Pattern of invasion

5.2.4. pT

5.2.5. pN

5.2.6. pTNM staging

5.2.7. Modified Broder’s grading

5.3. Survival rate

5.4. Limitation of the study

CHAPTER 6: Conclusion, Implication and Recommendation

6.1. Conclusion

6.2. Implication of the study

6.3. Recommendation
Figure 4.1 FISH staining showing green and orange signals and amplification ratio in nuclei marked by the red circles

Figure 4.2 Survival rate for the sample (n=50). The rate was significantly better for cyclin D1 negative amplification patients (p-value=0.009).

Figure 4.3 Survival rate patients with tumor site (n=50). The rate was not significant between tongue and buccal mucosa SCC patients (p-value=0.408).

Figure 4.4 Survival rate patients with tongue cancer (n=25). The rate was not significant between negative and positive cyclin D1 amplification tongue SCC patients (p-value=0.147).

Figure 4.5 Survival rate patients with buccal mucosa cancer (n=25). The rate was significantly better for cyclin D1 negative amplification buccal mucosa SCC patients (p-value<0.001)
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 4.1</td>
<td>Demographic distribution according to gender and ethnicity</td>
<td>47</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Distribution of cases according the age</td>
<td>48</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Clinicopathological features</td>
<td>50</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Cyclin D1 amplification</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Association between age and cyclin D1 amplification</td>
<td>52</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Association between gender and cyclin D1 amplification based on tumor site</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Association between ethnicity and cyclin D1 amplification based on tumor site</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Association between the Amplification of Cyclin D1 and Tumor Sites</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>(Buccal Mucosa and Tongue SCC)</td>
<td></td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Association between modified Broder’s grading and cyclin D1 amplification</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>based on tumor site</td>
<td></td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Association between pattern of invasion and cyclin D1 amplification based on</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>tumor site</td>
<td></td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Association between tumor greatest dimension (pT) and cyclin D1 amplification</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Association between lymph node metastasis (pN) and cyclin D1 amplification</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Association between pathological TNM staging (pTNM) and cyclin D1 amplification based on tumor site</td>
<td>61</td>
</tr>
</tbody>
</table>
Table 4.14 Association between tumor depth and cyclin D1 amplification based on tumor site

Table 4.15 Log rank test to compare between survival rates between positive and negative cyclin D1 amplification
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCND1</td>
<td>Cyclin D1</td>
</tr>
<tr>
<td>CDK4\6</td>
<td>Cyclin dependent kinases 4 and 6</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6'-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>EBV</td>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>FISH</td>
<td>Florescence in Situ Hybridization</td>
</tr>
<tr>
<td>H&E</td>
<td>Hematoxylin and Eosin</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein Isothiocyanate</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HNSCC</td>
<td>Head and Neck Squamous Cell Carcinoma</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papilloma virus</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>MOCTDBS</td>
<td>Malaysian Oral Cancer Tumor and Database</td>
</tr>
<tr>
<td>OCRCC</td>
<td>Oral Cancer Research Coordinating Center</td>
</tr>
<tr>
<td>OSCC</td>
<td>Oral squamous cell carcinoma</td>
</tr>
<tr>
<td>pN</td>
<td>Pathological lymph node metastasis</td>
</tr>
<tr>
<td>pT</td>
<td>Pathological tumor greatest dimension</td>
</tr>
<tr>
<td>pTNM</td>
<td>Pathological TNM stage</td>
</tr>
<tr>
<td>Rb</td>
<td>Retinoblastoma</td>
</tr>
<tr>
<td>SPSS</td>
<td>Computer program used for statistical analysis</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumor necrosis factor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XP</td>
<td>Xeroderma Pigmentosum</td>
</tr>
</tbody>
</table>