THE EFFECT OF PHENOTYPIC SWITCHING ON THE BIOLOGICAL PROPERTIES OF *Candida krusei*

MOHD HAFIZ ARZMI

DISSERTATION SUBMITTED IN FULFILMENT FOR THE DEGREE OF MASTER OF DENTAL SCIENCE

FACULTY OF DENTISTRY UNIVERSITY OF MALAYA KUALA LUMPUR APRIL 2011
ABSTRACT

Candida krusei has been identified as an emerging pathogen after *Candida albicans* and *Candida glabrata*. Until today, the ability to switch its phenotype in unfavourable environment has not been reported in *Candida krusei*. This study was carried out in order to evaluate the phenotypic switching ability of *Candida krusei* and to access how this ability affects the biological properties, adherence capacity and susceptibility towards chlorhexidine (CHX), amphotericin B, nystatin, *Piper betle* and *Nigella sativa* aqueous extracts. To induce the switched generations, *Candida krusei* was cultured on yeast extract potato dextrose (YEPD) agar containing 0.05% of phloxine B. Following a 5-day incubation, the colony forming units (CFU/mL) were examined and determined. This phenotypically switched colony was designated as the 1st cell generation. The cells from the 1st generation were subcultured following the same protocol to produce the 2nd, 3rd and 4th generation of switched cells.

The 1st and 2nd switched generations were observed to exhibit similar colony morphology comparative to the unswitched *Candida krusei*. The percentages of recovery population for the 1st and 2nd generations were reduced to 46.6% and 36.4%, respectively. The colonies from the 3rd and 4th switched generations were found to be highly myceliated with the former exhibiting lobate margin and the later with filamentous margin. Interestingly, the percentage of recovery for the 3rd generation showed a tremendous increased to 85.7% but was reduced to 70.8% in the 4th generation. SEM micrographs revealed the surface appearance of the unswitched *Candida krusei*, 1st and 2nd generations as smooth, with the 2nd generation having more extended pseudohyphae compared to the other generations. In contrast, the surface of the 3rd and the 4th generations were with rough surfaces. The 4th generation also exhibited pimpled or punctate morphology with short pseudohyphae. The unswitched *Candida krusei* and the 3rd switched generations were also observed to have deposits of
extracellular matrix on its surfaces. The adherence capacity of *Candida krusei* also showed variations in all cell generations. The 2nd switched generation showed the highest adherence with total population of \((154.0 \pm 60.2) \times 10^2\) CFU/mL to the saliva-coated glass beads while the unswitched *Candida krusei* showed the least adherence at \((5.65 \pm 0.5) \times 10^2\) CFU/mL.

Based on the disc diffusion test, the degree of susceptibility towards CHX, amphotericin B, nystatin and *Piper betle* were found to differ in all generations of *Candida krusei*. The unswitched *Candida krusei* was found to be the most susceptible towards CHX and the 2nd generation was the least susceptible. The 3rd unswitched *Candida krusei* was found to be the most susceptible towards amphotericin B and the unswitched generation was the least susceptible. The 4th generation was determined as the most susceptible towards nystatin in contrast to the 2nd generation which showed the least. In the susceptibility study towards *Piper betle* results indicated that the 1st generation was the most susceptible while the 4th generation was the least. The MIC and MFC of *Candida krusei* for the unswitched and all switched generations towards CHX, amphotericin B, nystatin and *Piper betle* were determined at 0.4 \(\mu\)g/\(\mu\)L, 50 \(\mu\)g/mL, 10 unit/mL and 12.5 mg/mL respectively. From the growth curve study, the unswitched and all switched generations of *Candida krusei* showed varying degree of responses towards CHX, amphotericin B and *Piper betle* treated environment.

