
1

Chapter 1

Introduction

1.1 Background

Over the past two decades, video compression (coding) techniques have been

extensively studied to reduce the large transmission bandwidth and huge storage space

of uncompressed video data. As a result, a number of international video coding

standards (such as MPEG and H.26X series) have been established assuring

interoperability between the products of different manufactures and worldwide

spreading of video coding technology. H.264/AVC (ITU-T & ISO/IEC, 2003) is the

latest video coding standard, which significantly outperforms prior standards in terms of

video quality and coding performance. For example, compared with MPEG-2 (ITU-T &

ISO/IEC, 1994) and MPEG-4 (ISO/IEC, 1999), H.264/AVC can save 64% and 39% of

bit rates in average (Joch, Kossentini, Schwarz, Wiegand, & Sullivan, 2002). Due to the

higher coding performance and better subjective quality of the H.264/AVC standard, it

plays pivotal roles in a wide range of video applications such as digital camcorder,

multimedia phone, DVD player, digital TV broadcasting, and video conferencing.

The superior compression performance of H.264/AVC originates mainly from its

inter prediction part (i.e. motion estimation (ME)) with new features including variable

block-size (VBS), quarter-pixel accuracy, and multiple reference frames (MRF).

However, H.264 ME requires huge computational complexity and memory bandwidth.

2

Therefore, optimization of the H.264 ME at algorithm level accompanied by its

acceleration with efficient dedicated architectures is required for real-time applications.

This thesis is concerned with the H.264 ME that consists of integer motion estimation

(IME) and sub-pixel motion estimation (SME). In this thesis, we study the H.264 IME

and SME algorithms and architectures, and propose efficient low cost architectures for

them.

1.2 The Need for Video Compression

Digital videos are voluminous and contain huge amount of data. Therefore, video

compression techniques are required to reduce transmission bandwidth as well as

storage space. To explain the huge amount of data in digital video, consider a standard-

definition television (SDTV) video sequence with a resolution of 720×576 and a frame

rate of 30 frames per second (fps). If Red-Green-Blue (RGB) color space is used for

video color representation and with one byte for each component, three bytes per pixel

are required for carrying the color information. Therefore, each frame requires

720×576×3×30= 37.32 MB. As a result, in order to store one-hour video, it needs

60×60×37.32=134.35 GB storage space. For streaming of this video over a network, the

required bandwidth is 37.32×8=298.56 Mbps. It is clear that for bigger resolutions such

as high-definition television (HDTV), much higher storage capacity and bandwidth are

required. In addition, the voluminous video data increase the complexity as well as

implementation cost of the video processing systems that use uncompressed digital

video. Therefore, it is essential to compress digital video even with increasingly

available storage space and transmission bandwidth (Lee & Kalva, 2006).

3

1.3 H.264/AVC

The latest and widely accepted video coding standard, ITU-T H.264 or MPEG-4

Advanced Video Coding (AVC) that is commonly known as H.264/AVC, is the result

of the collaborative work between the ITU-T Video Coding Expert Group (VCEG) and

the ISO/IES Moving Picture Expert Group (MPEG) referred as the Joint Video Team

(JVT). The main goals of H.264 are enhanced compression efficiency, network friendly

video representation for interactive (video telephony) and non-interactive applications

(broadcast, streaming, storage, and video on demand) (Ostermann et al., 2004). MPEG-

2, the previous popular standard for digital TV systems, had been established 10 years

before H.264/AVC and was not able to satisfy the requirement of new and emerging

applications. For example, HDTV requires higher transmission bandwidth or

transmission media such as Cable Modem and xDSL offers much lower data rates than

broadcast channels, and thus improved coding performance was required to facilitate the

use of such technologies (Wiegand, Sullivan, Bjontegaard, & Luthra, 2003). In addition,

the prior video coding standards for video telecommunication such as H.261, H.263,

H.263+ were not suitable for recent and future wireless or wired networks as well as

their formatting and error robustness requirements.

The H.264/AVC standard consists of a Video Coding Layer (VCL) and a Network

Abstraction Layer (NAL) to achieve its goals. The H.264 VCL determines the source

coding approaches and algorithms, which results in higher coding performance. The

H.264 NAL formats the VCL representation of the video and provides header

information to package that data for network transport (Sullivan & Wiegand, 2005).

This thesis is concerned with the main part of the H.264 Video Coding Layer, which is

motion estimation. However, the interested readers can find the details of the H.264

Network Layer Abstraction in (Wenger, 2003) and (Stockhammer, Hannuksela, &

Wiegand, 2003) including error resilience issue.

4

As shown in Figure 1.1, the H.264/AVC video coding layer is similar to the prior

video coding standards, which is a hybrid of motion compensation and transform coding

techniques. However, it employs several new coding tools to improve its coding

performance. Motion estimation with variable block sizes, quarter-pixel accuracy and

multiple reference frames is adopted to exploit more temporal redundancy. Intra

prediction with several prediction modes is applied to remove spatial redundancy by

using neighboring samples of prior coded blocks. Furthermore, context-based adaptive

binary arithmetic coding is used in the last stage of encoder exploiting more statistical

redundancy. In-loop deblocking filter is employed to reduce blocky artifacts leading to

improvement of the perceptual quality. The detailed descriptions about the new coding

tools in H.264/AVC can be found in some excellent papers (Ostermann et al., 2004;

Sullivan & Wiegand, 2005; Wiegand, Sullivan et al., 2003).

By using these new coding tools, H.264/AVC can outperform prior video coding

standards in terms of coding performance and video quality. Table 1.1 shows the

Transform Quantization

Inverse
Transform

Stream
Buffer

Motion
Estimation

Inverse
Quantization

Motion
Compensation

Entropy
Coding

Control

+
-

+ +

Motion Vectors

Storage

Transmit

Frame Buffer

Split into MBs

(16 16 pixels)

Figure ‎1.1 : Typical block diagram of a block-based hybrid video encoder.

5

average bit rate saving of H.264/AVC main profile (MP) compared with MPEG-2 MP

@ main level (ML), H.263 high latency profile (HLP) and MPEG-4 advanced simple

profile (ASP) standards using several video sequences where H.264 considerably

outperforms other coders (Schafer, Wiegand, & Schwartz, 2003). That makes

H.264/AVC the best standard for video compression, especially in bandwidth and

storage limited applications.

Although H.264/AVC has the best performances compared with previous successful

standards, its gain in coding performance comes at the price of huge computational

complexity. For example, the profiling at instruction level shows that H.264/AVC is

about 6 times more complex than MPEG-4 simple profile (SP) at the encoder and 2.2

times more complex at the decoder (Lian, Tseng, & Chen, 2006). The higher

computational complexity of H.264/AVC increases the difficulty of its implementation,

particularly for encoders that require much more computation than decoders. With the

up-to-date technique, the hardwired encoder is still essential for real-time applications,

especially when facing HDTV specifications. For example, the hardware encoder design

of Huang et al. (2005) achieved 1200 times speed-up in comparison with Pentium-IV 3

GHz CPU (Liu et al., 2009).

Table ‎1.1 : Average bit rate saving of H.264 relative to prior standards (Schafer et al.,

2003).

Coder MPEG-4 ASP H.263 HLP MPEG-2

H.264/AVC 38.62% 48.80% 64.46%

MPEG-4 ASP - 16.65% 42.95%

H.263 HLP - - 30.61%

6

1.4 The Importance and Challenges of Motion Estimation

Design for H.264/AVC

Motion estimation is the heart of all video coding standards such as MPEG and

H.26X series. Over the past two decades, hundreds of studies have been proposed to

design efficient motion estimation algorithms and VLSI architectures for real-time

applications. In the latest video coding standard, H.264/AVC, motion estimation is

characterized with three new tools including VBS, quarter-pixel accurate motion vector

(MV), and MRF. These tools significantly improve the coding performance of

H.264/AVC. However, they require huge computational complexity and memory

bandwidth. Therefore, there is a need for novel and efficient designs that support new

features of motion estimation in H.264/AVC.

C.-Y. Chen and Fang et al. (2006) used software profiling to demonstrate the huge

computational complexity and memory access of the H.264 encoder and to find its

critical components. Their instruction profiling of the H.264/AVC baseline encoder

shows that for SDTV (720 × 480)/HDTV720p (1280 × 720) video with four/one

reference frames, 30 fps, and a search range of [-64, +63] and [-32, +31] in horizontal

and vertical directions, the computational complexity is 2,470/3,600 Giga-Instructions

Per Second (GIPS). As shown in Figure 1.2, the main part of the computational

complexity (i.e. 97.32%) is occupied by motion estimation part. The huge

computational complexity of motion estimation is much more than the capability of

current general-purpose processors. Therefore, acceleration of motion estimation in

H.264/AVC by dedicated hardware is required for real-time applications.

In addition, based on the profiling results, the H.264/AVC ME requires a very large

memory access so that for SDTV (720 × 480)/HDTV720p (1280 × 720), it needs

3,800/5,570 Giga-Bytes per second (GBPS), respectively. Consequently, there is a need

7

for effective techniques to lower the memory access requirement of motion estimation

for real-time applications.

In summary, the profiling results reveal that the huge computational complexity and

the memory access requirement of the H.264/AVC ME are the main bottleneck of video

encoding systems. Therefore, design of efficient hardware architectures for integer and

sub-pixel motion estimation is of vital importance for real-time applications.

Figure ‎1.2 : Runtime percentage of functional blocks in H.264/AVC baseline encoder (C.-

Y. Chen, Fang et al., 2006).

1.5 Research Objective

The main objective of our research is to design low cost hardware architectures for

IME and SME in H.264/AVC. Due to different characteristics of IME and SME,

different but appropriate design considerations and techniques should be used for each

part at algorithm and architecture levels.

At algorithm level, we investigate algorithms that have good coding performance and

are suitable for hardware implementations. In addition, we try to optimize their

Intra prediction

0.54%

Interpolation

8.08%

Sub-Pixel ME

37.21%

Deblocking

0.03%

Exp-Golomb

VLC+CAVLC

0.12%

DCT+Q+ID+IDCT

T+M

0.45%
Mode Decision

1.45%

Integer ME

52.03%

8

computational complexity and memory bandwidth while maintaining their coding

performances.

As for architecture level, investigation of new hardware architectures and enhancing

of state-of-the-art designs are taken into consideration. These hardware architectures

should have regular and simple structure, good performance in terms of speed, hardware

cost, hardware utilization, memory bandwidth, and processing ability.

1.6 Research Scope and Applications

The scope of this thesis is to design the H.264/AVC IME and SME architectures for

real-time encoding of medium toward large resolutions such as HDTV. Since these

architectures target area-constrained applications (i.e. portable multimedia devices),

their area costs, pin count, and power consumptions should be small. Regarding the

IME design, since the heart of IME architectures is processing element array, our

concern is to design a high performance processing element array featured with regular

structure, efficient memory bandwidth, and small area cost. As for SME design, the

main concern is to reduce huge computational load and memory access requirement of

interpolation process, and to design an efficient SME hardware accelerator with small

hardware cost and memory bandwidth.

For implementation of IME and SME architectures, there are different design

alternatives that can be mainly classified into two categories including processor-based

designs and application specific integrated circuit (ASIC) designs. Processor-based

designs show better programmability and lower performance whereas ASIC designs

provide the best performance with little flexibility (Y.-L. Lin, 2006). Between these two

categories, there are other options such as digital signal processors, multimedia

processors, and Field Programmable Gate Arrays (FPGAs), which provide moderate

performance and flexibility. Among all of design alternatives, ASIC approach is the

9

most suitable choice for our research due to its best performance. In addition, most of

the reported designs in literature are based on ASIC design so that we can use them as

reference for evaluating the performance of our designs.

1.7 Thesis Organization

Chapter 2 describes the H.264 IME, its research methodology and common design

metrics for evaluating of motion estimation designs. In addition, state-of-the-art IME

architectures are reviewed and evaluated based on introduced design metrics. Chapter 3

analyzes the SME features in the H.264 standard and provides a thorough survey of

SME algorithms and architectures. In Chapter 4, the proposed bit-serial architectures for

the H.264 IME are presented in detail. Chapter 5 describes our SME algorithm and its

hardware architecture. Finally, Chapter 6 draws a conclusion and presents future work

and directions.

10

Chapter 2

Review of Integer Motion Estimation Designs

2.1 Introduction

Motion estimation with integer pixel accuracy, i.e. referred as motion estimation

(ME) in this chapter, is used as a powerful technique in video coding systems to remove

temporal redundancy between successive frames, which leads to high level of coding

performance in such systems. Motion estimation is a computationally intensive process,

which typically consumes more than 50% of computation of encoders. Among different

motion estimation algorithms, full search (i.e., exhaustive search) block matching

motion estimation algorithm is widely used due to its better coding performance and

regularity compared with fast search algorithms such as four-step search (Po & Ma,

1996) and diamond search (Tham, Ranganath, Ranganath, & Kassim, 1998).

In this algorithm, each luminance frame is divided to macroblocks (MBs) of size

N×N (i.e. 16×16). Then, each MB at the current frame is matched against a

corresponding MB at the reference frame within a search range of [–w, w-1], as

depicted in Figure 2.1.

The most common matching criteria are Sum of Absolute Differences (SAD) and

Sum of Square Differences (SSD), as denoted in equations (2.1) and (2.2), respectively.

11

Figure ‎2.1 : Block matching motion estimation algorithm.

In these equations, (i, j) is the current MV, C(m, n) the current MB, and R(m+i, n+j)

refers to the pixel values in the reference MB. After checking all search locations, the

search location with the smallest SAD is selected as the MV of the current MB.

Reference

Frame

Current

Frame

Motion

Vector

Search Area

Current

Macroblock

N

N

12

Although SSD can lead to a better prediction result, SAD is commonly used in video

coding systems as matching criterion owing to its good accuracy and lower

computational complexity compared to SSD (S.-H. Wang, 2007).

When there is more than one object in an MB with different moving directions, fixed

block sized motion estimation decreases the coding performance. Therefore, it is more

efficient to use variable block-size motion estimation to find the best match for each

object. For this reason, in H.264/AVC motion estimation with variable block-size (i.e.

16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 block sizes, as shown in Figure 2.2) is

adapted to improve video coding performance. In addition, after conducting motion

estimation for all block sizes, inter-mode decision is carried out for determining the

optimal coding mode that improves the coding performance. Besides, H.264/AVC

supports motion estimation with MRF, i.e. up to five prior coded frames can be used as

reference in inter prediction, which can enhance the performance of H.264/AVC.

Although variable block-size motion estimation and MRF contribute to the rate-

distortion (RD) performance of the H.264 encoder, they increase the computation

complexity, memory bandwidth, and difficulty of motion estimator implementation.

0 1

2 3

0 1

0

1

0

16 16 16 8 8 16 8 8

0 1

2 3

0 1

0

1

0

8 8 8 4 4 8 4 4

Macroblock types

8 8 types

Figure ‎2.2 : Variable block sizes in H.264/AVC.

13

2.2 Research Methodology and Design Metrics Assessment

As mentioned in previous chapter design of motion estimation for H.264 consists of

two parts i.e. algorithm and architecture. In this thesis, we use H.264 reference software

for implementing and evaluation of our algorithms where we compare them with the

full search algorithm in terms of peak signal to noise ratio (PSNR) which is explained in

the following paragraphs. As for architectures, we use Verilog-HDL for implementation

of our designs and synthesize them in Silterra 0.18 μm technology using Synopsys

Design Compiler. Now we discuss the design metrics for assessment of motion

estimation designs. Generally, there are a number of important design metrics for

assessment of motion estimation designs including the quality of algorithm, silicon area,

operating frequency, throughput, memory bandwidth, and hardware utilization (C.-Y.

Chen, Chien et al., 2006; Kuhn, 1999), which are described below.

 Algorithm quality: This metric is used for evaluation the performance of fast

search motion estimation algorithm against full search algorithm. Generally, a fast

search algorithm has a lower computational cost than the full search algorithm.

However, video quality degradation and irregularity are the penalties. The most

common metric for evaluating the quality of a fast algorithm is peak signal to

noise ratio (PSNR), whose formula is as follows:

where the Mean Square Error (MSE) of the current frame (IC) and its

reconstructed frame (IR), which consist of H×W pixels, is calculated from:

14

In equation (2.4), IC(i, j) and IR(i, j) are the pixel values in current and

reconstructed frames, respectively.

To evaluate the video quality of a fast algorithm, the PSNR difference between

this and the full search algorithm is defined as:

 Silicon area/Hardware cost: Generally, the size of a VLSI chip is defined in

terms of square millimeter/micrometer, which will be available after completing

the chip design. However, the equivalent gate count of a VLSI design (in terms of

2-input NAND gate) is another widely accepted criterion for estimating the

hardware cost at architecture level. Since most of the motion estimation designs in

the literature use the gate counts as the measuring criterion, we utilize the gate

counts for the evaluating hardware cost in this thesis.

 Operating frequency: The required operating frequency is dominated by the

degree of parallelism in hardware. The smaller the degree of parallelism is, the

higher the required frequency is (C.-Y. Chen, Chien et al., 2006). Generally, a

smaller degree of parallelism results in lower hardware cost because in this case

reduced number of parallel architectures are used. In addition, since dynamic

power is proportional to the operating frequency, the designer can compromise

between power, area cost and the required frequency by selecting an optimized

degree of parallelism.

 Throughput: The throughput is another important metric for the performance of

motion estimation designs, and it shows the processing ability of motion

estimation architectures. This metric can be defined as the number of processed

macroblocks per second (MB/s) by an architecture. Note that the throughput

depends on other design parameters such as search range and number of reference

15

frames. To have a fair comparison between different motion estimation designs in

this thesis, we measure the throughput under search range of [-16, 15], one

reference frame, and for Common Intermediate Format (CIF) video resolution.

 Memory bandwidth: Memory bandwidth is defined as the number of bits, which

hardware has to access from memory for each macroblock (C.-Y. Chen, Chien et

al., 2006). This parameter influences the traffic of system bus and its power

consumption. Memory bandwidth is influenced by data reuse technique. For

providing a fair comparison, the memory bandwidth of motion estimation designs

is defined for CIF video @ 30 fps, one reference frame, and a search range of [-

16, 15] specifications.

 Hardware utilization: Besides the above-mentioned design metrics, hardware

utilization is another metrics that may be used for motion estimation hardware

architectures, which refers to the percentage of computing cycles/operating cycles

for an MB. The operating cycles include three parts i.e. latency, computing cycles,

and bubble cycles (C.-Y. Chen, Chien et al., 2006). Computation cycles are the

required number of cycles for calculating one SAD. The higher the hardware

utilization is, the better the hardware efficiency is.

2.3 Review of Motion Estimation Designs

Block matching motion estimation has played an important role in improving of

coding performance in the block based video coding standards including MPEG and

H.26X series. However, it is computationally most demanding part of video encoders

and thus its acceleration with efficient algorithms and hardware architecture has been

under consideration. Consequently, over the past two decades, many video coding

scientists have extensively studied motion estimation to find the best efficient ways for

its implementation at algorithm and architecture levels. Owing to existence of

16

comprehensive and thorough surveys of block matching motion estimation algorithms

and/or architectures in the literature (C.-Y. Chen, Chien et al., 2006; Dufaux &

Moscheni, 1995; Huang, Chen, Tsai, Shen, & Chen, 2006; Pirsch, Demassieux, &

Gehrke, 1995; Pirsch & Stolberg, 1998; Tseng et al., 2005), it is not essential to provide

an in depth and complete survey in this thesis. Instead, we quickly explore the design

space of motion estimation and review six representative motion estimation designs,

which will be used later as reference for comparison to our designs.

2.3.1 Exploration of Design Space

Design of motion estimation consists of algorithm and architecture parts. Motion

estimation algorithms can be divided into two main categories, namely lossless and

lossy algorithms. The full search algorithm belongs to the first category and provides

the best video quality whereas fast algorithms belong to the second category having

lower video quality and computational complexity compared with the full search

algorithm. For the hardware implementation, the full search algorithm is much more

suitable than a fast search algorithm due to its regularity, lack of data dependencies and

optimality (Li & Leong, 2008). In addition, the hardware design of fast search

algorithms includes the following challenges: unpredictable data flow, irregular memory

access, difficult mapping to systolic arrays, low hardware utilization, and sequential

procedures with data dependence that cannot be parallelized (Huang, Chen et al., 2006).

Furthermore, the silicon area of architectures that are based on fast algorithms should be

significantly smaller than that of full search algorithm for cost efficiency (Tseng et al.,

2005). Because of the above-mentioned reasons, the full search algorithm is often

adopted in motion estimation architectures.

As for hardware architectures, the main design challenges of motion estimation can

be considered as meeting the huge computational complexity of motion estimation in

17

real-time applications with a reasonable silicon area, high hardware utilization,

minimized memory bandwidth, and low I/O bit width. There are different kinds of

motion estimation hardware architectures in the literature such as one-dimensional (1-

D), two-dimensional (2-D) systolic/semi-systolic arrays and adder tree architecture.

Generally, these architectures are composed of the same parts called processing

elements (PEs) where each PE computes the absolute difference between one pixel of

the current block and one pixel of the search area. ‘PE array is the trend of motion

estimation architectures. Tradeoffs can be made between area (number of PEs) and

throughput (processing capability), SAD latency (total cycles to compute a SAD) and

memory bit width/bandwidth (serial/parallel loading), PE utilization and data

alignment circuits (shift registers/memory with circular addressing), and bus

bandwidth. The designers have to carefully select what can be sacrificed and what must

be insisted on for target applications’(Tseng et al., 2005).

2.3.2 State-of-the-Art Motion Estimation Architectures

Now we review six representative hardware architectures from 2004 to 2009 that

belong to the most frequently cited works by the H.264 motion estimation designs (C.-

Y. Chen, Chien et al., 2006; J. Kim & Park, 2009; Li & Leong, 2008; Lopez, Callico,

Tobajas, Lopez, & Sarmiento, 2008; Ou, Le, & Hwang, 2005; Yap & McCanny, 2004).

 Work of Yap and MaCcany (2004): Yap and MaCcany proposed a 1-D systolic

array architecture, as shown in Figure 2.3. It consists of 16 PEs and similar to

conventional 1-D architecture (K. M. Yang, Sun, & Wu, 1989). Reference pixels

are broadcasted to all PEs and right reference pixel for each PE is selected by

control signal. Propagating register are used for propagating current pixel and the

SAD of 4×4 blocks are stored in the PEs and are then reused for producing of

18

bigger block sizes. Due to small hardware cost, this architecture is suitable for

area-constrained applications such as portable multimedia devices.

Figure ‎2.3 : 1-D Architecture of Yap and MaCcany.

Work of Uo et al. (2005): An efficient architecture for the H.264 motion

estimation was implemented by Ou et al. This architecture consists of 16 SAD

modules for 16 4×4 blocks and each module has four 1-D PE arrays. Figure 2.4

shows the structures of the SAD module and 1-D PE array where each 1-D PE

array includes four PEs. As seen in this figure, each 1-D PE array includes four PEs

and therefore there are 256 PEs in the architecture. The reference pixels are

broadcasted into PEs and current pixels are propagating with propagation registers

in a similar way to the work of Yap and MaCcany. However, because of using 256

PEs, the processing ability as well as the hardware cost of this architecture is much

higher than the design of Yap and MaCcany.

19

Figure ‎2.4 : The basic structure of the PE array in the work of Ou. et al. (a) structure of

the PE array for the module i (b) structure of the 1-D array in the PE array.

 Work of C.-Y. Chen et al. (2006): C.-Y. Chen et al. proposed a 2-D PE array

along with propagation registers and one 2-D adder tree, as shown in Figure 2.5.

Propagation registers not only store the reference pixels but also enable data

reusing by reconfiguration technique, which improve hardware utilization and

memory bandwidth. The proposed 2-D adder tree consists of 16 2-D adder tree for

generating 16 SADs of the smallest blocks, which are reused for calculating the

SAD of bigger blocks.

8

8

8

8

32
8

8

8

8

32

D
D

0 31

1 11 1

y y

(a)

(b)

20

Figure ‎2.5 : C.-Y. Chen et al. architecture.

 Work of Li and Leong (2008): A low cost most significant bit (MSB) first bit-

serial architecture VBS motion estimation was proposed by Li and Leong, as

shown in Figure 2.6. This architecture consists of 16 4×4 SAD adder trees for

computing the SADs of all 4×4 blocks and a SAD merger for producing the SAD

of other bigger blocks. Due to the nature of MSB-first arithmetic, the authors

employ the SAD early termination technique that enhances the average hardware

performance. However, because of serial operations, the processing capability of

the proposed architecture is not sufficient for medium or large resolutions.

21

Figure ‎2.6 : Top level architecture of Li and Leong design.

 Work of Lopez et al. (2008): Lopez et al. contributed a new architectural

template based on 1-D motion estimation arrays, as shown in Figure 2.7. The

proposed template allows different allocation alternatives for the computational

resources within motion estimation architectures. Their architecture consists of

four independents groups with four PEs each that allows different design tradeoffs

in terms of area cost and memory bandwidth.

22

Figure ‎2.7 : The architectural template of Lopez et al.

 Work of Kim and Park (2009): A 1-D architecture was introduced by Kim and

Park, as shown in Figure 2.8. This architecture has a similar structure to that of the

conventional 1-D architecture with 16 PEs. The main idea in the architecture of

Kim and Park is the scanning order of search candidates. While the raster scan is

often adopted in motion estimation designs (Yap & McCanny, 2004), Kim and

Park propose a new scan order that calculates the SAD values on “as-early-as-

possible” basis, which means the new scan order makes the SAD values to be

reused as early as possible. As a result, the number of required register for storing

the SAD values is decreased and therefore the silicon area is saved.

23

Table 2.1 summarizes the design metrics of the reviewed state-of-the-art motion

estimation architectures for CIF video @ 30 fps, one reference frame, and a search

range of [-16, 15] specifications. In Chapter 4, we will use this table as reference for

evaluation and comparison of the performance of our designs relative to the surveyed

architectures.

PE0
PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

Reference Pixels

Current Pixels

Figure ‎2.8 : Architecture of Kim and Park.

24

Table ‎2.1 : Design metrics evaluation of the reviewed motion estimation designs.

1
 Not available

2 Worse case
3 “(4, 4) arch”;
4 “(16, 1) arch”;
5 “(4, 4) arch”;
6 “(16, 1) arch”;

Architecture Design Metrics

Yap and MaCcany (2004) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 61

Operating frequency (MHz) 294

Throughput (MB/s) 17,944

Memory bandwidth (Kbits/MB) 4,194

Hardware utilization (%) 100

Ou et al. (2005) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 597

Operating frequency (MHz) 200

Throughput (MB/s) 195,312

Memory bandwidth (Kbits/MB) N/A
1

Hardware utilization (%) 100

C.-Y Chen et al. (2006) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 88.6

Operating frequency (MHz) 110.8

Throughput (MB/s) 106,250

Memory bandwidth (Kbits/MB) 139
2

Hardware utilization (%) 100

Li and Leong (2008) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 55

Operating frequency (MHz) 420

Throughput (MB/s) 22,786

Memory bandwidth (Kbits/MB) 4718

Hardware utilization (%) N/A

Lopez et al. (2008) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 33.41
3
/21.3

4

Operating frequency (MHz) 100

Throughput (MB/s) 5,910

Memory bandwidth (Kbits/MB) 541
5
/2,166

6

Hardware utilization (%) 100

Lim and Park (2009) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 39.2

Operating frequency (MHz) 416

Throughput (MB/s) 25,390

Memory bandwidth (Kbits/MB) 4,194

Hardware utilization (%) 100

25

2.4 Summary

This chapter briefly explained the H.264 motion estimation as well as its block

matching criteria. In addition, we introduced the design metrics for evaluation of ME

designs including algorithm quality, silicon area, operating frequency, throughput,

memory bandwidth, and hardware utilization. Besides, we explored the design space of

motion estimation and reviewed six representative motion estimation architectures.

Finally, we concluded this chapter by tabulating the performance of the surveyed

motion estimation designs based on introduced design metrics, which will be used later

as reference works for the evaluation of our designs.

26

Chapter 3

A Survey of Algorithms and Architectures for

Sub-Pixel Motion Estimation in H.264/AVC

3.1 Introduction

Video coding standards make possible storage and transmission of high volume raw

digital video data in limited storage and transmission bandwidth environments. The

latest block based video coding standard, H.264, provides much better compression

efficiency and subjective video quality compared with all the previous standards such as

MPEG-2, H.263, and MPEG-4. For instance, compared with MPEG-4, H.263, and

MPEG-2, H.264 can save 39%, 49%, and 64% of bit rate in average, respectively (Joch

et al., 2002).

The higher compression performance and subjective quality in H.264/AVC are

achieved by using new functionalities such as motion estimation with variable block-

size and quarter-pixel accuracy, multiple reference frames (Wiegand, Zhang, & Girod,

1999), Lagrangian mode decision (Sullivan & Wiegand, 1998; Wiegand, Schwarz, Joch,

Kossentini, & Sullivan, 2003), advanced entropy coding (Marpe, Schwarz, & Wiegand,

2003), and so on.

The heart of the H.264/AVC encoder is motion estimation that is used for removing

of temporal redundancy in a sequence of images. In H.264/AVC, ME is conducted in

two stages. In the first stage, integer motion estimation with different block sizes

(16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4) is performed and up to 41 integer

motion vectors (IMVs) of all blocks and sub-blocks are determined whereas up to 5

27

reference frames can be searched. In the second stage, SME is started which is usually

conducted in two steps, as shown in Figure 3.1. In the first step, half-pixel refinement is

performed by searching eight half-pixel positions around the best integer MV. Then, the

quarter-pixel refinement is carried out in the same manner around the best half-pixel

position. Finally, mode selection is conducted.

The H.264/AVC SME typically improves coding efficiency between 2-6 dB PSNR

(Yi-Hau Chen, Chen, Chien, Huang, & Chen 2008). However, due to the use of VBS,

MRF and interpolation scheme for producing sub-pixel values, two sub-pixel search

steps and matching process, the computational budget and the memory access

requirement of the quarter-pixel accurate ME are highly intensive. Therefore, not only

efficient and fast algorithms are demanded to reduce the huge computation and memory

access bandwidth of the H.264 SME but also dedicated hardware architectures are

required to accelerate the SME process for real-time applications.

(-1, -1) (0, -1)

(0, 1)

(-1, 1)

(-1, 0)

(1, -1)

(1, 0)

(1, 1)

Integer pixel Half-pixel

Quarter-pixel

Figure ‎3.1 : SME refinements in H.264/AVC.

28

There are a few effective surveys on algorithms and architectures for video

compression techniques that have already been published (C.-Y. Chen, Chien et al.,

2006; Dufaux & Moscheni, 1995; Huang, Chen et al., 2006; Pirsch et al., 1995; Pirsch

& Stolberg, 1998; Tseng et al., 2005). These surveys mainly focus on former standards

such as MPEG-2 and MPEG-4 and they do not cover the new functionalities introduced

later in H.264 such as SME with VBS, MRF, Lagrangian mode decision, and so forth.

Motivated by the above issue, we try to provide a comprehensive survey about the most

significant SME algorithms and architectures and address the SME design challenges

and strategies at algorithmic and architectural levels.

The rest of this chapter is organized as follows. Section 3.2 analyzes the H.264 SME

and shows the impact of its features on coding performance. Section 3.3 investigates the

design space of SME algorithms reviewing recent approaches and the concepts behind

them in the state-of-the-art SME algorithms. Section 3.4 explores the design challenges

and choices of SME architectures and surveys the advanced SME architectures. In

addition, the design metrics for evaluation of SME designs are reviewed and the

evaluation of the reviewed SME architecture is provided. Finally, Section 3.5 provides a

summary of this chapter.

3.2 Analysis of the H.264 SME

Design of a new and an efficient SME algorithm or hardware architecture relies on a

careful analysis and an in-depth understanding of the SME features and characteristics.

A thorough understanding of the SME features is essential for providing an insight into

the design parameters (such as performance and subjective quality) and how to make an

optimal tradeoff between them. In this section, we evaluate the performance of the

H.264 SME algorithm and investigate the effect of its features on coding performance

through some experiments.

29

Different technical features are used in the H.264 SME such as VBS, quarter-pixel

resolution, and MRF, which improve the coding performance of the H.264 encoder at

the price of increased computation and memory bandwidth. To evaluate the impact of

different SME features on coding performance, we do several experiments. We use a set

of tests consisting of several CIF and quarter CIF (QCIF) image sequences with the

following conditions:

 Search range is 16.

 R-D optimization is on.

 The quantization parameter is 28.

 Entropy coding method is Context-based Adaptive Variable Length Coding

(CAVLC).

 Frequency for encoded bit stream is 30.

 Number of coded pictures is 300 for all sequences and the H.264 reference

software ("Joint Video Team Reference Software version 11," 2007) is used for

experiments.

Tables 3.1-3.4 show gain in performance respecting to the reference conditions when

extra features in the encoder are used for QCIF, CIF, 4CIF and HD videos, as described

below.

(a) Integer motion estimation (IME) with 1 reference frame, SAD as distortion

criteria, and only 16×16 blocks (i.e. reference conditions).

(b) Increasing motion vector accuracy to quarter-pixel.

(c) Allowing all VBS except sizes below 8×8 block.

(d) Allowing all VBS except 4×4 blocks.

(e) Using all VBS.

(f) Increasing number of reference frames to two.

(g) Using three reference frames.

30

(h) Using five reference frames.

(i) Changing the distortion criterion (i.e. replacing the SAD with the Sum of

Absolute Transformed Differences (SATD)).

Table ‎3.1 : Effectiveness of the H.264 SME features on coding performances in QCIF

videos.

Case

Container Foreman News

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB)

(a) 0 0 0 0 0 0

(b) -35.20 1.654 -37.54 2.009 -20.39 1.339

(c) -41.93 2.043 -47.51 2.788 -28.54 2.014

(d) -42.88 2.106 -48.54 2.946 31.00 2.258

(e) -43.20 2.113 -48.78 2.970 -31.23 2.283

(f) -43.31 2.132 -49.92 3.188 -31.32 2.302

(g) -45.96 2.276 -49.78 3.239 -31.62 2.324

(h) -46.22 2.311 -50.75 3.334 -31.74 2.341

(i) -46.76 2.355 -51.01 3.385 -32.41 2.422

Table ‎3.2 : Impact of the H.264 SME features on coding performances in CIF videos.

Case

Flower Mobile Mother-daughter

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB)

(a) 0 0 0 0 0 0

(b) -47.27 2.523 -65.30 3.503 -39.69 1.958

(c) -56.72 3.303 -69.19 3.920 -44.99 2.317

(d) -58.20 3.479 -70.06 4.038 -45.73 2.381

(e) -58.21 3.484 -69.99 4.043 -45.78 2.386

(f) -59.04 3.610 -73.86 4.657 -46.42 2.449

(g) -60.00 3.724 -74.84 4.910 -46.55 2.463

(h) -60.87 3.845 -75.47 5.113 -46.96 2.498

(i) -61.45 3.927 -76.39 5.229 -47.83 2.569

31

Table ‎3.3 : Effectiveness of the H.264 SME features on coding performance in 4CIF

videos.

Case

City Crew Soccer

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB)

(a) 0 0 0 0 0 0

(b) -57.74 3.703 -18.01 1.133 -36.39 1.606

(c) -62.62 4.266 -25.96 1.770 -41.54 1.900

(d) -63.24 4.355 -26.59 1.829 -42.31 1.949

(e) -63.29 4.356 -26.55 1.827 -42.38 1.955

(f) -65.37 4.832 -30.28 2.170 -42.90 1.998

(g) -65.19 4.799 -30.89 2.235 -43.33 2.029

(h) -65.59 4.880 -31.81 2.328 -43.83 2.061

(i) -65.56 4.933 -32.70 2.438 -44.05 2.082

Table ‎3.4 : Impact of the H.264 features on coding performances in HD1080 videos.

Case

Blue_sky Rush_hour Station

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB)

(a) 0 0 0 0 0 0

(b) -18.43 0.904 -11.72 0.340 -36.28 1.385

(c) -23.38 1.207 -20.33 0.623 -40.71 1.636

(d) -24.20 1.231 -20.65 0.636 -40.52 1.622

(e) -24.31 1.239 -20.60 0.634 -40.74 1.642

(f) -23.11 1.176 -23.53 0.743 -39.50 1.572

(g) -23.23 1.182 -23.96 0.762 -39.29 1.565

(h) -23.56 1.201 -25.45 0.819 -40.08 1.625

(i) -23.84 1.223 -25.20 0.808 -37.87 1.500

In Tables 3.1-3.4, the average bit rate difference percentage (ΔBR(%)) and PSNR

difference in terms of dB (ΔPSNR(dB)) between two cases are calculated (Bjntegaard,

2001), where case (a) is considered as the reference for other cases (i.e. case (b) to case

32

(i)). From the simulation results, we can see that when a new feature is added, better

performance is achieved at the cost of extra computation, while the gain in performance

is not equal for all video sequences and depends on video contents. From the simulation

results, following observations can be made.

Quarter-pixel motion estimation provides considerable improvement over integer

motion estimation in terms of bit rate saving and video quality.

As for VBS, the more varied the block sizes are, the better coding efficiency is.

However, as seen in Tables 3.1 and 3.2, elimination of the 4×4 block will have

negligible effect on coding performance whereas it leads to a lot of computation

reduction. From the hardware point of view, it can result in many clock cycles reduction

in the SME process. By using different VBS, a good tradeoff between the video quality

and the required clock cycles can be achieved.

On the subject of MRF motion estimation, use of two reference frames usually brings

a sensible coding gain compared with one reference frame. However, increasing the

number of reference frames is not always advantageous. As shown in Tables 3.1-3.4

3.2, while the number of reference frames is increased to three or five, marginal coding

performance improvement is achieved. However, the computational complexity and

memory bandwidth are proportional to the number of searched reference frames. As a

useful key point for designers, it is worth to mention that more than 80% of selected

best reference frames is either one of the first two nearest reference frames (Huang,

Hsieh, Chien, Ma, & Chen, 2006).

Regarding distortion cost, SATD has slightly higher video quality than SAD at the

cost of increased computation. However, from the hardware point of view, SATD

requires a higher hardware cost than SAD.

33

In summary, the SME hardware/software designers can make a good tradeoff

between coding performance and computational complexity by using different SME

functionalities and considering aforementioned observations.

3.3 Investigation of Algorithms

This section investigates the design space of SME algorithms and reviews the design

challenges of SME algorithms and possible choices to cope with them. In addition, it

surveys the state-of-the-art of SME algorithms.

To design a new and an efficient algorithm, designers should take into consideration

several design issues. The new algorithm should have lower computational complexity

and memory access compared with the H.264 SME. In addition, it should lead to similar

coding performance compared to the H.264 SME algorithm. Moreover, it should be a

hardware friendly algorithm for hardwired applications. This issue will be discussed in

the next section. The designers should carefully consider all of the functions in SME

algorithm and the impact of each function on the coding performance and computational

complexity to identify the main bottlenecks and possible solutions. Although the

proposed analysis in the previous section covers some of aforementioned issues, the

details of SME bottlenecks and solutions are still not given, which will be discussed in

the following paragraphs.

The VBS feature is one of the main contributors to the computation and memory

bandwidth. Because in the H.264 SME each block has its own motion vector, and

therefore it should process each block separately with multiple reference frames, which

increases the computational complexity, memory bandwidth, and processing time. A

simple but effective way for lowering computation, memory access and processing time

is to reduce the number of block sizes before or during SME stage. For example,

removing all block modes of size below 8×8 leads to 42.9% reduction in computation

34

complexity at price of small quality drop (Song et al., 2007). However, this technique is

not suitable for low or medium frame size and results in more video quality degradation.