These results suggested that *Candida krusei* is able to switching ability is a virulence factor of *Candida krusei* which affects the biological properties, adherence ability and susceptibility towards CHX, amphotericin B, nystatin and *Piper betle*. Thus, it leads to the pathogenic property in the oral cavity.
ABSTRAK

Candida krusei semakin dikenalpasti sebagai patogen selepas *Candida albicans* dan *Candida glabrata*. Sehingga kini, keupayaannya untuk mengubah fenotip masih belum diketahui. Justeru, kajian ini telah dijalankan bagi menilai keupayaan *Candida krusei* untuk mengubah fenotip seterusnya mengenalpasti kesan perubahan tersebut terhadap sifat biologi, perlekat dan kerentanan terhadap chlorhexidine (CHX), amphotericin B, nystatin, ekstrak akues *Piper betle* dan *Nigella sativa*. Untuk menggalakkan perubahan fenotip, *Candida krusei* telah dikulturkan pada agar Yis Ekstrak Pepton Dektrosa (YEPD) yang mengandungi 0.05% phloxine B. Selepas eraman selama 5 hari, unit pembentukan koloni (CFU/mL) dinilai. Koloni yang mengandungi perubahan fenotip ini dianggap sebagai generasi pertama. Koloni ini telah dikulturkan semula mengikut prosedur yang telah ditetapkan bagi pembentukan generasi kedua, ketiga dan keempat.

Candida krusei generasi pertama dan kedua dilihat mempunyai morfologi yang sama seperti *Candida krusei* yang asal. Peratus koloni yang tumbuh bagi generasi pertama dan kedua dilihat menurun kepada 46.6% dan 36.4% masing-masing. Generasi ketiga dan keempat pula didapati membentuk banyak miselia. Margin berbentuk lobat telah dilihat pada generasi ketiga manakala bentuk filamen pula dilihat pada generasi keempat. Peratus koloni yang tumbuh pada generasi ketiga menunjukkan peningkatan yang ketara sebanyak 85.7% namun penurunan mendadak telah dilihat pada generasi keempat sebanyak 70.8%. Mikrograf SEM telah menunjukkan permukaan sel bagi *Candida krusei* yang belum berubah, generasi pertama, dan kedua adalah licin dengan generasi kedua menunjukkan sifat hifa palsu yang lebih panjang berbanding generasi lain. Sebaliknya, generasi ketiga dan keempat dilihat mempunyai struktur permukaan yang kasar. Generasi keempat turut dilihat membentuk permukaan yang seolah-olah berjerawat dan berbintik-bintik. Manakala generasi ketiga pula dilihat membentuk
matriks luar sel. Keupayaan Candida krusei untuk melekat didapati berbeza pada setiap generasi. Generasi kedua menunjukkan jumlah perlekatan tertinggi sebanyak \(154.0 \pm 60.2\) x 10^2 CFU/mL terhadap butir kaca bersalut air liur manakala Candida krusei asal adalah yang terendah dengan \(5.65 \pm 0.5\) x 10^2 CFU/mL.

Mengikut kajian penyerapan cakera, darjah kerentanan terhadap CHX, amphotericin B, nystatin dan Piper betle dilihat berbeza bagi semua generasi Candida krusei. Candida krusei asal didapati menunjukkan kerentanan yang tertinggi manakala generasi kedua pula adalah yang terendah. Generasi ketiga dilihat mempunyai kerentanan yang tertinggi terhadap amphotericin B manakala Candida krusei asal dilihat mempunyai darjah kerentanan yang terendah. Kajian kerentanan terhadap nystatin menunjukkan generasi keempat mempunyai kerentanan tertinggi manakala generasi kedua adalah sebaliknya. Kajian terhadap ekstrak Piper betle menunjukkan generasi pertama mempunyai kerentanan tertinggi manakala generasi keempat adalah yang terendah. MIC dan MFC bagi Candida krusei asal dan setiap generasi terhadap CHX, amphotericin B, nystatin dan Piper betle adalah didapati pada 0.4 µg/µL, 50 µg/mL, 10 unit/mL, 12.5 mg/mL masing-masing. Kajian terhadap lengkok kehidupan Candida krusei dan setiap generasi terhadap CHX, amphotericin B dan Piper betle menunjukkan kepelbagaian tindakbalas terhadap agen anti-mikrobial.

Hasil kajian ini telah menunjukkan bahawa keupayaan Candida krusei untuk mengubah fenotip telah mempengaruhi sifat biologi, perlekatan dan kerentanan terhadap chlorhexidine (CHX), amphotericin B, nystatin, ekstrak akues Piper betle dan Nigella sativa. Justeru itu, keupayaan ini dilihat amat penting dalam memastikan kejayaannya sebagai patogen di dalam kaviti mulut.
ACKNOWLEDGEMENTS

In the name of ALLAH, the Most Gracious and the Most Merciful.

I would like to express my deepest gratitude to my admirable supervisors, Dr. Wan Himratul Aznita Wan Harun and Associate Professor Dr. Fathilah Abdul Razak, your patience and guidance are the elements that pushed me to do my best in creating this masterpiece. No words can express my gratitude for the endless contribution.

Thousands appreciation to my beloved father, Arzmi bin Mansor and mother, Safiah binti Abdul Aziz, who had sacrifice their time and money to help me to complete the dissertation without no doubt. Thank you for the guidance and invaluable advice throughout my project. It is a pleasure to have the most convenience motivation from them in order to go through all the problems due to fulfill the project. Thanks also to my beloved wife, Nurul ‘Izzah binti Zulkifli for the doa’, support, motivation and love throughout the completion of the study.

Thanks to all fellow staffs and lab assistants of Oral Biology Department, especially Mr. Mohd Anuar Zainon, Mr. Md. Rafiki Rezali, Miss Faraliza Alias for the advices due to the project. It is a thousand appreciations for making the project easier and clearer to manage. Thanks to my friends for the contribution in the project especially to Raja Ahmad Zahir Raja Halinuddin and Mohd Al-Faisal Nordin. The project will not be totally implemented without their advice and help. Thanks to all who contribute directly or indirectly for the thesis.

I would like to thank Associate Professor Dr. Md. Yusoff Musa and Mr. Roslee Halip for the guidance during my scanning electron microscope related project.
Finally, thanks to National Science Fellowship (NSF), MOSTI, FP 011/2006A, RUFS 010/2007A, UMRG 095/09 HTM, IPPP grant PS070/2009A for the sponsor during my study.
TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Prevalence of fungal infection in the oral cavity
1.2 *Candida krusei* in oral infection
1.3 Rationale of study
1.4 Hypothesis of study
1.5 Aims of study

2.0 LITERATURE REVIEW

2.1 Oral *Candida*

2.1.1 *Candida* as a component of the oral ecosystem
2.1.2 Colonization sites
2.1.3 Growth requirement and susceptibility