In other studies (Abdelazim, Yang, & Grecos, 2009; Su et al., 2006), different mode

filtering methods are introduced that select only some of the best modes for SME

refinement. As a result, a lot of computation, memory access, and processing time are

saved at the price of small video quality drop.

Interpolation is a computationally intensive process in SME, which requires a lot of

memory access as well as computation to produce half- and quarter-pixels. Matching

error surface function can provide a good way for reducing computation and memory

bandwidth of the interpolation process. ‘It is generally believed that the fast ME

algorithm works best if the error surface inside the search window is unimodal. As

shown in Figure 3.2, the error surface of the integer pixel ME is not unimodal due to

the large search window and complexity of video content. Therefore, the IME search

would easily be trapped into a local minimum. On the other hand, since the sub-pixels

are generated from the interpolation of integer pixels, the correlation inside a sub-pixel

search window is much higher than that of the integer pixel search window. Thus, the

unimodal error surface will be valid in most cases of the sub-pixel. As a result, the

matching error decreases monotonically as the search point moves closer to the global

minimum’ (Y.-J. Wang, Cheng, & Chang, 2007).

Under unimodality assumption of error surface at sub-pixel resolution, the matching

costs at sub-pixel precision can be calculated. Accordingly, the interpolation process is

avoided and thus the computation and memory requirement are considerably saved.

Several models for error surface function have been developed with different levels of

accuracies and complexities. For instance, Suh and Jeong (2004) proposed five

mathematical models of error surface with distinct performances. Among their models,

the first and the second models are based on an inverse matrix solution that have better

35

coding performances, and are more suitable for hardware implementations. However,

the above-motioned work only supports half-pixel accuracy. In a later study (Hill,

Chiew, Bull, & Canagarajah, 2006), an algorithm has been proposed to support the

quarter-pixel precision. It shows that the unimodal assumption does not necessarily

work for all sub-pixels resolution. That is why the resulting performance of quarter-

pixel interpolation free algorithm is less than the full search SME. To compensate the

quality drop, the authors have introduced the “complete-system model,” which provides

near full search SME performance at the price of an increased complexity due to use of

interpolation. However, this model is not a hardware friendly algorithm.

Figure ‎3.2 : Error surface of (a) integer motion estimation (search range: 32) (b) sub-pixel

motion estimation with 1/8 pixel accuracy (Y.-J. Wang et al., 2007).

Another way for reducing the computation and memory requirement of the

interpolation process is to use an interpolation filter with reduced complexity. H.264

uses a 6-tap finite impulse response (FIR) filter with (1/32, −5/32, 20/32, 20/32, −5/32

and 1/32) coefficients and a 2-tap bilinear filter with (1/2, 1/2) coefficients for

producing half-pixel and quarter-pixel positions, respectively. On the other hand, the

computation cost and memory requirement of a filter are proportional to its tap length.

y-direction
x-direction

y-direction x-direction

20
0

-20
-40 -40

-20

0

20

40
0

40

0.5

1

1.5

2

2.5

 104

14000

12000

10000

8000

6000

4000

10

0

5

-5

0

-5

5
10

10 -10

(a) (b)

36

Accordingly, the half-pixel interpolation is the bottleneck of the interpolation process in

the H.264 SME. To address this problem, R. Wang, Huang, Li, and Shen (2004)

proposed a 4-tap filter with (-1/8, 5/8, 5/8 and -1/8) coefficients which decreased the

computation and the memory bandwidth compared with the standard 6-tap filter.

In addition to the tap length of an interpolation filter, the suitability of its coefficients

for hardware/software implementation is another important issue. As seen in the above

paragraph, some of the coefficients in the H.264 6-tap FIR filter and the proposed filter

of R. Wang et al., (2004) are not a power of two. As a result, they need multiplication,

addition, subtraction, and shift operations. Among these operations, multiplication is the

most expensive one and demands more overhead for implementation. To cater to this

issue, Tsai, Chen, Chen, and Chen (2005) proposed a multiplication free filter with 6-

tap length. In a later study (Hyun & Sunwoo, 2009), both the tap-length and the

multiplication issues were considered by introducing a multiplication free 4-tap filter

that led to computation and memory bandwidth reduction.

Due to the existence of two-iterative search for the half-pixel and quarter-pixel

refinements in the H.264 SME that are usually carried out in a sequential manner, the

processing time is increased. From the hardware point of view, this problem poses a

restriction on required clock cycles for high-resolution video such as HDTV and higher

resolutions. To bring a solution for this problem, the single-iteration algorithm for

HDTV has been proposed by T.-Y. Kuo, Lin, and Chang (2007). Compared with

conventional two-iteration scheme, the cycle count in the single-iteration method is

halved. Therefore, the long computation latency is reduced and HD size requirement

can be achieved. In addition, the number of the search points is reduced to 6 points that

leads to computation and memory bandwidth reduction. In this algorithm, the initial

search center is determined by the motion information of neighboring blocks, which

enhances the coding performance. In recent studies (Yi-Hau Chen, Tzu-Der Chuang et

37

al., 2008; Y.-K. Lin et al., 2008), the single-iteration technique is widely adapted as one

of the effective methods to reduce the long processing time in high resolution

specification as well as the computation and memory bandwidth.

Bit-width reduction is another choice for the complexity and memory bandwidth

saving. The main idea is to represent each pixel with a lower number of bits (usually

one or two bits) using bit transformation. As a result, SME can use bit transformed data

and therefore the computation and memory access are reduced. Akbulut, Urhan, and

Erturk (2006) proposed the first bit transformed SME. After the interpolation of

reference frame with 8 bits/pixel bit-depth, they used 1-bit transform to represent each

pixel with 1 bit. Then, the SME refinement was carried out as usual. However, they

used 8-bit data at the interpolation process and their method added an extra complexity

due to transforming 8-bit data to 1-bit samples using multi-band pass filter. Motivated

from the above drawback, Celebi, Akbulut, Urhan, Hamzaoglu, and Erturk (2008)

introduced all-binary SME algorithm. In order to reduce the computation of

interpolation, 8-bit pixel values were transformed before the interpolation. Furthermore,

by replacing the multi-band pass filter with multiplication free one-bit transform

(Erturk, 2007), further computation was saved. However, for motion compensation it

should be noted that residue data should be transformed back to pixel domain requiring

additional computation.

3.4 Exploration of SME Architectures

In this section, the design challenges and strategies of the H.264 SME are discussed.

Besides, representative SME hardware architectures are surveyed. In addition, reviewed

SME architectures are evaluated based on designs metrics.

38

3.4.1 Hardware Architecture Design: Challenges and Strategies

Due to the huge computation and memory access requirement of the H.264 SME,

acceleration of the SME process by dedicated hardware architectures is of vital

importance for real-time application. Nevertheless, design of such architectures is a

challenging job. The reason is that besides the extra ordinary huge computation and

memory bandwidth, the SME algorithm in the H.264 reference software has been

developed without architectural considerations. In the H.264 reference software, the

SME is based on a sequential flow with a great deal of data dependency. From the

hardware point of view, the sequential operations (processing) restrict the parallel

processing, which in turn reduce the processing power. Besides, the data dependency

increases the memory requirement at the price of an added storage space, area cost, and

power consumption as well. Therefore, the data flow of the full search SME algorithm

should be carefully reordered and optimized to permit concurrent operations with a

reduced data dependency, which consecutively enables the parallel processing under the

restrictions of sequential SME procedure. An example for analysis of the H.264 SME

flow is the work of Yi-Hau Chen, Chen, Chien, Huang, and Chen (2008) where the

authors simplify its complex encoding procedure into several encoding loops. In

addition, they propose two decomposing techniques to parallelize the SME algorithm

while maintaining high hardware utilization and achieving data reuse.

The main building blocks of the H.264 SME consists of three parts i.e., interpolation

unit, processing unit that is responsible for search and cost calculation, and mode

decision. Among them, the interpolation unit is computationally intensive while

processing and mode decision units demand less computation. Therefore, design of

hardware architecture is performed by a particular emphasis on interpolation unit as the

most computational intensive unit. However, design of efficient hardware architectures

39

for less computational demanding units is still important as they can affect the overall

performance of the design.

The main design challenges for the interpolation unit are hardware utilization and

huge memory bandwidth that arise from the VBS, and the 6-tap FIR filter that is used

for generation of half-pixels. Due to the seven different block sizes, the interpolation

unit should be carefully designed to achieve maximum hardware utilization. The

common solution for this issue is the use of 4×4 interpolation unit. As all bigger blocks

can be decomposed into 4×4 blocks, the complete hardware utilization can be achieved.

However, since each 4×4 block needs a 9×9 interpolation window, the 4×4 based

interpolation increases the memory bandwidth. On a contrary way, the use of a 16×16

interpolation unit leads to the lowest memory bandwidth, which is due to the covering

of all block sizes, at the price of low hardware utilization. Examples that are based on

4×4 and 16×16 interpolations are the designs of T.-C. Chen, Huang, and Chen (2004)

and C. Yang, Goto, and Ikenaga (2006), respectively. As for the FIR filter, the previous

reported papers in the literature (Park, Muhammad, & Roy, 2003; Samueli, 1988) are

not suitable for the H.264 interpolation unit because of their too low input bandwidth

(Lei, Wen, Zeng, & Ji, 2004). In another work (Song, Liu, Goto, & Ikenaga, 2005), an

architecture for the H.264 interpolation unit is presented that has a 6-tap FIR filter with

a pipelined architecture, which increases its processing ability. In a recent paper (Lu,

McCanny, & Sezer, 2009), by exploiting the mixed use of parallel and serial-input FIR

filters, a high throughput rate and efficient silicon utilization are achieved so that the

proposed design can support SDTV and HDTV applications.

On the subject of less computationally demanding units, i.e. absolute operation,

SATD and inter mode decision, the discussion on this subject is not provided here.

However, the interested readers are referred to the following studies for more

information. Vanne, Aho, Hamalainen, and Kuusilinna (2006) and T.-C. Wang, Huang,

40

Fang, and Chen (2003) proposed efficient architectures for absolute difference operation

and SATD function, respectively. As for the inter mode decision, it is difficult to find an

architecture design with details in literature. However, the interested readers are referred

to the work of H.-C. Kuo (2006) for a detailed example.

In addition to the hardware architectures for the SME building blocks, efficient

memory design is another important issue. The reason is that the SME uses the data-

intensive interpolation method to generate sub-pixels within up to five reference frames

that calls for a great deal of data access through the frame memory. This data access is a

slow process and in addition, it leads to a lot of power consumption and decreases the

overall performance of the design. The common solution for this problem is data

reusing technique (Soudris et al., 2000; Wuytack, Catthoor, Nachtergaele, & De Man,

1996; Wuytack, Diguet, Catthoor, & De Man, 1998). In this technique, the temporal

data locality is exploited and the previous accessed data is reused in future, which result

in data access reduction. Accordingly, the power consumption is decreased. The data

reuse method can be performed offline or online. In the offline scenario, frequently

accessed data is stored in on-chip memory and will be recycled offline in future access.

In this way, the data access from the frame memory can be decreased. In the online data

reuse scheme, the current accessed data is shared between different places that work in

parallel and therefore data access reduction is achieved. Y.-H. Chen, Chen, Tsai, Tsai,

and Chen, (2008) introduced an effective data reuse methodology, which formulated the

SME algorithm as the nested loops structures and explored data locality by the use of

loop analysis. Based on their technique, the amount of memory access is significantly

reduced that leads to a lot of saving in memory access power. Haihua, Zhiqi, and

Guanghua (2007) have proposed a hardware implementation for interpolation unit that

uses single-step interpolation method along with data reusing scheme, which can save

the memory bandwidth, and processing cycles.

41

3.4.2 Hardware Architectures of the H.264 SME

This sub-section surveys the state-of-the-art SME architectures and classifies them

into full and fast SME architectures. A full SME architecture is based on the full search

SME algorithm whereas a fast SME architecture is a hardware design of a fast SME

algorithm. Three full SME architectures (T.-C. Chen et al., 2004; Wu, Kao, & Lin,

2010; C. Yang et al., 2006) and four fast search SME architectures (T.-Y. Kuo et al.,

2007; Song et al., 2007; Tsung, Chen, Ding, Tsai et al., 2009; Y.-J. Wang et al., 2007)

are selected as the representative designs. The details as well as the comparisons of

which are provided in the following paragraphs.

T.-C. Chen et al. (2004) proposed the first H.264 SME architecture. To bring a

solution for the complex sequential procedure flow of the H.264 SME, they presented

the 4×4 block decomposition and vertical integration techniques to enable the mapping

of the SME flow in hardware with features of regular schedule, full utilization, parallel

processing, and reusability. As shown in Figure 3.3, the main important parts of the

proposed architecture are interpolation engine, nine 4×4 processing units, and

Lagrangian mode decision engine. The interpolation engine produces half-pixels and

quarter-pixels by using 1-D FIR and bilinear filters, respectively. The 4×4 processing

units generate residues and SATD values. Since there are nine positions in each sub-

pixel refinement, nine 4 4 block processing units are used. The “Lagrangian mode-

decision” is responsible for finding the best mode among 41 modes in each macroblock.

The area cost of the proposed design is 79 K gates and it can support SDTV format with

30 fps, one reference frame and all MB modes at the clock frequency of 100 MHz. The

maximum performance of this design is 52 K MB/s.

42

Figure ‎3.3 : Block diagram of Y.-C. Chen’s design.

Based on the work of Y.-C. Chen et al. (2004), Yang et al. (2006) introduced a high

performance architecture of the H.264 SME for HDTV application with two new

techniques. Firstly, while Y.-C. Chen et al. (2004) used 4-pixel interpolation unit, they

proposed a 16-pixel interpolation to increase processing capability. However, four times

increase of the data width of the interpolation and the search engine only brought 52.5%

of clock cycle saving. Secondly, they replaced 1-D filters in design of Y.-C. Chen el al.

with diagonal filter and fully pipelined 1-D filters in the interpolation unit. As a result,

the delay path was decreased and higher clock frequency was achieved without a

considerable increase of area cost. The clock frequency of the design of Yang et al. is

285 MHz that supports HD1080p format in 30 fps for one reference frame. The area

cost and the maximum throughput of the proposed design are 189 K gates and 250K

MB/s.

Wu et al. (2010) presented a three-engine parallel SME architecture to support high-

resolution application. To cope with the high bandwidth input data problem, which led

43

to high bandwidth memory and a high hardware cost, they used a reference pixel

scheduling method and an efficient memory organization to ensure that each engine can

fetch the right reference pixel at the right time with minimum hardware cost. In

addition, they dispatched 41 sub-blocks of each MB to the three engines in a load-

balancing and interlaced ways to increase the throughput. Furthermore, they introduced

a resource-sharing scheme for SATD generators to reduce the number of the required

SATD generators from three units to two units. Their proposed SME architecture takes

311.7 K gates and can support HD1080 30fps at clock frequency of 154MHz.

Based on the work of Y.-C. Chen et al. (2004), Y.-J. Wang et al. (2007) contributed a

fast SME architecture. Their architecture was a hardware realization of a fast algorithm

with reduced number of search points. As a result, the number of 4×4 processing units

decreased to five instead of nine in design of Y.-C. Chen et al. Compared with the work

of Y.-C. Chen et al., it saves 40% and 14% of area cost and searching time at the price

of less than 0.2 dB PSNR quality drop. However, due to the use of the 4-pixel

interpolation units and 1-D FIR filters, it has a limited power processing and can only

support SDTV format.

Song et al. (2007) proposed a fractional motion estimation engine for HD1080p

resolution. To achieve real-time encoding, they presented three techniques. Firstly, they

removed all modes below 8×8 block and supported one reference frame. Therefore,

88.6% of the computations were saved with 0.1 dB loss. Secondly, they used two

reusing methods, namely lossless inside-mode and cross-mode (Shao, Liu, Goto, &

Ikenaga, 2007), which saved about 65% pixel generation and SATD calculation.

Thirdly, they removed the pipeline bubbles between the half-pixel and the quarter-pixel

stages by optimization the SME scheduling. The area cost of the proposed engine is

203.2 K gates and it can encode real-time HDTV1080p at 30 fps under the clock

frequency of 200 MHz.

44

T.-Y. Kuo et al. (2007) presented an SME architecture for HDTV and high profile.

They proposed two techniques for solving the associated problems with HDTV video

size and high profile. Firstly, the proposed architecture was based on the single-iteration

algorithm. Consequently, its processing time was halved compared with conventional

two-step full search algorithms. In addition, the number of its search candidates was

reduced to six points that resulted in reduction of processing units and hardware cost.

Secondly, since the high profile of H.264 uses the costly 8×8 SATD, they replaced it

with 4×4 SATD leading to silicon area reduction. The proposed architecture supports

HD720p 30 fps with a clock frequency of 70 MHz, 62.2 K gates, and 0.043 dB PSNR

video quality degradation.

In a later study (Tsung, Chen, Ding, Tsai et al., 2009), an SME architecture for quad

full high definition (QFHD) was introduced that was based on the single-iteration

algorithm. To cater to the huge computation and memory bandwidth requirement of the

QFHD specification, several optimization techniques were used. Firstly, the 6-tap

interpolation filter was replaced by a bilinear filter and thus memory bandwidth and

area cost were saved. Secondly, based on the distributive law in SATD, the residues in

the quarter-pixel SME were estimated while the half-pixel residues were known.

Therefore, the calculations of sub-pixels were decreased. Thirdly, a cache-based

memory (Tsung, Chen, Ding, Chien, & Chen, 2009) was used that resulted in

bandwidth reduction. The clock frequency and throughput of the proposed design are

280 MHz and 1659 K MB/s, which are sufficient for the 4096×2160 QFHD real-time

processing.

45

3.4.3 Design Metrics and Evaluation of the Reviewed Architectures

The illustrated design metrics for evaluation of the H.264 IME designs in Chapter 2

can be used for evaluation of the H.264 SME designs as well. These design metrics are

algorithm quality, silicon area, operating frequency, throughput, memory bandwidth,

and hardware utilization. However, although the memory bandwidth and hardware

utilization are two important evaluation metrics, none of the reviewed SME

architectures provides any data regarding these two parameters except the work of Y.-C

Chen et al. (2004), which only gives the details of hardware utilization.

Therefore, since these two metrics are not available for the surveyed architectures in

the literature, we only use four design metrics for the evaluation of the SME designs

including algorithm quality, silicon area, operating frequency, and throughput. Please

note that for a fair evaluation of the throughput in SME architectures, we should

consider the number of modes that is supported by each architecture. The reason is that

the number of block modes influences the throughput of SME architectures, which is

due to sequential processing of block modes in SME architectures.

Table 3.3 provides an evaluation of the aforementioned SME architectures based on

the design metrics. From this table, three trends can be summarized as follows. First,

under similar throughput condition, a full SME architecture has a higher area cost than a

fast SME architecture with the benefit of the highest video quality. Second, fast SME

architecture designs are generally preferred due to stringent real-time constrains.

Finally, the single-iteration based fast SME architectures (T.-Y. Kuo et al., 2007; Tsung,

Chen, Ding, Tsai et al., 2009) are suitable candidates for using in high-resolution

application with a negligible quality drop and reasonable area cost.

46

Table ‎3.5 : Design metrics evaluation of the reviewed H.264 SME architectures designs.

7 All block modes and for SDTV resolution.

8 All block modes and for HD1089 resolution.

9 All block modes and for HD1080 specification.

10 All block modes and for SDTV resolution.

11 8×8 and above modes and for HD1080 resolution.

12 All block modes and for HD720 resolution.

13 Number of supported modes is not available, QFHD resolution, and 24 fps.

Architecture Design Metrics

Y.-C. Chen et al. (2004) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 79.3

Operating frequency (MHz) 100

Throughput (MB/s) 49 K
7

C. Yang et al. (2006) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 189

Operating frequency (MHz) 200

Throughput (MB/s) 250 K
8

Wu et al. (2010) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 311.7

Operating frequency (MHz) 154

Throughput (MB/s) 250 k
9

Y.-J Wang et al. (2007) Quality loss (dB PSNR) -0.1 to -0.2

Silicon area (K gates) 48

Operating frequency (MHz) 100

Throughput (MB/s) 50 K
10

Song et al. (2007)

Quality loss (dB PSNR) -0.1

Silicon area (K gates) 203.2

Operating frequency (MHz) 200

Throughput (MB/s) 250 K
11

T.-Y. Kuo et al. (2007)

Quality loss (dB PSNR) -0.043

Silicon area (K gates) 62.2

Operating frequency (MHz) 70

Throughput (MB/s) 71.3 K
12

Tsung, Chen, Ding, Tsai et

al et al. (2009)

Quality loss (dB PSNR) -0.02

Silicon area (K gates) 448

Operating frequency (MHz) 280

Throughput (MB/s) 830 K
13

47

3.5 Summary

This chapter reviewed recent state-of-the-art H.264 SME algorithms and

architectures. First, the H.264 SME was analyzed and the impact of its functionalities on

coding performance was investigated. Then, design space of SME algorithms was

explored representing design problems, approaches, and recent advanced algorithms.

Besides, design challenges and strategies of SME hardware architectures were discussed

and promising architectures were surveyed. Finally, design metrics as well as evaluation

of the surveyed SME architectures were given.

48

Chapter 4

Analysis and Design of the Proposed Low-Cost

Bit-Serial Architecture for Integer Motion

Estimation in H.264/AVC

4.1 Introduction

H.264/AVC is the latest video coding standard that outperforms all of previous

standards in terms of coding efficiency. Compared with previous video standards,

H.264/AVC can provide up to 50% coding gains on different bit rates and video

resolutions (Wiegand, Sullivan et al., 2003). To achieve a higher coding performance

and better subjective visual quality, H.264 uses many new features such as variable

block-size motion estimation (VBSME), multiple reference frames, in-the-loop

deblocking filtering, weighted prediction, and so on.

H.264/AVC uses variable block-size motion estimation, which consists of seven

block sizes (i.e. 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 block sizes). Compared

with traditional fixed block-size motion estimation, variable block-size motion

estimation results in a more accurate prediction that enhances the coding performance.

Although the coding performance of variable block-size motion estimation is higher

than traditional fixed block-size motion estimation, it requires more computation and its

hardware implementation is more difficult than a fixed block-size hardwired motion

estimator. The instruction profile of an H.264/AVC encoder shows that the

computational load of a CIF video with 30 fps is 315 GIPS where integer variable

49

block-size motion estimation is computationally most demanding part of it, which

amounts to 74.29% (234 GIPS) computation of the encoder (Song, Liu, Ikenaga, &

Goto, 2006). Therefore, acceleration of integer motion estimation by hardware

architectures is required for real-time application.

To meet the real-time constraints of the H.264/AVC IME, several architectures have

been proposed, most of which use the full search algorithm due to its regularity, simple

control unit, and coding performance. Generally, IME architectures are based on 1-D (J.

Kim & Park, 2009; Lopez et al., 2008; Yap & McCanny, 2004), 2-D (Ou et al., 2005)

systolic or semi-systolic and adder tree (C.-Y. Chen, Chien et al., 2006) architectures.

Most of these architectures use bit-parallel data path to increase their processing ability

at the price of an extra silicon area and I/O bit width. Conventionally, 1-D architectures

are used for area-constrained application such as mobile phones because of their small

hardware cost and power consumption. However, 1-D designs have a lower processing

ability than 2-D architectures, and thus may not be suitable for medium and large

resolutions. Therefore, for current and future area-constrained applications such as

portable multimedia devices with greater resolution toward high definition, new low

cost IME architectures with higher processing capability are required.

Bit-serial architectures can be a solution for the above-mentioned problem. In bit-

serial approach, each bit of a word with n-bit length is processed at a time. As a result,

all of the bits are passed through the same logic leading to a significant reduction in area

and pin count. In addition, due to the small path delay between registers in bit-serial

architectures, they can operate at a higher clock frequency, and thus achieve a higher

throughput.

Li and Long (2008) have proposed an MSB bit-serial architecture for the H.264/AVC

IME with small area cost. This architecture benefits from an early termination scheme

for calculating SAD to enhance its performance. However, the performance of the

50

proposed architecture is not sufficient for medium or high resolutions. In addition,

compared with the least significant bit (LSB) arithmetic, MSB scheme has longer

latency and needs extra hardware to convert its data into redundant representation.

In this chapter, we introduce two 2-D systolic array LSB bit-serial IME architectures,

which are suitable for area restrictive portable systems. Both designs are based on FS

algorithm and can support VBSME for video with different resolutions. The first design

uses a 2-D systolic array along with 1-D data broadcasting and partial result propagating

techniques. The second design has a 2-D bit-serial adder tree together with a

reconfigurable reference buffer, which can take advantage of the data reusing between

successive search candidates. As a result, it is an appropriate choice for higher

resolutions when using hardware parallelism. To decrease the computational load as

well as memory bandwidth and to increase the overall performance of the proposed

designs, several optimization techniques have been applied. By using pixel truncation

scheme and proposing the word length reduction technique, not only the required cycles

for computing the SAD of one search position is reduced from 16 cycles to 5 cycles (i.e.

67.75% reduction) but also the silicon areas, power consumption, memory bandwidth

and latencies of the proposed design are decreased. In addition, to reduce the area cost,

computational complexity, memory bandwidth, and power consumption further, three

techniques have been used as follows: mode filtering, 1/2-subsampling and a power

reduction method for the reconfigurable reference buffer.

The rest of this chapter is organized as follows. In Section 4.2, advantages and

challenges of bit-serial architectures are explored. Section 4.3 describes the proposed

bit-serial architectures in details. In Section 4.4, the proposed optimization techniques

are discussed showing the performance improvement caused by them. Section 4.5 gives

the experimental results and provides a comparison with the previous architectures.

Finally, Section 4.6 gives a summary of this chapter.

51

4.2 Bit-Serial Approach: Advantages and Challenges

As described in introduction, bit-serial architectures result in lower area cost and pin

counts compared with bit-parallel architectures, which in turn lead to smaller package

size and thus lower production cost. In addition, bit widths of signals in bit-serial

architectures are one bit and often to one destination, which simplify the routing and

reduce propagation delay and interconnection density. However, due to the spreading of

operations and data over the time, design of bit-serial architectures are often more

complicated than their equivalent bit-parallel architectures, especially in complicated

designs. Besides, in the bit-serial scheme, a higher clock frequency can be achieved,

which increases the processing ability. Furthermore, small interconnection density and

area cost of bit-serial architectures can be advantageous for VLSI designs with deep

submicron technologies.

In deep sub micron regime and beyond, as the scale of process technologies steadily

shrinks, the interconnect (i.e. the interconnection parameter) will be determining cost,

delay, power, and reliability of the future LSI designs (Sakurai, 2000). Therefore, a

lower interconnection density could improve the overall performance of the designs.

From the power consumption viewpoint, the bit-serial operation has its own

advantages and drawbacks. The total power consumption of a CMOS circuit can be

modeled as:

DDleakageDDtotal VIFVCP ... 2 

 (4.1)

where the first term (FVC DD.. 2
) denotes the dynamic power and the second

).(DDleakageVI represents the leakage power. Since bit-serial architectures are usually

working at a higher clock frequency (i.e. F), their dynamic power is higher. On the

other hand, the total capacitance load (i.e. C) of a bit-serial architecture, which is

52

approximately proportional to the area cost, is less than a bit-parallel design, which

decreases the dynamic power. However, note that a bit-serial architecture generally

consumes higher dynamic power than its bit-parallel counterpart, as will be explained

later in the last paragraph of this section.

Regarding the leakage power, which is proportional to the number of transistors (i.e.

area cost), a smaller circuit results in lower leakage power. Therefore, the bit-serial

scheme demonstrates lower leakage power than its bit-parallel matching part. Lower

leakage power may be beneficial to portable multimedia devices and electronic

consumer systems that are often in standby mode, where only the leakage power is

consumed. Considering the size of process technology, as it steadily shrinks, the leakage

current is becoming higher and will be a major contributor to total power consumption.

Therefore, for recent and future VSLI designs with deep submicron technology size, the

use of bit-serial architecture, which has small silicon area, can provide lower leakage

power compared with bit-parallel architecture. Interested readers are referred to some

excellent papers (Elgharbawy & Bayoumi, 2005; N. S. Kim et al., 2003; Sakurai, 2000)

for thorough and in depth information on leakage power.

One of the major problems associated with the bit-serial approach is its long

processing time. For example, a bit-serial full adder (FA) requires n clock cycles to add

two n-bit inputs, whereas the counterpart bit-parallel architecture with n-bit data path

takes one clock cycle. The number of the required clock cycles in bit-serial arithmetic

can be even bigger than the bit length of the input operands. Actually, the bit length of

the output result determines the required clock cycles in bit-serial structure. For

instance, consider the 8-bit input pixel data in the IME process. Since there are 256

pixels in an MB, the maximum final SAD value may have up to 16 bits. Therefore, the

required cycles for calculating a SAD will increase to 16 cycles instead of 8 cycles.

53

From the hardware point of view, this problem can increase the hardware cost and

power consumption too.

Mostly, there are many serial shift registers inside bit-serial architectures working at

a high clock frequency. At each clock cycle, all of the data are shifting inside the shift

register consuming a significant part of total dynamic power (Tan, Eriksson, &

Wanhammar, 1994). This problem is another drawback of bit-serial architectures

especially for using them in low power applications. In the next sections, we describe

our two bit-serial architectures providing solutions for the associated problems with the

bit-serial approach.

4.3 The Proposed Bit-Serial Architectures

4.3.1 Hardware Architecture of the First Design

Figure 4.1 shows the 2-D structure of our first design, which consists of serial 4×4

processing units (PUs), 1-D serial adder trees, and serial propagation registers. Our

architectures is featured with reusing of partial SAD results and broadcasting of

reference pixel data techniques in a similar way employed by partial propagate SAD

IME designs (Huang, Wang, Hsieh, & Chen, 2003; Liu, Huang, Song, Goto, & Ikenaga,

2007). The proposed design utilizes 16 4×4 PUs for calculating the SADs of 4×4 blocks

that these partial SADs are reused to generate the SAD of bigger blocks (i.e. 4×8, 8×4,

8×8, 8×16, 16×8, and 16×16). Each 4×4 PU has four rows of serial processing elements

(PEs), four 1-D serial adder trees and serial full adders (FAs), and propagation serial

registers, as shown in Figure 4.2. Serial PEs are responsible for calculating the absolute

difference between current MB pixels and search area pixels. 1-D serial adder trees add

the absolute differences of rows where the sum result of each row is propagating down

and adds with sum result of next row using a serial FA.

54

Figure ‎4.1 : Our proposed 2-D bit-serial architecture.

There are 256 serial PEs in our architecture, which have great effect on its

performance. Therefore, design of an efficient serial PE architecture is important. To

address this issue, we present a new serial PE architecture, which is based on an

efficient absolute difference algorithm (Vanne et al., 2006). In this algorithm, the

absolute difference operation is expressed as:










CRCR

CRCR
CR

,)(

,1
 (4.2)

Ref_Pixel0

Ref_Pixel1

Row 0

Row 3

Row 4

Row 7

Row 8

Row 11

Row 12

Row 15

Columns 0-3 Columns 4-7 Columns 8-11 Columns 12-15

S
e
ria

l R
e
g

SAD4 4_00

SAD4 8_00

SAD4 4_10

+

SAD4 4_01

SAD4 8_01

SAD4 4_11

+

SAD8 4_10

+ +
SAD8 4_00

+

SAD4 4_12

SAD8 8_00

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

S
e
ria

l R
e
g

S
e
ria

l R
e
g

S
e
ria

l R
e
g

SAD4 4_02

SAD4 8_02

+

SAD4 4_03

SAD4 8_03

SAD4 4_13

+

SAD8 4_11

+ +
SAD8 4_01

+
SAD8 8_01

S
e
ria

l R
e
g

SAD4 4_20

SAD4 8_10

SAD4 4_30

+

SAD4 4_21

SAD4 8_11

SAD4 4_31

+

SAD8 4_03

+ +
SAD8 4_20

+

SAD4 4_32

SAD8 8_10

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

4 4 PU

Current PixelMUX

S
e
ria

l R
e
g

S
e
ria

l R
e
g

S
e
ria

l R
e
g

SAD4 4_22

SAD4 8_12

+

SAD4 4_23

SAD4 8_13

SAD4 4_33

+

SAD8 4_31

+ +
SAD8 4_21

+
SAD8 8_11

S
e
ria

l R
e
g

S
e
ria

l R
e
g

S
e
ria

l R
e
g

S
e
ria

l R
e
g

+ ++ +

+

SAD8 8_10

SAD8 16_00 SAD16 8_00 SAD16 8_01 SAD8 16_01

SAD16 16_00

55

Figure ‎4.2 : Hardware architecture of the 4×4 PU.

where R indicates the reference pixel and C represents the current pixel.

The proposed bit-serial architecture of this algorithm is shown in Figure 4.3. At each

clock cycle, one bit of the current and reference pixels are inputted starting from LSB.

As a result, their difference (i.e. R-C) is generated in n clock cycles where n is the bit

length of R and C. At the first cycle of a new operation, an initial signal (ini1) is used to

set the carry-in (Ci) to zero leading to a correct result. In the proposed architecture, the

n
th

 carry-out (Co) bit is latched in a D flip flop (DFF) and its inverse is used to XOR

with the R-C bits that are stored in an n-bit serial DFF. In addition, the nth Co has to

sum with the XORed bits to produce the correct absolute difference using serial FA.

The sum operation can be eliminated to save the hardware cost of 256 serial FAs of

PEs, which can lead to maximum error of 256 in the worst case (Liu et al., 2007). To

solve this problem, we use serial half adder (HA) to save the hardware cost and

Serial FA

S
erial R

eg

SAD 4 4

1-D Serial Adder Tree

Serial PE

Cbi RbiCbi RbiCbi RbiCbi Rbi

Serial PE Serial PE Serial PE

Serial PE Serial PE Serial PE Serial PE

Serial PE Serial PE Serial PE Serial PE
S

erial R
eg

Serial PE Serial PE Serial PE Serial PE

S
erial R

eg

Serial FA

Serial FA

1-D Serial Adder Tree

1-D Serial Adder Tree

1-D Serial Adder Tree

Cbi RbiCbi RbiCbi RbiCbi Rbi

Cbi RbiCbi RbiCbi RbiCbi Rbi

Cbi RbiCbi RbiCbi RbiCbi Rbi

56

guarantee an error free calculation, as shown in the proposed serial PE architecture (see

Figure 4.3).

Figure ‎4.3 : Structure of the proposed serial PE.

4.3.2 Data flow of our first design.

The data flow of the first architecture for a 48×48 search area is given in Table 4.1,

where the Cbn(i, j) points to the pixels of the current MB, Rbn(i, j) indicates the reference

pixels in the search area, bn refers to the n
th

bit of each pixel, i signifies row’s index and

j specifies column’s index. Here, the clkp and clks represent parallel and serial clocks so

that clks is equal to n × clkp and n is the bit length of each pixel. Note that n should be

equal to the bit length of the largest possible SAD of a 16×16 block to lead to a correct

result, which for our case n is equal to 16. The clks is the main clock of the design and

clkp is used to make easier the description of the data flow.

During a clkp cycle, 16 reference pixels of the left side of zeroth row are loaded so

that their zeroth bits (16 b0s) are inputted in the zeroth clks cycle and their 15
th

 bits are

proceeded at the 15
th

 clks cycle. Note that we use the sum (to show that there are 16

bits, which are from 16 different columns. In a similar way, during the following cycles

of clkp the corresponding rows of reference pixels are loaded so that at the 15
th

 cycle,

the left side reference pixels of 15
th

 row are inputted. When ignoring the pipeline

latency, the SAD of the (0, 0) to (0, 31) search candidates are sequentially produced at

16
th

 to 48
th

 clkp cycles.

The scan order is column by column so that after loading the last row pixels in each

column, the first row data of the next right side column should be loaded at the

D

Serial DFFs

FA HA

ini2 ini3

ini1

q

q

clks

clks

clks

clks

s

coci

s
ai

bi

ai

bi co

S

ini1

D

D

DD

57

following cycle. This type of data flow reduces the hardware utilization because when

starting a new column, 15 cycles are needed for reading the search candidate block

pixels. To solve this problem, it is required to lead the reference pixels of next column

too, when loading the reference pixels of 33
th

 row of each column (as shown in Table

4.1). In Figure 4.1, two sets of reference pixels are read and multiplexers select the right

row of reference data and therefore 100% hardware utilization is approached. Due to the

broadcasting of reference pixel data in vertical direction, all of PEs of a column use the

same data. Therefore, the vertical data reuse is achieved leading to memory bandwidth

reduction.

Table ‎4.1 : The data flow of our first design.

Clkp Clks PEs of 0
th

 Row PEs of 1
st
 Row PEs of 14

th
 Row PEs of 15

th
 Row

0

0

1

n-1

- - -

1 n

 - -

14 14n

 -

15 15n

16 16n

32 32n

33 33n

34 34n

58

4.3.3 The Second Design: Bit-Serial Adder Tree Architecture

Figure 4.4 shows the proposed bit-serial architecture, which is based on Adder Tree

architecture (C.-Y. Chen, Chien et al., 2006). This architecture has a 2-D structure that

is composed of a reconfigurable reference buffer, an PE array, 16 2-D bit-serial 4×4

adder trees, and one 2-D VBS bit-serial adder tree that their details are explained in the

following paragraphs.

Figure ‎4.4 : Hardware architecture of the proposed Bit-Serial Adder Tree.

The reconfigurable reference buffer stores reference pixels enabling data reuse

feature that will be discussed in subsection 4.3.4. At each cycle, 256 bits of current and

reference pixels are sent to the PE array. Concurrently, a row of reference pixels are

loaded into the reference buffer updating reference pixel data. The PE array consists of

256 serial PEs for calculating absolute difference of current and reference pixels whose

structures are similar to the PE structures of the first design. Sixteen 2-D bit-serial 4×4

VBS Bit-Serial Adder

Tree for Bigger Blocks

16 2-D Bit-Serial Adder

Trees for 4 4 Blocks

16 16 PE Array (16 8 PE

Array if Sub-Sample)

Current MB Data

Power Saver Array

Reconfigurable

Reference Buffer

Shift Directions:

Up

Down

Right

Register
2-D Bit-Serial

Adder Tree
Power Saver

Array
Data Path

PE

SADs of All Blocks

Row0

Row1

Row2

Row15

Row14

59

adder trees are used for computing the SADs of 4×4 blocks at the same time, as the

hardware architecture of a 2-D bit-serial 4×4 adder tree is given in Figure 4.4. The

SADs of 4×4 blocks are reused in the 2-D VBS bit-serial adder tree to generate the

SADs of bigger blocks in parallel.

Figure ‎4.5 : Architecture of the proposed 2-D bit-serial 4×4 adder tree.

4.3.4 Data Flow of the Proposed Reconfigurable Reference Buffer

The data flow of our reconfigurable reference buffer is similar to SAD Tree

architecture (C.-Y. Chen, Chien et al., 2006) except for one feature. The original

reconfigurable reference buffer has a bit-parallel structure, and therefore we cannot

directly use it in our bit-serial architecture. To integrate the original reconfigurable

SAD 4 4

Serial PE Serial PE Serial PE Serial PE

1-D Serial Adder Tree

Serial PE Serial PE Serial PE Serial PE

1-D Serial Adder Tree

Serial PE Serial PE Serial PE Serial PE

1-D Serial Adder Tree

Serial PE Serial PE Serial PE Serial PE

1-D Serial Adder Tree

Serial FA

Serial FA

Serial FA

Cbi RbiCbi RbiCbi RbiCbi Rbi

Cbi RbiCbi RbiCbi RbiCbi Rbi

Cbi RbiCbi RbiCbi RbiCbi Rbi

Cbi RbiCbi RbiCbi RbiCbi Rbi

60

reference buffer into the proposed Bit-Serial SAD Tree, its architecture has to be

modified so that it can support serial operation.