2.1.3.1 Influence of oral fluids
2.1.3.2 Influence of nutrients
2.1.3.3 Influence of body temperature

2.1.4 Pathogenic determinants of *Candida*

2.1.4.1 Phenotypic switching
2.1.4.2 Adherence ability

2.1.4.2.1 Dental biofilms
2.1.4.2.2 Development of dental biofilm

2.1.4.3 Cell surface hydrophobicity
2.1.4.4 Enzyme

2.2 *Candida krusei*

2.2.1 Taxonomic status
2.2.2 Biology of *Candida krusei*

2.3 Phenotypic switching ability of oral *Candida*
2.4 Management of candidal infection

2.4.1 Antimicrobial agents 20

2.4.1.1 Disinfectant

2.4.1.1.1 Chlorhexidine (CHX) 21

2.4.1.2 Chemical-based agents

2.4.1.2.1 Azoles 21

2.4.1.2.1a Fluconazole 22

2.4.1.2.1b Voriconazole 23

2.4.1.2.2 Polyenes 23

2.4.1.2.2a Amphotericin B 23

2.4.1.2.2b Nystatin 24

2.4.1.3 Plant-based agents

2.4.1.3.1 Family Piperaceae 25

2.4.1.3.2 Family Ranunculacea 28

3.0 MATERIALS AND METHODS

3.1 Research materials

3.1.1 Chemicals 31

3.1.2 Glasswares 32

3.1.3 Consumables 32

3.1.4 Media 33

3.1.5 Antifungal agents 33

3.1.6 Plants extracts 33

3.1.7 Microbial test strain 34

3.1.8 Microbial identification system 34

3.1.9 Equipments 34

3.2 Research methods
3.2.1 Research outline 36
3.2.2 Preparation of broth media
 3.2.2.1 Yeast extract potato dextrose (YEPD) broth 37
 3.2.2.2 YEPD broth supplemented with phloxine B 37
3.2.3 Preparation of agar media
 3.2.3.1 Yeast extract potato dextrose (YEPD) agar 38
 3.2.3.2 YEPD agar supplemented with phloxine B 39
 3.2.3.3 Mueller-Hinton (MH) agar 39
 3.2.3.4 CHROMagar 39
3.2.4 Preparation of Candida krusei American Type Culture Collection (ATCC) 14243 stock culture 40
 3.2.4.1 Short term storage on agar slants 40
 3.2.4.2 Long term storage in 20% glycerol 40
3.2.5 Preparation of Candida krusei switched cultures 41
3.2.6 Determination of biological characteristics of Candida krusei
 3.2.6.1 Colony morphology
 3.2.6.1.1 YEPD agar 42
 3.2.6.1.2 CHROMagar 42
 3.2.6.2 Biochemical analysis
 3.2.6.2.1 API 20 C AUX identification system 42
 3.2.6.2.2 BIOLOG YT MicroPlates 43
 3.2.6.3 Cell morphology 43
 3.2.6.4 Ultrastructural characteristic 44
 3.2.6.5 Growth curves 45
3.2.7 Determination of biological characteristics of switched \textit{Candida krusei} \hfill 45

3.2.8 The effect of switching on adherence to saliva-coated hard surface \hfill 46

\hspace{1em} 3.2.8.1 Preparation of phosphate-buffered saline (PBS) solution \hfill 46

\hspace{1em} 3.2.8.2 Collection of stimulated whole saliva (SWS) \hfill 47

\hspace{1em} 3.2.8.3 Adherence to saliva-coated hard surface \hfill 47

3.2.9 Antifungal response of \textit{Candida krusei} \hfill 48

\hspace{1em} 3.2.9.1 Preparation of aqueous plant extracts \hfill 48

\hspace{1.5em} 3.2.9.1.1 \textit{Piper betle} aqueous extract \hfill 48

\hspace{1.5em} 3.2.9.1.2 \textit{Nigella sativa} aqueous extract \hfill 48

\hspace{1em} 3.2.9.2 Susceptibility analysis \hfill 49

\hspace{1em} 3.2.9.3 Determination of the Minimal Inhibitory Concentration (MIC) \hfill 49

\hspace{1em} 3.2.9.4 Determination of the Minimal Fungicidal Concentration (MFC) \hfill 50

\hspace{1em} 3.2.9.5 Determination on the effect of CHX, amphotericin B and \textit{Piper betle} aqueous extract on the growth curve of phenotypic switched \textit{Candida krusei} \hfill 51
4.0 RESULTS