The original reconfigurable reference buffer supports downward, leftward, and

upward shift configurations and uses snake scan order that result in a high level of

hardware utilization and data reuse. We add the bitwise shift right configuration to the

original reconfigurable reference buffer to use it in our Bit-Serial Adder Tree.

Table 4.2 shows the data flow schedule of the proposed reconfigurable reference

buffer for a 48×48 search area where the clkp, clks, and Rbn(i, j) were defined for Table

4.1. At each clkp cycle and during 0
th

 to 31
th

 cycles, one row of 16 reference pixels is

loaded to the proposed reconfigurable reference buffer where the shift configuration is

downward. When inputting the last 16 rows of an even column (i.e. 32
th

 to 47
th

 rows of

reference pixels), an additional reference pixel is loaded which is used for data reusing

later. When finishing an even column, the shift configuration is switched to leftward for

one cycle. In the following cycles, the scan order continues from the last row data of the

next right side column (i.e. an odd column) and the shift configuration is changed to

upward where the loaded rows have 16 reference pixels. Please note that as the

reference pixels have already been stored in the reconfigurable reference buffer, the

SAD calculation can continue lacking bubble cycles. In addition, when loading the last

16 rows of an odd column (i.e. 15
th

 to 0
th

 rows of reference pixels) an extra pixel is

loaded. The same procedure will continue column by column with snake scan order,

which leads high level of hardware utilization and makes possible the data reuse

between two consecutive search candidates.

61

Table ‎4.2 : The data flow of our second design.

Clkp Clks Row 0 Row 1 Row 14 Row 15

0 0

 - - -

1 n

 - -

14 14n

 -

15 15n

16 16n

31 31n

32 32n

33 33n

47 47n

48 48n

48 48n

62

4.4 Proposed Techniques for Performance Improvement

Our bit-serial architectures suffer from two major problems including dependency of

the processing time to the bit length of the final SAD result and dynamic power

consumption in the shift registers. Due to dependency of the bit length of the input data

and the required cycles for computing the SAD of one search candidate to the bit length

of the largest possible SAD (i.e. 16 bits for a 16×16 block), the performances of the

proposed bit-serial architectures in terms of power consumption, processing ability,

throughput, and latency are decreased. In addition, each PE has an n-bit shift register

(i.e. n is the bit length of largest possible SAD) and the proposed reconfigurable

reference buffer consists of N×N n-bit shift registers, which consume a significant

amount of dynamic power. We have employed five optimization techniques to cope

with these problems and improve the performances of the proposed designs further.

The first technique is pixel truncation (Bahari, Arslan, & Erdogan, 2009; He & Liou,

1997). We use current and reference pixels with only 5-bit precision. Consequently, the

largest possible SAD of a 16×16 is reduced from 2
16

 to 2
13

. As a result, the required

cycles for calculating the SAD of one search point as well as the PEs’ serial registers are

decreased from 16 to 13, which lead to reduction of silicon area, memory bandwidth,

and dynamic power as well as throughput improvement.

The second technique is word length reduction by parallelism (Zhou & Kornerup,

1995). In this technique, two FAs are used to obtain a higher computing rate in

computing the SADs in a serial manner. As the final SAD of a 16×16 block can have up

to 16 bits, by using two FAs, one for the low order 8 bits and another for the high order

8 bits, the processing speed is doubled at the price of an added hardware cost. Taking

into account the 5-bit truncated input pixels that may lead to a 13 bits SAD, we can use

three FAs to triple the throughput, where the first, second and third FAs are responsible

for the low order, middle order and high order 5 bits, respectively. However, replacing

63

of all FAs with a set of three FAs, will approximately increase the hardware cost of FAs

by three. To increase the processing ability with an acceptable hardware cost, we

propose several circuit optimization techniques as follows.

Since the input pixels are truncated in our designs, we first configure their proposed

PEs from 13 bits to 5 bits operation because the output result for absolute difference

operation may have 5 bits of maximum bit length. This leads to a significant hardware

cost reduction of the PEs and their propagation registers in the proposed architectures

(see Figure 4.3). Then, for adding two absolute difference results in the first stages of 1-

D serial adder trees in Figure 4.2 and Figure 4.5, we propose an efficient serial adder

that can add two 5-bit inputs while the processing time is still 5 cycles instead of 6

cycles, as shown in Figure 4.6(a). When the sum result is less than 2
6
, the output result

is presented with 5 bits using sl output that is the low order sum result. When the sum

result is bigger than 2
6
-1, the sum result needs 6 bits, where the sixth bit is the carry-out

signal in the 5th clk. By using an AND gate, the higher order sum result (i.e. sh) is

calculated so that its bit length is only one. Due to the use of 256 PEs in each design,

128 FAs are used in the first stages 1-D serial adder trees. Accordingly in the new

designs, we only use 128 extra AND gates whereas the processing time for one

searching candidate is reduced from 13 to 5 cycles. In Figure 4.6(a), please note that the

ini signal is set to zero at the beginning of a new add operation for one cycle to obtain a

correct result.

For the second stages of the 1-D serial adder trees and other serial FAs in Figure 4.2

and Figure 4.5, we use two FAs, one for the low order 5 bits and another for the high

order 5 bits, as shown in Figure 4. 6(b). Note that in this figure the carry-in (ci) of the

high order 5 bits should be the 5th carry-out (co) of the low order part. By using two 5-

bit FAs, the maximum value of 2
11

-1 can be calculated. Therefore, the SAD of 4×4 and

4×8 and 8×4 block sizes can be computed with the proposed circuit in Figure 4. 6(b). As

64

for a 4×4 block seven sets of presented circuit in Figure 4.6(b) are used; for all block

sizes smaller than 8×8 blocks, 16×7 +8 sets of this circuit are required. By using three

FAs in a similar way as shown in Figure 4.6(b), we can calculated the SAD values of

the bigger blocks (i.e. 8×8, 8×16, 16×8 and 16×16 blocks). Therefore, we only need

nine sets of three FAs whereas the calculating of a search candidate is reduced to 5

cycles. In summary, with the proposed word length reduction scheme the required

cycles for processing of one search candidate and the bit length of the PEs’ shift

registers are reduced from 16 bits to 5 bits, and thus hardware cost and dynamic power

are significantly decreased.

Figure ‎4.6 : Hardware architecture of (a) the proposed serial adder for adding 5-bit

operands and (b) the proposed two parts serial adder.

The third technique is 1/2-subsampling at the MB level. Since in the H.264 standard

the video frames are processed MB by MB, with 1/2-subsampling at the MB level, we

can roughly reduce the hardware cost of the PE array, computational load and memory

bandwidth by a factor of two. Because with 1/2-subsampling, the number of the

required reference pixels, current pixels, and PEs is reduced two times.

The forth method is mode reduction in which by removing the 4×4 modes, 16 modes

of 41 modes in the H.264 IME are reduced. Consequently, their corresponding circuits

for obtaining minimum SADs and related MVs are saved.

FA

ini

clks

s

coci

ai

bi

ini

Sl

Sh

FA

ini

clks

clks

s

coci

ai

bi

sl

FA

clks

clks

s

coci

ai

bi

sh

ini

shi2

shi1

sli2

sli1

(b)(a)

clks

D

D

D

D

D

D

M

U

X

65

The last method is a power reduction technique proposed in response to the dynamic

power consumption of the bitwise shift right configuration in the proposed

reconfigurable reference buffer. To facilitate the description of the proposed power

saving method, consider an n-bit serial shift right register, as shown in Figure 4.7(a).

This shift register supports downward, leftward, and upward shift configurations, where

the reference data are in parallel from. When configuring in the bitwise shift right case,

at each clks cycle, n bits are shifted consuming a lot of power whereas the corresponding

PE circuit only uses one bit.

To avoid the serial shift operation, we employ a multiplexer. In this way at each

cycle, the appropriate bit is selected and sent to PE array circuit, as shown in Figure

4.7(b). As a result, the power consumption is considerably decreased at the price of an

extra hardware cost of multiplexer. Taking into account the bit length of reference pixel

after applying the proposed optimization technique (i.e. 5 bits), we need to use an 8 to 1

multiplexer, where three of its inputs are not used. To mitigate the hardware cost of this

multiplexer, we utilize a 4 to 1 multiplexer connected to a 2 to 1 multiplexer to provide

a 5:1 multiplexer, as shown in Figure 4.7(c).

In summary, to cope with the long processing time and high dynamic power

consumption problems of the proposed bit-serial IME designs, we apply several

optimization techniques. By the word length reduction and bit-truncation techniques, we

reduce the required processing time of a search candidate from 16 to 5 cycles, where the

other design parameters such as power consumption, silicon area, and throughput are

improved too. In addition, mode filtering and 1/2-subsampling methods are used to

reduce the hardware costs further. Besides, the dynamic power of the proposed bit-serial

reconfigurable reference buffer is decreased by using a power saving method at price of

an extra area cost.

66

Figure ‎4.7 : Hardware architecture of (a) shift register, (b) the proposed power reduction

circuit, and (c) the proposed improved power reduction circuit.

4.5 Experimental Results and Analysis

4.5.1 Evaluation of Rate-Distortion Performance

In order to evaluate the impact of the proposed optimizations techniques on R-D

performance, we incorporate them into the reference software (JM version 11) using

several test sequences. Tables 4.3-4.6 give average bit rate and PSNR difference for

case (a) to case (e) where the test conditions are similar to that of Chapter 3 for Akiyo

(QCIF), Container (QCIF), Mobile (CIF), and News (CIF) test sequences.

(a) FS IME with all block sizes and one reference frame.

(b) 4×4 mode filtered variable block-size FS IME with one reference frame.

(c) 3 bits truncated FS IME with all block sizes and one reference frame.

(d) 1/2-subsampled FS IME with all block sizes and one reference frame.

(e) Optimized FS IME (4×4 mode filtered + 3 bits truncated + 1/2-subsampled) with

one reference frame.

In Tables 4.3-4.6, each case is described by four points with PSNR and bit rate

values where the average bit rate difference percentage (ΔBR(%)) and the PSNR

difference in terms of dB (ΔPSNR(dB)) of each case are calculated with respect to the

reference case (i.e. case (a)). In addition to the average bit rate difference percentage

and the PSNR difference, Figure 4.8 and Figure 4.9 show the R-D plots for Carphone

bn-1 b1 b0

MUX (n : 1) Sel

m bits

bn-1 b1 b0

(a)

(b)

MUX (4 : 1)

Sel1

2 bits

MUX (2 : 1)

b4 b3 b2 b1 b0

Sel2

1 bit

(c)

67

(QCIF), Mother-Daughter (CIF), City(4CIF), and Blue-Sky(HD1080) test sequences

where the performance of the FS IME algorithm and its optimized version that are

similar to case (a) and case (e), correspondingly. As seen in Table 4.3-Table 4.6 as well

as Figures 4.8-4.11, the proposed optimization techniques lead to very competitive

results compared with the FS IME algorithm. The proposed techniques are simple but

effective and reduce the computational complexity and the memory bandwidth of the FS

algorithm.

Table ‎4.3 : The impact of the proposed optimization methods on coding performance for

Akiyo (QCIF) sequence.

 Case
Criterion

(a) (b) (c) (d) (e)

Bit rate1 (kbps)
PSNR1 (dB)

10.2
30.02

10.1
30.07

10.8
30.06

10.1
29.99

10.1
30.01

Bit rate2 (kbps)
PSNR2 (dB)

20.0
33.45

20.0
33.61

20.1
33.52

20.1
33.51

20.4
33.58

Bit rate3 (kbps)
PSNR3 (dB)

30.1
35.47

30.1
35.50

30.1
35.44

30.4
35.47

30.8
35.47

Bit rate4 (kbps)
PSNR4 (dB)

60.0
38.20

60.1
38.23

60.0
38.20

60.0
38.23

60.3
38.20

ΔBR (%)
ΔPSNR (dB)

0.00
0.00

-2.03
0.08

-0.56
0.02

-0.71
0.03

-1.19
0.04

The Parameters for used sequences are 30 fps, ±16-pel search range, high complexity mode decision and

300 encoded frames.

Table ‎4.4 : The impact of the proposed optimization methods on R-D performance for

Container (QCIF) sequence.

 Case
Criterion

(a) (b) (c) (d) (e)

Bit rate1 (kbps)
PSNR1 (dB)

15.0
29.69

15.5
29.73

15.0
29.79

15.0
29.76

15.0
29.67

Bit rate2 (kbps)
PSNR2 (dB)

30.0
32.18

30.1
32.17

30.0
32.17

30.1
32.15

30.1
32.11

Bit rate3 (kbps)
PSNR3 (dB)

60.0
34.40

60.7
34.38

60.1
34.39

60.1
34.34

60.0
34.40

Bit rate4 (kbps)
PSNR4 (dB)

90.1
36.34

90.0
36.34

90.0
36.34

90.1
36.41

90.1
36.34

ΔBR (%)
ΔPSNR (dB)

0.00
0.00

0.21
-0.002

0.01
0.004

0.68
-0.016

1.58
-0.054

68

Table ‎4.5 : The impact of the proposed optimization methods on coding performance for

Mobile (CIF) sequence.

 Case
Criterion

(a) (b) (c) (d) (e)

Bit rate1 (kbps)
PSNR1 (dB)

1599.7
28.05

1599.7
28.04

1599.7
28.03

1599.5
27.98

1599.6
27.99

Bit rate2 (kbps)
PSNR2 (dB)

2499.3
30.55

2499.5
30.53

2499.5
30.54

2499.4
30.51

2499.8
30.49

Bit rate3 (kbps)
PSNR3 (dB)

3499.4
32.97

3499.4
32.95

3499.1
32.96

3499.3
32.94

3499.4
32.92

Bit rate4 (kbps)
PSNR4 (dB)

4998.8
35.92

4998.2
35.90

4998.8
35.91

4998.4
35.89

4998.1
35.85

ΔBR (%)
ΔPSNR (dB)

0.00
0.00

0.26
-0.019

0.18
-0.012

0.59
-0.041

0.85
-0.060

Table ‎4.6 : The impact of the proposed optimization methods on coding performance for

News (CIF) sequence.

 Case
Criterion

(a) (b) (c) (d) (e)

Bit rate1 (kbps)
PSNR1 (dB)

40.1
28.59

40.1
28.53

40.1
28.57

40.1
28.59

40.1
28.56

Bit rate2 (kbps)
PSNR2 (dB)

80.2
31.45

80.2
31.48

80.2
31.38

80.2
31.45

80.2
31.42

Bit rate3 (kbps)
PSNR3 (dB)

150.5
33.99

150.5
33.98

150.5
33.96

150.5
33.99

150.6
33.91

Bit rate4 (kbps)
PSNR4 (dB)

250.8
36.26

250.7
36.21

250.7
36.24

250.8
36.24

250.7
36.15

ΔBR (%)
ΔPSNR (dB)

0.00
0.00

0.03
-0.003

1.10
-0.046

0.05
-0.002

1.31
-0.054

69

32

33

34

35

36

37

38

39

40

41

30 105 180 255 330 405 480

P
S

N
R

 (
d
B

)

Bit rate (Kbps)

Mother-Daughter (CIF)

FS IME

Optimized IME

29

30

31

32

33

34

35

36

37

38

39

30 80 130 180 230 280

P
S

N
R

 (
d

B
)

Bit rate (Kbps)

Carphone (QCIF)

FS IME

Optimized IME

Figure ‎4.8 : R-D plot of Carphone test sequence for FS IME and its optimized version.

Figure ‎4.9 : R-D plot of Mother-Daughter test sequence for FS IME and its optimized

version.

70

Figure ‎4.10 : R-D plot of City test sequence for FS IME and its optimized version.

Figure ‎4.11 : R-D plot of Blue-Sky test sequence for FS IME and its optimzed version.

30

31

32

33

34

35

36

37

38

39

40

600 1600 2600 3600 4600 5600

P
S

N
R

 (
d
B

)

Bit rate (Kbps)

City (4CIF)

FS IME

Optimized IME

33

34

35

36

37

38

39

40

41

42

20000 30000 40000 50000 60000

P
S

N
R

 (
d
B

)

Bit rate (Kbps)

Blue-Sky (HD1080)

FS IME

Optimized IME

71

4.5.2 Implementation Results and Reusability Discussion

The proposed bit-serial IME architectures for H.264 have been implemented in

Verilog-HDL and synthesized in Silterra 0.18 μm technology using Synopsys Design

Compiler. Table 4.7 lists the implementation results of the proposed architectures. Due

to bit-serial structure and applying of several optimization techniques, the hardware cost

of the first and the second architectures are 29.28 K gates and 31.5 K gates, respectively

making them good candidates for using in area-constrained designs. Taking into

consideration a search range of [-16, +15] in the horizontal and vertical directions and

the required cycles for processing one search candidate (i.e. 5 cycles), the proposed

architectures can process an MB at 5120 clock cycles. As a result, CIF resolution with

30 fps can be processed at 60.82 MHz where the first and the second designs consume

19.94 mW and 11.77 mW under slow operating conditions (i.e. 1.62 V and 125°C).

With the clock frequencies of 440 MHz and 427 MHz, the maximum throughputs of the

first and the second proposed designs are 85.93 K MB/s and 83.39 K MB/s,

respectively. Therefore, higher resolutions can be met with higher clock frequencies.

For instance, real-time VBS FS IME of 720×480 video @ 30 fps with a [-16, 15] search

range and one reference frame is satisfied at 207 MHz. Note that due to having of

reconfigurable reference, the memory bandwidth of the second design is lower than the

first design.

Table ‎4.7 : Implementation results of the proposed designs.

 Our first design Our second design

Technology Silterra 0.18um Silterra 0.18um

Voltage 1.62 V 1.62 V

Gate counts 29.28 K gates 31.5 K gates

Required frequency 60.82 MHz 60.82 MHz

Max Throughput 85.93 K MB/s 83.39 K MB/s

Memory Bandwidth 163 Kbits/MB 87 Kbits/MB

Power consumption 19.94 mW 11.77 mW

72

In addition, since the first design has many propagation registers and the proposed

reconfigurable reference buffer of the Bit-Serial Adder Tree benefits from power saving

technique, the second design consumes a lower power consumption than the first

design.

The proposed designs can be reused for higher resolutions such as HD format by

adopting the parallelism technique whereas the processing ability as well as the memory

bandwidth of them can be improved further. For example, consider HD720 resolution

with one reference frame, [-32, +31] search range, and 30 fps. The required frequency

for satisfying the real-time IME for the above specifications with one set of our bit-

serial architecture is 2,211 MHz. By using five sets of the first or the second designs,

which work in parallel, these specifications can be met under 368.5 MHz. When using

the first architecture, we need to five sets working in parallel. As a result, the processing

ability increase 500% at price of the hardware cost of five sets of the first design. Please

note that the reference pixels in each row can be reused by these parallel architectures,

and therefore the memory bandwidth is decreased as well. If we use the second design

for the above specification, we need one reconfigurable reference buffer with only

seven extra reference pixels in each row and five sets of PE array. Consequently, the

processing ability increases by a factor of five and 80% of the memory bandwidth is

roughly saved. When using the parallelism, the second design shows a better

performance compared with the first design in terms of hardware cost. Because in

parallelism, the second design only requires one reference reconfigurable buffer with

extended size and the required number of its PE array is defined by the degree of the

parallelism (i.e. N). Whereas for the first design, we need to use N sets of the first

architecture that increases its hardware cost by a degree of N.

73

4.5.3 Design Metrics Evaluation and Comparison

Table 4.8 lists the design metrics for the proposed bit-serial architectures and the

state-of-the-art architectures that were surveyed in Chapter 2 including the designs of

Yap and MaCcany (2004), Ou et al. (2005), Y.-C. Chen et al. (2006), Li and Leong

(2008), Lopez et al. (2008), and Lim & Park (2009). Since the required operating

frequency, maximum throughput, and memory bandwidth are affected by the search

range, frame size, the number of reference frames, and frame rate, and in order to

provide a reasonable comparison, the given design metrics in Table 4.8 are for the same

specifications i.e. a [-16, 15] search range, 352×288 frame size, one reference frame,

and 30 fps.

Regarding the algorithm quality metric, because of using the FS IME algorithm, all

of the architectures in Table 4.8 achieve the highest coding performance. Note that

owing to the use of optimization methods, our bit-serial architectures have a very

negligible quality degradation that is only about 0.05 dB PSNR in average. However,

when considering the advantages of the optimization methods that were explained in

Section 4.4, this quality loss can be ignored.

As seen in Table 4.8, due to the optimized bit-serial architectures, the area costs of

our designs are lower than the previous architectures except for “(16, 1) arch” design of

Lopez et al. However, “(16, 1) arch” requires much higher memory bandwidth and has

much lower throughput than our designs. In addition, compared with prior low cost

designs (i.e. 1-D architectures (J. Kim & Park, 2009; Lopez et al., 2008; Yap &

McCanny, 2004) and MSB bit-serial architecture (Li & Leong, 2008), our bit-serial

architectures need the lowest number of cycles for processing one search candidate (i.e.

5 cycles), and thus they outperform other designs in terms of the required frequency and

the maximum throughput. When our design is compared with 2-D designs (i.e. the

designs of Ou et al. and Y.-C. Chen et al.), our architectures need a higher clock

74

frequency for real-time encoding of the above-mentioned specifications due to serial

operation. However, the hardware costs of our designs are much lower than 2-D

architectures. The reason is that these 2-D architectures consist of 256 bit-parallel PEs

and therefore need to lower clock frequencies to meet the real-time constrains of Table

4.8. In addition, these 2-D architectures have higher throughputs relative to our designs

at the price of higher silicon areas. Please note that by using hardware parallelism, as

described in subsection 4.5.2, we can achieve higher throughput rate with reasonable

hardware cost.

Another important design parameter is the memory bandwidth that is defined as the

required number of bits that an MB has to read from memory. In fact, the memory

bandwidth is affected by the level of data reusing so that a higher level of data reusing

leads to a lower memory bandwidth. Among all of architectures in Table 4.8, the

proposed Bit-Serial Adder Tree design has the lowest memory bandwidth due to pixel

truncation and data reusing in the vertical and horizontal directions enabled by the

reconfiguration reference buffer. In addition, the first design outperforms the 1-D and

MSB bit-serial architectures as it uses the pixel truncation and broadcasting of reference

data whereas the 1-D designs only use broadcasting technique and the MSB bit-serial

architecture does not benefit from the reconfigurable reference buffer or data

broadcasting technique.

Regarding the hardware utilization, when ignoring the start up cycles, all of the

architectures in Table 4.8 are approaching 100% hardware utilization except the design

of Li and Leong (2008) that includes 761 cycles on-line delay for calculating the SAD

of each MB that takes 18432 cycles.

75

Table ‎4.8 : Design metrics evaluation and comparison.

Architecture Design Metrics

Yap and MaCcany (2004): 1-

D architecture with 16 PEs.

Quality loss (dB PSNR) -0.00

Silicon area (K gates) 61

Operating frequency (MHz) 194.6

Maximum Throughput (MB/s) 17,944

Memory bandwidth (Kbits/MB) 4,194

Hardware utilization (%) 100

Ou et al. (2005): 2-D

architecture with 256 PEs

Quality loss (dB PSNR) -0.00

Silicon area (K gates) 597

Operating frequency (MHz) 12.16

Maximum Throughput (MB/s) 195,312

Memory bandwidth (Kbits/MB) N/A

Hardware utilization (%) 100

Y.-C. Chen et al. (2006): 2-D

parallel adder tree

architecture with 256 PEs.

Quality loss (dB PSNR) -0.00

Silicon area (K gates) 88.6

Operating frequency (MHz) 12.16

Maximum Throughput (MB/s) 106,250

Memory bandwidth (Kbits/MB) 139

Hardware utilization (%) 100

Li and Leong (2008): MSB

bit-serial design with 256

PEs.

Quality loss (dB PSNR) -0.00

Silicon area (K gates) 55

Operating frequency (MHz) 274

Maximum Throughput (MB/s) 22,786

Memory bandwidth (Kbits/MB) 4718

Hardware utilization (%) 95.87

Lopez et al. (2008): 1-D

architectural template

Quality loss (dB PSNR) -0.00

Silicon area (K gates) 33.41/21.3

Operating frequency (MHz) 100

Maximum Throughput (MB/s) 5,910

Memory bandwidth (Kbits/MB) 541/2,166

Hardware utilization (%) 100

Lim and Park (2009): 1-D

architecture with 16 PEs.

Quality loss (dB PSNR) -0.00

Silicon area (K gates) 39.2

Operating frequency (MHz) 195

Maximum Throughput (MB/s) 25,390

Memory bandwidth (Kbits/MB) 4,194

Hardware utilization (%) 100

Our first design: 2-D bit-

serial architecture with 128

PEs.

Quality loss (dB PSNR) -0.05

Silicon area (K gates) 29.28

Operating frequency (MHz) 60.8

Maximum Throughput (MB/s) 85930

Memory bandwidth (Kbits/MB) 163

Hardware utilization (%) 100

Our second design: Bit-serial

adder tree architecture with

128 PEs.

Quality loss (dB PSNR) -0.05

Silicon area (K gates) 31.5

Operating frequency (MHz) 60.8

Maximum Throughput (MB/s) 83390

Memory bandwidth (Kbits/MB) 87

Hardware utilization (%) 100

76

4.6 Summary

In this section, we have presented two low cost bit-serial H.264 IME architectures

and addressed the advantages and challenges of the bit-serial structure. Our

architectures benefit from SAD and data reusing techniques reducing their memory

bandwidth. The first design has a 2-D structure featured with broadcasting of reference

pixel data and propagating of partial sum and SAD results. The second design uses 2-D

bit-serial adder tree connected to a reconfigurable reference buffer making it suitable for

hardware parallelism. With the aim of solving the design challenges of bit-serial

architectures and in order to improve the performance of the proposed designs, we have

used several optimization methods including pixel truncation scheme and word length

reduction technique, mode filtering, 1/2-subsampling and a power reduction method for

the reconfigurable reference buffer. These optimization methods significantly improve

the performance of our designs in terms of area cost, memory bandwidth, throughput,

and power consumption. The experimental results show that the proposed designs can

process real-time VBS IME of CIF resolution with [-16, 15] search range, one reference

frame and 30 fps at 60.8 MHz and with less than 32 K gates. Finally, the performance

evolution and comparison with the previous representative designs have been provided

showing the advantages and weaknesses of our designs relative to them.

77

Chapter 5

Algorithm Analysis and Bit-Serial Architecture

Design for Sub-Pixel Motion Estimation in H.264

5.1 Introduction

H.264/AVC employs SME with quarter-pixel accuracy that can improve R-D

efficiency by 4 dB PSNR (T.-C. Chen et al., 2004). However, as described in Chapter 3,

the computational load and the memory bandwidth of the quarter-pixel accurate ME are

highly extensive due to the use of VBS, MRF, interpolation scheme for producing sub-

pixel values, two sub-pixel search steps, and matching process. In addition, as seen in

the H.264/AVC reference software, MB processing in the SME algorithm is usually

sequential with a lot of data dependency, which is not suitable for hardware

implementation. From the hardware point of view, the above problem restricts the

degree of parallelism at the architecture level, which in turn decreases the processing

capability (i.e. throughput) of the design. Consequently, the hardware architecture may

not be able to meet the required throughput of real-time applications, especially for

HDTV resolution. Therefore, design of fast algorithms and efficient hardware

architectures for the H.264/AVC SME are required for real-time applications. Besides,

all of the SME designs in the literature (i.e. the reviewed designs in Chapter 3) use

parallel data path to increase their processing capability at the price of higher area costs

and pin counts. Consequently, they may not be suitable for area-constrained

applications.

78

In this chapter motivated by the above-mentioned issues, we propose a fast SME

algorithm and its low cost architecture requiring low computational complexity and

memory access requirement. The proposed algorithm is based on parabolic interpolation

free algorithms (Suh & Jeong, 2004). We review parabolic interpolation free algorithms

and extend their accuracy from half-pixel to quarter-pixel. In addition, we analyze the

computational complexity and the memory bandwidth requirement of the H.264 SME in

the reference software and the proposed algorithm. According to our analysis, the

proposed algorithm significantly reduces the computational budget and the memory

requirement in comparison with the interpolate and search method in the reference

software with an acceptable video quality. Besides, to lower the computational

complexity and the memory bandwidth further, we propose a fast version of the

proposed algorithm along with SAD truncation and mode filtering techniques. For the

hardware architecture design, we choose bit-serial structure for implementing our

algorithm to benefit from its advantages. In addition, we use reusability, source sharing,

and power saving techniques in our architecture that lead to area saving and power

consumption reduction. Our architecture can support real-time HD1080 format with

20.3 K gates at the operation frequency of 88.3 MHz.

The rest of this chapter is organized as follows. Section 5.2 reviews the parabolic

based SME algorithms and presents the details of the proposed algorithm. In Section

5.3, the computational budget and the memory access requirement of the proposed

algorithm and the standard interpolate and search method are analyzed. Section 5.4

presents the proposed optimization techniques that reduce the computational complexity

of the proposed algorithm. In Section 5.5, the proposed bit-serial architecture for

quarter-pixel accurate ME is described and our power saving technique is presented. In

Section 5.6, the experimental results and comparison between our design and the

79

previous architectures are provided. Finally, Section 5.7 gives a summary of this

chapter.

5.2 The Proposed Low Complexity Algorithm

5.2.1 Review of Parabolic Interpolation Free Algorithms

Suh and Jeong (2004) introduced five mathematical models (i.e. Model 1, Model 2,

Model 3, modified Model 2, and modified Model 3) for calculating of the sub-pixel

motion vectors, which the complexity as well as the performance of each model

depended on its order. To compute the coefficients of models, the SAD values of the

neighboring positions around the best integer motion vector were used. After calculating

the coefficients, the sub-pixel SAD values around the best integer motion vector were

obtained. Then, the lowest sub-pixel SAD value determined the best sub-pixel MV. Due

to avoiding of sub-pixel interpolation in the proposed models, their computational load

and memory bandwidth were significantly reduced. Among the proposed models,

Model 1 achieves the best coding performance due to considering all eight neighboring

positions around the best integer motion vector at the price of more complexity. From

the hardware point of view, Model 1 and Model 2 are more suitable than the other

models. Please note that all of these five models only support half-pixel accuracy and do

not involve the new coding tools of the H.264/AVC standard such as quarter-pixel

accuracy motion vector, VBS, and Lagrangian mode decision. Therefore, for supporting

the H.264/AVC SME with quarter-pixel accuracy, a new parabolic interpolation free

algorithm is required. In the next sub-section, we explain our SME algorithm with

quarter-pixel accuracy, which is based on Model 1 due to its good coding performance

and suitability for hardware implementation.

80

5.2.2 The proposed Nine-Five Model Algorithm

Our algorithm is based on Model 1, which we extend its accuracy form half-pixel to

quarter-pixel featured VBS and Lagrangian mode decision coding tools. Due to the use

of nine and five search points in half and quarter-pixel refinements, respectively, we

name it nine-five model (NFM) algorithm. In Figure 5.1, suppose that after coarse IME,

the SAD values of the best integer MV (IMV)candidate and its eight neighboring

integer-pixels are known (i.e. (0,0) and ((-1,-1), (0,-1), (1,-1), (-1,0), (1,0), (-1,1), (0,1),

(1,1)), respectively).

Figure ‎5.1 : The search pattern of the proposed algorithm for sub-pixel motion estimation.

We define the following equation as a parabolic surface function of SAD values.

)1.5().,(),(),(

),(98
2

76
2

54
2

3
2

2
22

1

yxQSADyxHSADyxISAD

AyAyAxAxAxyAxyAyxAyxAyxSAD





(-1, -1) (0, -1)

(0, 1)

(-1, 1)

(-1, 0)

(1, -1)

(1, 0)

(1, 1)

Integer pixel Half-pixel

Quarter-pixel

81

In this equation ISAD, HSAD, and QSAD represent integer, half-pixel, and quarter-

pixel SAD amounts, respectively. By using the nine integer SAD values, all nine

coefficients of equation (5.1) (i.e. A1-A9) can be calculated from equation (5.2) and

equation (5.3).

)2.5(.

111111111

111000000

1111-11-1-11

100110000

100000000

1001-1000 0

11-1111-11- 1

11-1000000

11-11-111-1-1

)1,1(

)1,0(

)1,1(

)0,1(

)0,0(

)0,1(

)1,1(

)1,0(

)1,1(

9

8

7

6

5

4

3

2

1





















































































































A

A

A

A

A

A

A

A

A

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

By calculating the inverse matrix of equation (5.2), A1-A9 coefficients are obtained

from equation (5.3).

)3.5(.

)1,1(

)1,0(

)1,1(

)0,1(

)0,0(

)0,1(

)1,1(

)1,0(

)1,1(

000010000

02/1000002/10

02/1001002/10

0002/102/1000

0002/112/1000

4/104/10004/104/1

4/104/12/102/14/104/1

4/12/14/10004/12/14/1

4/12/14/12/112/14/12/14/1

9

8

7

6

5

4

3

2

1





































































































































A

A

A

A

A

A

A

A

A

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

ISAD

Now by substituting A1-A9 and the values of -0.5, 0, and 0.5 for x, y in equation (5.1),

the motion compensation (MC) prediction errors at the neighboring half-pixel positions

(i.e. HSAD1-HSAD9) can be calculated from equation (5.4).

82

)4.5(.

12/14/12/14/18/14/18/116/1

12/14/1000000

12/14/12/14/18/14/18/116/1

1002/1004/100

100000000

1002/1004/100

12/14/12/14/18/14/18/116/1

12/14/1000000

12/14/12/14/18/14/18/116/1

)5.0,5.0(

)5.0,0(

)5.0,5.0(

)0,5.0(

)0,0(

)0,5.0(

)5.0,5.0(

)5.0,0(

)5.0,5.0(

9

8

7

6

5

4

3

2

1































































































































A

A

A

A

A

A

A

A

A

HSAD

HSAD

HSAD

HSAD

HSAD

HSAD

HSAD

HSAD

HSAD

Then, the total coding costs of all half-pixel candidates are calculated using the

estimated SAD and the coding cost of the corresponding MV:

J=HSAD + λ × R . (5.5)

where λ is the Lagrangian multiplier, which is a function of quantization parameter (QP)

and R is the total number of bits required for coding the MV information. The minimum

J determines the optimal half-pixel accurate MV. After finding the optimal half-pixel

accurate MV, we use a cross pattern around that to find the quarter-pixel accurate ME

similarly (see Figure 5.1). By substituting the values of -3/4, -1/2, 0, 1/2, and 3/4 for x,

y in equation (5.1), the SAD’s values at quarter-pixel positions (QSADs(x, y)) can be

calculated. Finally, by using the equation (5.5) (where HSAD is replaced by QSAD), the

optimal quarter-pixel accurate MV is obtained.

83

5.3 Computational Complexity and Memory Access Analysis

This section presents a direct approach for calculating the computational complexity

(CC) and the memory access (MA) requirement of the SME algorithm in the reference

software and the proposed algorithm. All of the calculations are based on macroblock

(MB) as the MB processing is adopted in the H.264/AVC video coding systems. Based

on our analysis, we can approximately estimate the required computation and the

memory access of a certain specification (CS) in terms of its MB rate. The results of our

analysis reveal that the computational budget and the memory access requirement of the

proposed algorithm is much lower than the interpolate and search method in the

reference software.

5.3.1 Analysis of Computational Budget

Here, the computational complexity is calculated in terms of the number of the

required operations for one n×m block (i.e. 4×4 or 4×8 or 8×8 or 8×16 or 16×8 or

16×16 block) in the quarter-pixel accurate ME process. The computational complexity

of the interpolate and search method in the reference software for one n×m block

consists of the following terms: interpolation, search, and matching process for the half-

pixel (HP) and the quarter-pixel (QP) refinements. The whole computational

complexity can be formulated as follows:

CCtotal(n×m) = CCHP(n×m) + CCQP(n×m). (5.6)

The total numbers of half and quarter-pixels in the interpolation process for one n×m

block can be calculated from equations (5.7) and (5.8), respectively.

Hn×m=3n×m+2(n+m) +1. (5.7)

Qn×m=12n×m+10(m+n) +10. (5.8)

84

Note that in these equations, Hn×m and Qn×m represent the number of half-pixels and

quarter-pixels within a search range of [-0.5, 0.5] and [-0.75. 0.75] for an n×m block,

correspondingly.

By considering the 6-tap filter, which is used in the half-pixel refinement, producing

one half-pixel requires six add/subtract operations and one shift operation. For the

quarter-pixel refinement with 2-tap linear filter, generating one quarter-pixel needs two

add operations and one shift operation. The search range in the quarter-pixel ME is

limited to (-1, +1) and 17 search points in total are checked. Therefore, one n×m block

requires n×m×17 subtractions, n×m×17 absolute operations to calculate the absolute

differences, n×m×17-17 additions to sum up the differences, and at least two

comparisons for finding the best position with minimum distortion. Therefore, the

computation complexity of one n×m block can be approximated, as given in equation

(5.9).

CC(n×m) ≈ 7 Hn×m+3 Qn×m + (n×m×51-15)search and match ≈ 108 n×m + 37 (m+n) + 22.

(5.9)

As for the NFM algorithm, its computational complexity for one n×m block is only

84 add, 16 shift and one comparison operations in the half-pixel stage, and, 168 add, 24

shift, and one comparison operations in the quarter-pixel stage. The computational

complexity of different block sizes and for an MB with 41 modes in the interpolate and

search method and the NFM algorithm are given in Table 5.1.

Taking into account 41 blocks in each MB, the computational complexity of an MB

can be expressed by equation (5.10).

85

Table ‎5.1 : The computational complexity of the interpolate and search method and the

NFM algorithm for different block sizes.

Block size Number of operations (1) Number of operations (2)

16×16 28854 294
8×16 14734 294

8×16 14734 294

8×8 7526 294

8×4 3922 294

4×8 3922 294

4×4 2046 294

MB (41 modes) 213382 12054

(1) Interpolate and search method; (2) NFM algorithm

Now, by using equation (5.10), the computational complexity of a certain

specification (CS) can be formulated, as shown in equation (5.11).

CCCS ≈ CCMB × ((W×H)/256) × (# reference frame) × (# frame per second)). (5.11)

where the W and H stand for width and height of the given frame size and (W×H)/256

term determines the number of MBs in each frame. Table 5.2 lists the computation

complexity of the NFM algorithm and the search and interpolate SME algorithm in the

H.264 reference software for some specifications. From the results of Table 5.2, we can

see that when all VBS are considered, the NFM algorithm can save 94.35% of the

computational complexity in comparison to the interpolate and search method for the

same specification. When a lower number of VBS modes are used, which are usually

higher block sizes, the NFM algorithm can even save more computations. As an

example consider the last row of Table 5.2 where only 8×8 and above modes are

employed. In this case, the NFM algorithm saves 97.76% of the computational

complexity relative to interpolate and search scheme. The reason is that the NFM

algorithm requires a certain number of operations (i.e. 294 operations) for each block

size whereas the interpolate and search method requires more computations for the

higher block sizes, as shown in Table 5.1.

86

Table ‎5.2 : The computational complexity of the interpolate and search method and the

NFM algorithm for some specifications.