4.1 Biological characteristics of *Candida krusei*

4.1.1 Colony morphology

4.1.2 Recovery population of phenotypic switched *Candida krusei*

4.1.3 Biochemical validation of *Candida krusei*

4.1.4 Cell morphology of *Candida krusei*

4.1.5 Ultrastructural characteristic of *Candida krusei*

4.1.6 Growth curves of *Candida krusei*

4.2 Adherence capacity of *Candida krusei* to saliva-coated glass surfaces

4.3 Antifungal responses of *Candida krusei*

4.3.1 Disinfectant

4.3.1.1 Susceptibility towards CHX

4.3.2 Chemical-based agents

4.3.2.1 Susceptibility towards amphotericin B

4.3.1.2 Susceptibility towards nystatin

4.3.3 Plant-based agents

4.3.3.1 Susceptibility towards *Piper betle* aqueous extract

4.3.3.2 Susceptibility towards *Nigella sativa* aqueous extract

4.4 Growth curve analysis of unswitched and switched generations of *Candida krusei* under treated environment

4.4.1 Disinfectant

4.4.1.1 Chlorhexidine (CHX)
4.4.2 Chemical-based agent

4.4.2.1 Amphotericin B 72

4.4.3 Plant-based extract

4.4.3.1 *Piper betle* aqueous extract 74

5.0 DISCUSSION 78

6.0 CONCLUSION 86

7.0 FUTURE STUDIES 87

APPENDICES

APPENDIX 1 88

APPENDIX 2 92

APPENDIX 3 93

APPENDIX 4 94

APPENDIX 5 95

REFERENCES 96
<table>
<thead>
<tr>
<th>Figure</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The leaves of Piper betle</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Piper betle tree</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The seeds of Nigella sativa</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Schematic diagram of research methodology</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Colony morphology of the unswitched and switched Candida krusei (ATCC 14243)</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Biochemical test using API 20 AUX</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Unswitched and switched Candida krusei (ATCC 14243)</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>SEM micrographs of Candida krusei observed for the various growth generations</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>The growth curve (GC) of Candida krusei. A comparison between the unswitched and all switched generations in untreated environment</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>The adherence capacity of Candida krusei to saliva-coated glass surface</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>The susceptibility of Candida krusei in the unswitched and switched forms towards CHX</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>The susceptibility of Candida krusei in the unswitched and switched forms towards amphotericin B</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>The susceptibility of Candida krusei in unswitched and switched forms towards nystatin</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>The susceptibility of Candida krusei in unswitched and switched forms towards Piper betle aqueous extract</td>
</tr>
</tbody>
</table>
Figure 4.11 The growth curve (GC) of *Candida krusei*. A comparison between the unswitched and all switched generations in CHX treated environment.

Figure 4.12 The growth curve (GC) of *Candida krusei*. A comparison between the unswitched and all switched generations in amphotericin B treated environment.

Figure 4.13 The growth curve (GC) of *Candida krusei*. A comparison between the unswitched and all switched generations in *Piper betle* aqueous extract treated environment.

Figure 4.14 The growth curve (GC) of unswitched and switched *Candida krusei* of untreated, CHX, amphotericin B and *Piper betle* treated growth environment.
<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Compounds required for making YEPD broth</td>
</tr>
<tr>
<td>3.2</td>
<td>Compounds required for making YEPD agar</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical ingredients required for the preparation of Phosphate-Buffered Saline (PBS)</td>
</tr>
<tr>
<td>4.1</td>
<td>The characteristic of growth colonies of the unswitched and all switched generations of Candida krusei</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of phenotypic switching on the susceptibility of Candida krusei towards CHX, amphotericin B, nystatin, Piper betle and Nigella sativa aqueous extract</td>
</tr>
<tr>
<td>4.3</td>
<td>The MIC and MFC of CHX, amphotericin B, nystatin, Piper betle and Nigella sativa aqueous extract towards the unswitched and all switched generations of Candida krusei</td>
</tr>
<tr>
<td>4.4</td>
<td>The changes in generation times (GT) and specific growth rate (GR) of unswitched and all switched generations of Candida krusei when their growth were perturbed with the introduction of CHX, amphotericin B and Piper betle</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>°C</td>
<td>degree centigrade</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>ml</td>
<td>milliliter</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>ed.</td>
<td>edition</td>
</tr>
<tr>
<td>et al.</td>
<td>et alia (and others)</td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>CHX</td>
<td>chlorhexidine</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>GCF</td>
<td>gingival crevicular fluid</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered solution</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
</tbody>
</table>