Specifications Features CCInterpolate & search CCNFM

QCIF(15 fps) VBS(all), MRF(5) 1,584.3×10
6
 89.5×10

6

CIF(30 fps) VBS(all), MRF(5) 12,674.8×10
6
 716×10

6

SD480p(30 fps) VBS(all), MRF(5) 43,209.8×10
6
 2,440.9×10

6

HD1080p(30 fps) VBS(all), MRF(5) 259,259.1×10
6
 14,646×10

6

HD1080p(30 fps) VBS(8×8-16×16), MRF(2) 57,296.4×10
6
 1,286×10

6

The low computational complexity characteristic of the NFM algorithm provides an

attractive opportunity for the design of low cost and low power VLSI hardware

architectures for the H.264/AVC SME targeting resource-constrained applications.

5.3.2 Analysis of Memory Access

In addition to the computational complexity, the memory access requirement is

another important issue especially for designs with limited resources. That is because

the memory access requirement affects the traffic load of reading/writing data from/into

system memory, I/O, and interconnection bandwidth, and thus the power consumption

and hardware utilization of the system. We define the memory access requirement in

terms of the number of bits that one n×m block has to access memory and calculate it

for the interpolate and search SME algorithm in the reference software and the proposed

NFM algorithm. Not to mention that the memory access requirement can be reduced by

careful data reusing and data scheduling schemes.

In general, the memory access of one n×m block in the interpolation method can be

divided into two main parts: producing the sub-pixels of reference frame(s) and the

search and match process in the half and quarter-pixel refinements. For producing the

half-pixels of one n×m block, each half-pixel requires six read operations and one write

operation to save the produced half-pixel in the memory. While for producing one

quarter-pixel, it decreases to two read and one write operations. Besides, in total, there

87

are 17 search points in the half and quarter-pixel refinements that each one at least

requires 2×n×m read and 17 write operations for saving the search point results.

Therefore, the memory access requirement of one n×m block in the interpolate and

search method can be calculated by equation (5.12), where each pixel is represented by

8 bits.

MA(n×m) = MAHP + MAQP = [(8×6×n×m + 8×9×n×m)rd +(8×n×m+8×9))wr]HP +

+[(8×2×n×m+8×8×n×m)rd+(8×n×m+8×8)wr]QP. (5.12)

Table ‎5.3 : The memory access of the interpolate and search method and the NFM

algorithm for different block sizes.

Block size MA interpolate and

search

MA NFM

16×16 55432 144

16×8 27784 144

8×16 27784 144

8×8 13960 144

8×4 7048 144

4×8 7048 144

4×4 3592 144

MB (41modes) 392648 5904

As for the NFM algorithm, the memory requirement for one n×m block is reduced to

nine read operations that are needed for reading nine integer SAD values with 16-bit

width. The memory access requirement of different block sizes and for an MB with 41

modes in the interpolate and search method and the NFM algorithm are given in Table

5.3. According to our analysis, the memory access requirement of the NFM algorithm is

only 144 bit per block, which is independent of the block size. Consequently, it can save

98.5% of the memory access requirement compared to the interpolate and search

method for each MB with all its 41 modes.

Similar to the computational complexity, we can calculate the memory access

requirement of a certain specification, as follows:

88

MACS ≈ MAMB ×((W×H)/256) ×(# reference frame) ×(# frame per second). (5.14)

In Table 5.4 the memory access requirement of the interpolate and search algorithm

as well as the NFM algorithm for some specifications are given. As seen in this table,

the NFM algorithm can save 98.5% of the memory access requirement relative to the

interpolate and search method when all 41 modes of MB is enabled. The reason is that

the NFM algorithm avoids the interpolation process that significantly reduces its

memory access requirement. From the hardware point of view, a higher memory access

leads to a higher I/O data bus traffic and interconnection requirements, which have a

significant effect on the performance of the hardware architecture. Besides, reduction of

memory access is very beneficial to power constrained applications because in the

image and video processing systems the data access requirement takes 50%-80% of

power consumption (Y.-H. Chen et al., 2008).

Table ‎5.4 : The memory access of the interpolate and search method and the NFM

algorithm for some specifications.

Specifications Features MAinterpolate & search MANFM

QCIF(15 fps) VBS(all), MRF(5) 2,915.4×10
6
 43.8×10

6

CIF(30 fps) VBS(all), MRF(5) 23,323×10
6
 350.7×10

6

SD480p(30 fps) VBS(all), MRF(5) 79,511.2×10
6
 1,195.6×10

6

HD1080p(30 fps) VBS(all), MRF(5) 477,067.3×10
6
 7,173.4×10

6

HD1080p(30 fps) VBS(8×8-16×16), MRF(2) 108,090.2×10
6
 1,574.6×10

6

89

5.4 Optimization Techniques for Computational Complexity

Reduction

5.4.1 Fast NFM Algorithm

To reduce the computational complexity of the NFM algorithm, we propose fast

NFM (FNFM) algorithm, which is based on exploiting the associativity and the

distributivity characteristics of the equations in the NFM algorithm. By a careful

rearrangement of the NFM’s equations, finding and reusing the common terms, which

participate in calculation of equations, more computation can be saved. In the FNFM

algorithm, during the half-pixel refinement when the coefficients (i.e. A1 - A9) are

produced, they are concurrently reused in the quarter-pixel stage to produce the SAD

values of the quarter-pixels. Further, in the quarter-pixel stage like the half-pixel stage,

the equations are categorized and all common terms are extracted. Then, these common

terms are reused anywhere which is needed. For example in quarter-pixel refinement

and from equation (5.1), QSAD (-1/4,-1/2) is as follow:

QSAD (-1/4,-1/2) = A1/64 - A2/32 - A3/16 + A4/8 + A5/16 - A6/4 +A7/4 - A8/2 +A9. (5.15)

After extracting the common terms in (5.15), the new representation is as follows:

QSAD (-1/4,-1/2) = (A1/64 - A2/32) - (A3/16 - A4/8 + A6/4) + A5/16 - HSAD (-1/2, 0).

(5.16)

Where not only (A7/4 -A8/2+A9) term is replaced by HSAD (-1/2, 0), which is calculated

in half-pixel refinement, but also it and (A1/64-A2/32), (A3/16-A4/8+ A6/4), terms can be

reused in calculation of QSAD (1/4, -1/2):

QSAD (1/4,-1/2) = (A1/64 - A2/32) + (A3/16 - A4/8 + A6/4) + A5/16 - HSAD (-1/2, 0).

(5.17)

90

Table 5.5 shows the computational complexity of the NFM and the FNFM

algorithms. In average, the FNFM algorithm save 46.28% or 96.92% of the

computational complexity for each MB with 41 modes in comparison with the NFM

algorithm or the interpolate and search method. However, both algorithms have similar

coding efficiency. Note that lower computational load leads to lower hardware cost and

power consumption.

Table ‎5.5 : Complexity comparison of the NFM
1
 and the FNFM

2
 algorithms.

Block size Number of operation
1
 Number of operation

2

16×16 294 160
16×8 294 160
8×16 294 160
8×8 294 160
8×4 294 160
4×8 294 160
4×4 294 160
MB (41 modes) 12054 6560

5.4.2 SAD Pixel Truncation and Mode Filtering Techniques

The pixel truncation is well known in literature as a powerful technique for

complexity reduction of block matching ME algorithm with acceptable video quality

degradation. All previous works have been focused on the effect of pixel truncation for

fix and variable block size IME (Bahari et al., 2009; He & Liou, 1997), but none for

SME. In video coding systems, each pixel is generally represented by 8 bits. It has

shown that up to 4 bits can be truncated with a little video quality degradation. Because

of using integer SAD values in the FNFM algorithm, the pixel truncation cannot be used

here. Therefore, we have proposed the SAD truncation technique to reduce the

complexity of the FNFM algorithm. The maximum bit length of integer SAD values is

16 bits, which happens for the SAD calculation of a 16×16 MB. According to our

evaluation, up to 4 bits of SAD values can be truncated with very little video quality

degradation. However, from the hardware point of view, the SAD truncation technique

can lead to area saving and power consumption reduction at hardware implementation.

91

The reason is that the hardware cost of an operation is proportional to its operands bit

length. Therefore, reducing the bit length can lead to lower area and power

consumption.

Our last optimization technique is 4×4 mode filtering that can save 39% of the

computational complexity, memory access, and the processing time of each MB in the

FNFM algorithm. The reason is that there are 16 4×4 modes in each MB (i.e. 39% of

the modes in each MB). Besides, the computational complexity and memory access

requirement of the FNFM algorithm does not depend on the size of blocks and all block

modes are processed in a sequential manner. From a hardware point of view, 4×4 mode

filtering increases the processing ability and lowers the power consumption.

5.5 Bit-Serial Hardware Architecture Design for SME in

H.264/AVC

Generally after selection and evaluation of an algorithm, it is decomposed into its

components to provide insight into how to design the best possible hardware

architecture for it. In our particular case, the FNFM algorithm is decomposed into

addition, subtraction, and shift components. These components can be efficiently

implemented in hardware, either using bit-parallel or bit-serial architectures. Whereas

bit-parallel architectures process n bits (where n is the world length of each data) at

every clock cycle, bit-serial architectures process one bit at each clock cycle. As a

result, bit-parallel architectures are suitable for applications that require high processing

capacity whereas bit-serial architectures are good candidates for application with low to

moderate throughput. Since the FNFM algorithm has very low computational

complexity and memory access requirement, it can be embedded in bit-serial

architecture with small hardware cost while it demonstrates a high processing ability.

92

Due to the above-mentioned advantages and other advantages that were described in

Section 4.2, we choose bit-serial architecture for implementing the FNFM algorithm.

5.5.1 The Proposed Bit-Serial Architecture

The block diagram of the proposed bit-serial architecture for the FNFM algorithm is

shown in Figure 5.2. It consists of four main modules: half-pixel ME, quarter-pixel ME,

control, and MV predictor modules that are described in the following sub-sections.

Figure ‎5.2 : The bock diagram of the proposed bit-serial design for the FNFM algorithm.

5.5.2 Half-Pixel ME Module

This module is responsible for calculating SAD values for half-pixel accurate MVs.

We have proposed bit-serial pipeline architecture for this module, which is an efficient

and compact implementation of the FNFM’s equations. The half-pixel ME module

consists of two parts. In the first part A1 - A9 coefficients are produced that are used in

second part for calculating HSAD1 - HSAD9. The schematic diagrams for the hardware

architecture of these two parts are shown in Figure 5.3 and Figure 5.4, respectively.

MV Predictor

Control

Optimal MV

Integer MV data

Integer SAD valuesHalf-pixel

ME

Quarter-pixel

ME

Serial Adder-Subtractor Tree1

Coefficient’s Shift Registers

Serial Adder-Subtractor Tree2

Input Shift Registers

Serial Adder-Subtractor Tree3

Quarter-pixels Input Shift Registers

93

They only use four basic components: shift registers, bit-serial adders, bit-serial

subtractors, and delay elements.

Shift register are responsible for division operations to produce the fractional terms

that work serially. To avoid overflow and for having the correct calculations, the bit

length of input data (i.e. integer SAD values) are extended by three bits. The next two

components are bit-serial adder and bit-serial subtractor, which are responsible for

addition and subtraction operations.

Figure ‎5.3 : The schematic diagram of the half-pixel module: part one.

Figure ‎5.4 : The Schematic diagram of the half-pixel module: part two.

ISAD9

ISAD1

ISAD8

ISAD7

ISAD6

ISAD5

ISAD4

ISAD3

ISAD2

A2

A3

A4

A5

A6

A7

A8

A9

A1

•Bit-serial adder •Bit-serial subtractor

•Shift register
•Delay element

>> (1b)

>> (1b)

>> (2b)

>> (2b)

>> (1b)

>> (1b)

>> (2b)

>> (2b)

>>

A2

A3

A4

A5

A6

A7

A8

A9

HSAD1

HSAD2

HSAD3

HSAD4

HSAD6

HSAD7

HSAD8

HSAD9

HSAD5

A1

>> (3b)

>> (3b)

>> (2b)

>> (2b)

>> (2b)

>> (4b)

>> (1b)

>> (1b)

94

The schematic diagrams of the bit-serial adder and the bit-serial subtractor are shown

in Figure 5.5 and Figure 5.6, respectively. In each clock cycle one bit of A and the B

inputs are fed into the bit-serial adder, starting from the least significant bits (LSBs).

The produced carry-out (Cout) is kept in a flip flop and is used as carry-in (Cin) to add

with the next coming bits. At the beginning of two new words addition, the Cin should

be set to zero because there is no carry before theirs LSBs to add. In terms of time, the

addition of two n-bit words takes n clock cycles. Due to the use of the two’s

complement representation in our architecture, the subtraction of A-B is replaced by

1 BA . The bit-serial subtractor architecture is shown in Figure 5.6 where B input is

inverted and Cin is set to one at the beginning of two new words subtraction.

Figure ‎5.5 : The schematic diagram of the bit-serial adder architecture.

Figure ‎5.6 : The schematic diagram of the bit-serial subtractor architecture.

The last components which are used in our architecture are D flip flops. Adequate

numbers of D flip flops are used in each part as delay elements to avoid data hazard and

prevent any interference between the successive stages.

+
A R=A+B

FA

Ri=Ai+Bi

B

DFF

CoutCin

Bi

Ai

-
R=A-B FAA

B

Ri=Ai-Bi

DFF

Cout

Cin

Bi

Ai

95

5.5.3 Quarter-Pixel ME Module

The proposed hardware architecture of the quarter-pixel ME module is shown in

Figure 5.7, which its structure is similar to the half-pixel accurate ME module. This

module is responsible for calculating the quarter-pixel accurate SAD values. These

values are used in MV predictor module to find the best quarter-pixel accurate MV. To

save the area further and increase the speed of the design, the calculated coefficients in

the half-pixel accurate ME module (i.e., A1 ~ A9) are reused in this module. In addition,

similar to the half-pixel accurate ME module, the quarter-pixel accurate ME module is

benefitted from the use of the simplified equations that reuse the common terms.

Figure ‎5.7 : The schematic diagram of the quarter-pixel module.

A2

A1

A1

A2

A2

A4

A5

A5

A6/2

A7

A7

A9

A2/8

A3

A3

A3

A3/8

A4/4

A6

A8

A8/2

HSAD2

HSAD4

HSAD6

HSAD8

QSAD3

QSAD19

QSAD7

QSAD21

QSAD1

QSAD5

QSAD20

QSAD18

QSAD15

QSAD17

QSAD2

QSAD6

QSAD22

QSAD8

QSAD10

QSAD24

QSAD14

QSAD11

QSAD12

QSAD13

QSAD23

QSAD4

QSAD16

QSAD9

>> (4b)

>> (2b)

>> (5b)

>> (3b)

>> (6b)

>> (3b)

>> (2b)

>> (5b)

>> (4b)

>> (1b)

>> (2b)

>> (1b)

>> (4b)

>> (2b)

96

5.5.4 Control and MV Predictor Modules

The last two modules of our bit-serial architecture are the control and the MV

predictor modules. The control module is responsible for coordinating the tasks of the

other modules, synchronization between them, and management of the data flow within

the system. In general, Finite State Machine (FSM) is used for implementing the control

module, which uses counters for transition between its states. These counters are usually

increased or decreased by one at a time and their outputs are used for controlling the

other modules through the system. This approach has two disadvantages: first, the

transition number between the state bits is so large that leads to more dynamic power

consumption. Second, due to the distribution of control signals throughout the system

with different propagation delays, it is possible that the received codes go through

unwanted state. To deal with these disadvantages, in our design we use Gray counter in

which only one bit is changed at a time during counting. As a result, only one transition

is done between states, which not only reduces the power consumption but also

decreases the probability of the wrong states.

The MV predictor module is responsible for finding the optimal MVs with half-pixel

and quarter-pixel accuracies, which is based on equation 5.5. The bit-serial hardware

architecture design for this module is a tough problem due to its complex structure and

consequently it has lower throughput and performance in comparison to the previous

discussed modules. Therefore, the MV predictor module requires a dedicated

architecture to avoid performance degradation of the whole design. To cope with this

problem, we have designed bit-parallel pipeline architecture for the MV predictor

module at the price of more area cost and lower operating frequency.

97

5.5.5 The Proposed Power Reduction Technique

Two kinds of shift registers are used in our architecture including shift right

arithmetic registers (SRARs) and shift right register (SRRs). Nine shift registers as the

inputs of Figure 5.3, nine shift registers as the inputs of Figure 5.4, and 25 shift registers

as the inputs of Figure 5.7 are SRARs. Nine shift resisters as the outputs of Figure 5.4

and 24 shift registers as the outputs of Figure 5.7 are SRRs. At each clock cycle, our

architecture only needs one bit from every shift register, but 15 bits are shifted inside

each shift registers that increase the power consumption.

To save the power consumption, we propose a new power reduction technique for

SRRs, which is named as Demultiplexers-Registers Combination (DRC). The proposed

power reduction technique saves a significant part of power consumption in SRRs. In

Figure 5.8, the DRC technique is illustrated by an example for nine shift resisters as the

outputs of Figure 5.4. In the left side of Figure 5.8, m n-bit SRRs are working in parallel

that for the above-mentioned example m and n are nine and 15, respectively. In each

SRR, at the first clock cycle one bit is shifted to the right and this will be repeated until

n
th

 clock cycle. At the next clock cycle, all bits of each SRR are placed at their outputs,

which are used in the MV predictor module and this procedure is periodically repeated.

Therefore, at each clock cycle 9×15 bits are shifted that lead to a lot of power

consumption. To reduce the power consumption, we propose the DRC technique with

the same functionality of SRRs, which its architecture is shown in the right side of

Figure 5.8. In this architecture R1-Rn are m-bit registers with enable signals, and for the

above-mentioned example, m and n are 9 and 15. At the first clock cycle, 9 bits are

placed into the one register starting from R1. Note that the inputs of R1-Rn are connected

together and the right register at the proper clock cycle is chosen by enable signal. In

this method, the job of demultiplexer is done by the enable signals that leads to area

saving and power reduction.

98

5.6 Experimental Results and Comparison

5.6.1 Simulation Results

To evaluate the performance of the proposed algorithm and optimization methods,

we embed them into the H.264 reference software and assess them with several image

sequences videos at the following test conditions:

 The search range is [-16, 16].

 The number of reference frames is 1.

 Rate-distortion optimization is on.

 Frequency for encoded bit stream is 30.

 Number of coded pictures is 300 for all sequences.

Table 5.6 shows the simulation results of the FNFM algorithm compared with the

integer motion estimation of H.264 and Model 1 algorithm (Suh & Jeong, 2004) with

half-pixel accuracy where our algorithm significantly outperforms them. For instance,

compared to the full search IME and Model 1 algorithms, the proposed algorithm can

typically lead between (0.9-4.2)/(0.3-1.6) dB PSNR improvement or (19%-50%)/(9%-

26%) in bit rate reduction, respectively.

data shifting

d1 d0dn-1

d1 d0dn-1

d1 d0dn-1

in
p

u
t d

at
a

SRR1

SRR2

SRRm

R1

R2

Rn

m bits

1 bit

1 bit

1 bit

Figure ‎5.8 : Illustration of DRC technique.

99

Table ‎5.6 : Comparison between the proposed SME algorithms and the full search IME.

Sequence
FNFM vs. IME FNFM vs. Model 1

Δbit rate ΔPSNR Δbit rate ΔPSNR

Akiyo -31.20% 1.92 dB -14.18% 0.79 dB

Carphone -24.04% 1.29 dB -9.16% 0.46 dB

Foreman -42.67% 2.02 dB -15.07% 0.60 dB

Mobile -50.74% 4.19 dB -25.58% 1.57 dB

News -24.53% 1.47 dB -11.52% 0.63 dB

Salesman -19.24% 1.04 dB -8.90% 0.47 dB

Stefan -34.32% 2.69 dB -13.42% 0.90 dB

Tennis -21.78% 0.93 dB -9.00% 0.36 dB

In addition to the original half-pixel interpolation free algorithm and the full search

integer motion estimation algorithm, we compare our algorithm to the quarter-pixel

accurate interpolate and search algorithm of the H.264 reference software for 4CIF and

HD1080 test sequences, as shown in Figures 5.9 and 5.10. Besides, since our algorithm

has a low complexity feature, we compare it to the all-binary algorithm (Celebi et al.,

2008) as another low complexity algorithm. Figures 5.11 and 5.12 show the

comparisons of rate-distortion curves between the FNFM, optimized FNFM, all-binary,

and search and interpolate SME algorithms for Tennis (CIF) and Foreman (Source

Input Format (SIF)) test sequences where all of these algorithms have quarter-pixel

accuracy. In this figures, the rate-distortion curves of the all-binary algorithm are

borrowed from the work of Celebi et al. (2008).

As seen in Figures 5.9 and 5.10, the FNFM algorithm has a small quality drop

relative to the H.264 interpolate and search method. In addition, it significantly

outperforms the all-binary SME algorithm in terms of video quality. According to our

simulation results, the average PSNR loss of our algorithm compared to the interpolate

and search method is less than 0.38 dB. However, as shown in Section 5.3, our

algorithm reduces more than 96% of the computation budget and the memory access

compared with the interpolate and search method. Compared to the FNFM algorithm, its

100

optimized version leads to a negligible quality drop (i.e. less than 0.06 dB PSNR). In

addition, from the hardware point of view, the proposed optimization techniques lead to

area cost reduction and power consumption saving at the hardware side.

35

36

37

38

39

40

41

42

43

44

45

2000 4000 6000 8000

P
S

N
R

 (
d
B

)

Bit rate (Kbps)

Crew (4CIF)

Interpolate and search

Optimized FNFM

38

38.5

39

39.5

40

40.5

41

41.5

42

42.5

43

6000 11000 16000 21000 26000

P
S

N
R

 (
d
B

)

Bit rate (Kbps)

Rush-Hour (HD1080)

Interpolate and search

Optimized FNFM

Figure 5.9 : R-D plot of Crew test sequence for interpolate and search SME and

optimized FNFM algorithms.

Figure 5.10 : R-D plot of Rush-Hour test sequence for interpolate and search SME and

optimized FNFM algorithms.

101

26

27

28

29

30

31

32

33

34

35

36

37

50 150 250 350 450 550

P
S

N
R

 (
d

B
)

Bitrate (Kbps)

Foreman (SIF)

FNFM

Optimized FNFM

Interpolate and search

All_binary (Celebi et al., 2008)

24

25

26

27

28

29

30

31

32

33

50 150 250 350 450 550

P
S

N
R

 (
d

B
)

Bitrate (Kbps)

Tennis (CIF)

FNFM

Optimized FNFM

Interpolate and search

All_binary (Celebi et al., 2008)

Figure ‎5.11 : Comparison of RD curves between FNFM, optimized FNFM,

interpolated and search, and all-binary algorithms for Tennis test sequence.

Figure 5.12 : Comparison of RD curves between FNFM, optimized FNFM,

interpolated and search, and all-binary algorithms for Foreman test sequence.

102

5.6.2 Implementation Results and Comparison

The proposed SME architecture with the quarter-pixel accuracy for H.264/AVC is

implemented in Verilog HDL and synthesized in Silterra 0.18 μm technology using

Synopsys Design Compiler. The proposed architecture costs at 20.3 K gates and

approaches 100% hardware utilization, which is suitable for area-constrained

applications. Due to the interpolation free feature of the proposed algorithm, the

memory bandwidth of the proposed design is very small (i.e. 2.7 Kbits). The reason is

that for calculating the SME motion vector of each mode, the proposed algorithm needs

9 12-bit SAD values. Therefore, the memory bandwidth of each MB with 25 modes

required 9×12×25 = 2.7 Kbits. The proposed design can process one block with any

given size in 15 clock cycles. As a result, the proposed architecture is able to process

one MB with 41 modes or 25 modes (i.e. when 4×4 mode filtering is applied) in 615 or

375 clock cycles, respectively. With a maximum clock frequency of 255 MHz, our

design can process up to 414 K MB/s or 680 K MB/s with 41 or 25 modes in each MB,

respectively. Consequently, our design is able to support SME of HD1080 format with

one reference frame, 30 fps and with 41 or 25 modes in each MB at the clock frequency

of 149.44 MHz or 88.3 MHz.

In addition to HD1080 format, the proposed architecture can be reused for other

formats with different specifications. Table 5.7 shows some examples and their

specifications. Not to mention that by using the hardware parallelism, the proposed

architecture can support higher resolutions. For example, as shown in case (g) of Table

5.7, two sets of the proposed design can support quarter-pixel accurate ME of quad full

HD (QFHD) resolution (i.e. 4096×2160) with all blocks modes except 4×4 modes, one

reference frames and 30 fps under the clock frequency of 199.4 MHz.

Comparison between the proposed architecture and the previous SME hardware

architectures are shown in Table 5.8. This comparison is based on the introduced design

103

metrics of Chapter 3 including algorithm quality, silicon area, operating frequency, and

throughput. Regarding the algorithm quality, among all of the SME architectures, the

proposed design has the highest quality lost that is about 0.37 dB on average. However,

this amount of quality loss can be acceptable especially when considering the

advantages of the proposed algorithm. For instance, compared with other designs the

proposed design has the lowest computational complexity and memory access

requirement due to its interpolation free characteristic.

On the subject of silicon area, the proposed design significantly outperforms the

other architectures. To be more specific, we provide the percentage of the improvement

for our architecture relative to the previous designs in terms of area reduction. This

improvement is obtained from the difference of the areas of the two designs divided by

the area of the used architecture. According to our calculation, the proposed architecture

provides between 57.71%-95.47% improvement in terms of area reduction relative to

the prior designs. The reason is that our architecture is based on the interpolation free

algorithm with very small computational complexity and uses bit-serial structure for

hardware implementation. Please note that the lower hardware cost is beneficial to

power consumption and can lead to dynamic power and static power reduction, as

described in Section 4.2.

Table ‎5.7 : Reusing of the proposed SME architecture in other specifications.

Case Specifications(1)
Throughput

K MB/s

Frequency

MHz

(a) QCIF(VBS(all) and MRF(5)) 14.85 K MB/s 9.13

(b) CIF(VBS(all) and MRF(5)) 59.4 K MB/s 36.53

(c) SD576(VBS(all) and MRF(5)) 243 K MB/s 149.44

(d) HD720(VBS(all) and MRF(1)) 108 K MB/s 66.4

(e) HD720(VBS(all except 4×4) and MRF(5)) 540 K MB/s 202.50

(f) HD1080(VBS(all except 4×4) and MRF(2)) 486 K MB/s 182.25

(g) QFHD(VBS(all except 4×4) and MRF(1)) 1036 K MB/s 194.4(2)
(1)

 With 30 fps.
(2)

 Using two SME architectures.

104

The next design metric is operating frequency that is affected by the frame size and

the number of the supported block modes in each design. When a higher frame size and

more block modes are used, the processing time is increased. As a result, for meeting

the real-time constraint, the clock frequency should be increased too. Please note that a

lower operating frequency usually means a lower dynamic power consumption.

Therefore, lowering the working frequency can be advantageous for low power

applications. Among all of the designs in Table 5.8, only the work of T.-Y. Kuo et al.

(2007) has a lower operating frequency than the proposed design. The reason is that

their design is able to support HD720 format but not higher resolutions. In a similar

scenario, our design can support HD720p format at the operating frequency of 66.4

MHz (i.e. case (d) in Table 5.7).

The last design metric is throughput that depends on the number of processed modes

in each MB as well as the operating frequency. As seen in Table 5.8, only the work of

Tsung et al. (2009) achieves a higher throughput than ours. However, this advantage

comes at the price of the highest area cost. For example, the design of Tsung et al.

(2009) occupies 22.06 × higher area cost relative to our design. In addition, this design

avoids half-pixel interpolation to reduce the processing time. As a result, it needs

another unit for handling the luminance motion compensation. Besides, by using

hardware parallelism, our design can achieve a higher throughput than the work of

Tsung et al. (2009) with much lower area cost, as shown in case (g) of Table 5.7.

Compared to the previous SME designs, the proposed design demonstrates a good

performance in terms of design metrics, computational complexity and memory access

requirement, however; it has a disadvantage. Since our algorithm avoids interpolation,

our approach needs an interpolation unit for motion compensation. Fortunately, this is

not a serious problem. Analysis of SMV by Y.-J Wang et al. (2007) reveals that more

than 90% of the SMV is at the search center in all kinds of video content. This means

105

that in most cases after the SME the SMV and the IMV are the same. Therefore, only a

small portion of the sub-pixels is required to be interpolated after the SME. As a result,

the required interpolation unit of our method could be small. In other words, it should

roughly save about 90% of area and power consumption compared to the interpolation

units of the previous designs.

Table ‎5.8 : Design metrics evaluation and comparison of SME architectures.

Architecture Design Metrics

Y.-C. Chen et al. (2004) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 79.3

Operating frequency (MHz) 100

Throughput (MB/s) 49 K

C. Yang et al. (2006) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 189

Operating frequency (MHz) 200

Throughput (MB/s) 250 K

Wu et al. (2010) Quality loss (dB PSNR) -0.00

Silicon area (K gates) 311.7

Operating frequency (MHz) 154

Throughput (MB/s) 250 K

Y.-J Wang et al. (2007) Quality loss (dB PSNR) -0.1 to -0.2

Silicon area (K gates) 48

Operating frequency (MHz) 100

Throughput (MB/s) 50 K

Song et al. (2007)

Quality loss (dB PSNR) -0.1

Silicon area (K gates) 203.2

Operating frequency (MHz) 200

Throughput (MB/s) 250 K

T.-Y. Kuo et al. (2007)

Quality loss (dB PSNR) -0.043

Silicon area (K gates) 62.2

Operating frequency (MHz) 70

Throughput (MB/s) 71.3 K

Tsung, Chen, Ding, Tsai et

al et al. (2009)

Quality loss (dB PSNR) -0.02

Silicon area (K gates) 448

Operating frequency (MHz) 280

Throughput (MB/s) 830 K

Our design Quality loss (dB PSNR) -0.37

Silicon area (K gates) 20.3

Operating frequency (MHz) 88.3

Throughput (MB/s) 680 K

106

5.7 Summary

The sub-pixel motion estimation, together with the interpolation of reference frames,

is a computationally extensive part of the H.264 encoder that increases the memory

access requirement 16-times for each reference frame. Due to the huge computational

complexity and the memory access requirement of the H.264 SME, its hardware

architecture design is a challenging job especially for area-constrained applications with

medium and large resolutions. To solve the above difficulties, we proposed an algorithm

and its hardware architectures along with several optimization techniques. In algorithm

level, we presented the NFM for SME with quarter-pixel accuracy, which reduced the

computational budget by 94.35% and the memory access requirement by 98.5% in

comparison to the standard interpolate and search method. In addition, a fast version of

the proposed algorithm (i.e. the FNFM algorithm) was contributed that reduced the

computational budget 46.28% further while maintaining the video quality. In the

architecture level, we introduced a novel bit-serial architecture for our algorithm. Due to

advantages of the bit-serial architecture, it has a low gate counts, high speed operation

frequency, low density interconnection, and a reduced number of I/O pins. In addition,

several optimization techniques including the SAD truncation, mode filtering, source

sharing exploiting, and power saving techniques were applied to the proposed

architecture that improved the performance of the proposed architecture. Our design can

save between 57.71%-95.47% of the area cost when compared to the previous designs

and can provide higher throughput rate at a lower frequency for the same specification.

Implementation results show that our design can support real-time SME of HD1080

format with 20.3 K gates at the operation frequency of 88.3 MHz.

107

Chapter 6

Conclusion, Future Work and Directions

6.1 Conclusion

This thesis has presented efficient IME and SME designs for H.264/AVC, which are

tailored for area-constrained applications. All of the proposed designs are based on bit-

serial scheme due to its advantages such as small hardware cost, low pin count and so

on. To cope with the huge computational complexity and the memory access

requirement of IME and SME, different but appropriate design optimization techniques

are used at the algorithm and the architecture levels.

Regarding the H.264 IME, two low cost bit-serial architectures have been proposed

based on the full search algorithm owing to its regularity and coding performance. Our

architectures use SAD and data reusing techniques to reduce their memory bandwidth in

different ways. The first design has a 2-D structure featured with the broadcasting of the

reference pixel data and the propagating of the partial sum and SAD results. Due to the

broadcasting of the reference pixels, it requires a small memory bit width and therefore

is suitable for I/O constrained applications. The second design uses a 2-D bit-serial

adder tree architecture connected to a bit-serial reconfigurable reference buffer making

it suitable for hardware parallelism. The proposed reference buffer enables reference

pixel data reusing in vertical and horizontal directions leading to a signification

reduction of memory bandwidth. In addition, we have proposed a power saving

technique to reduce the power consumption of the proposed bit-serial reconfigurable

108

reference buffer. To improve the overall performance of both designs, we have

presented several optimization techniques. By using the pixel truncation method and

presenting the world length reduction technique, 68.75% of the power consumption and

the required time for processing of each search point are saved, where the latency,

silicon area, and memory bandwidth are significantly decreased as well. Besides, we

have employed 1/2-subsampling technique that approximately saves 50% of the

hardware cost of PE arrays and memory bandwidth. In addition, 4×4 mode reduction

technique is used to reduce the hardware cost further. The proposed designs can support

full search VBSME of 720×480 video with 30 frames per second, two reference frames,

and [-16, 15] search range at a clock frequency of 414 MHz with less than 32 K gates.

As for the H.264 SME, first we have provided a through and in-depth survey on

SME algorithms and architectures due to the lack of surveys for them in the literature.

In addition, to solve the problems of the huge computational complexity and the

memory access requirement of the H.264 SME, we have introduced a low complexity

algorithm with quarter-pixel accuracy. The proposed algorithm uses a parabolic model

to estimate SAD values for predicting optimal sub-pixel motion vector. According to

our analysis, the proposed algorithm can save 94.35% of the computational complexity

and 98.5% of the memory access requirement relative to the interpolate and search

method in the reference software of H.264/AVC. In addition, the fast version of the

proposed algorithm (i.e. the FNFM algorithm) has been presented that reduces the

computational budget 46.28% further while maintaining the video quality. For the

hardware architecture, the first bit-serial architecture of SME has been efficiently

implemented, which greatly benefits from its attractive bit-serial architecture,

pipelining, source sharing, and power saving techniques. Furthermore, due to the use of

SAD truncation and mode filtering techniques, not only the latency and the gate count

of the proposed architecture are reduced but also its throughput is increased. Compared

109

with the prior designs, the proposed architecture can save between 57.71%-95.47% of

the area cost and can achieve higher throughput rate at lower frequency for the same

specification. The implementation results show that our design can support real-time

SME of HD1080 format with 20.3 K gates at the operation frequency of 88.3 MHz.

6.2 Future Work and Directions

In future, we will try to design a complete H.264/AVC encoder where we will

integrate our IME and SME designs into it. For this aim, we need to design other

building blocks of the H.264 encoder such as transform, inverse transform, quantization,

inverse quantization, motion compensation, and entropy coding units.

Although our architectures achieve very satisfactory results compared with the prior

designs, they may not meet the required performance of the new multimedia

applications and emerging video coding standards, which will unsurprisingly pose new

design challenges. As a result, there may be some areas in the proposed designs that

may need further research to improve their performances for real-time applications. In

the following paragraphs, motion estimation (i.e. IME and SME) design challenges in

some of the emerging multimedia applications and the next advanced video coding

standard, H.265, are reviewed.

Digital video systems will continue to evolve toward higher resolutions to provide

better realistic images on displays. Ultra-high definition (UD) TV (Nakasu et al., 2007;

Sugawara et al., 2003) is an emerging visual media, which undoubtedly requires a much

higher computation and memory bandwidth than current applications. When video

resolution increases, the number of MBs increases and the search range (i.e. is

proportional to the frame size) should be increased too. As a result, the memory

bandwidth and the computational complexity of IME and SME are increased which

110

make their design more difficult for real-time scenarios, especially for resource-

constrained applications.

Another interesting emerging application is 3-D TV that provides a 3-D impression

of 3-D natural scenes by using multiview video sequences. Such sequences are

produced by capturing a 3-D scene using multiple cameras simultaneously. Motion

estimation for multiview sequences suffers from two major problems. Firstly, it

demands a lot of computation and memory bandwidth that are directly proportional to

the number of capturing cameras. Secondly, due to the redundancy among closer

cameras, compressing multiview sequences independently with H.264 is not efficient

(Bilen, Aksay, & Akar, 2003). As a result, there may need new IME and SME

algorithms to consider the redundancy problem that causes an added complexity in the

algorithm flow.

Although motion estimation in H.264 significantly improves the video quality,

demands for higher coding performance are relentless. Consequently, development of

new IME and SME algorithms will ceaselessly continue. Furthermore, IME and SME

with enriched and improved features in future video coding standards will keep arriving,

which will unsurprisingly increase the computation and the memory bandwidth. For

instance, in H.265, the number of block modes as well as their sizes are increased,

which result in more computation and memory bandwidth. In addition, the H.265 SME

will use the adaptive interpolation filter instead of the H.264 interpolation filter with

fixed weights to improve motion compensation prediction. The reason is that the time

variation of image signal is not taken into account in the H.264 interpolation filters.

Therefore, the prediction efficiency of motion compensation is limited. In the adaptive

interpolation, based on the characteristics and statistics of each image, a set of

coefficients for the interpolation filter is calculated which improves the coding

111

performance at the price of an added computation and irregularity (Vatis & Ostermann,

2009; Wittmann & Wedi, 2008).

Derived from the above discussion, motion estimation in the emerging and future

multimedia applications will be characterized by massive computation, memory

bandwidth, which will bring new challenges for designing of IME and SME hardware

architectures. On the other hand, the continuous advances of microelectronic technology

will provide more processing capability, which in turn will facilitate the hardware

implementation of IME and SME architectures. However, conventional architectural

approaches may not be able to fulfill the hard real time constrains of the emerging and

future applications. As a result, besides of the conventional and current advanced

algorithmic and architectural techniques, the video coding engineers may need to

develop new and innovative methods for low cost, low power and efficient IME and

SME hardware realizations. Furthermore, IME and SME hardware designers should

consider some new challenges that will be brought by advanced VLSI technologies such

as high static (leakage) power consumption and interconnection problems explained in

Chapter 4. In the current and future VLSI designs, as process technology is steadily

scaling down to deep submicron area; that is 90 nm and beyond, the static power that is

proportional to the hardware cost, will grow much faster than dynamic power and it will

be the main contributor to total power consumption. In addition, in deep submicron

area, the interconnection parameter will be a very important design parameter and it will

determine cost, delay, power, reliability and turn-around time of the future LSI's rather

than MOSFET's (Sakurai, 2000). On the other hand, as the future multimedia

applications are data intensive with a high bandwidth memory, parallelism at hardware

level will be a must for meeting the real-time constrains and a lot storage space will be

required for data saving. Consequently, the hardware cost and the number of wide

length interconnections will be increased, which will lead to added static power and

112

interconnection density. Therefore, the use of static power reduction techniques together

with reducing of area cost and memory bandwidth, which result in (static) power and

interconnection reduction, are vitally important for the future advanced IME and SME

architectures, especially for portable multimedia devices with limited resources.

	Chapter I: introduction
	Chapter 2: Review of Integer Motion Estimation Designs
	Chapter 3: A Survey of Algorithms and Architectures for Sub-Pixel Motion Estimation in H.264/AVC
	Chapter 4: Analysis and Design of the Proposed Low-Cost Bit-Serial Architecture for Integer Motion Estimation in H.264/AVC
	Chapter 5: Algorithm Analysis and Bit-Serial Architecture Design for Sub-Pixel Motion Estimation in H.264
	Chapter 6: Conclusion, Future Work and Directions

