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Chapter 1  
 

Introduction  

1.1 Background 

Over the past two decades, video compression (coding) techniques have been 

extensively studied to reduce the large transmission bandwidth and huge storage space 

of uncompressed video data. As a result, a number of international video coding 

standards (such as MPEG and H.26X series) have been established assuring 

interoperability between the products of different manufactures and worldwide 

spreading of video coding technology. H.264/AVC (ITU-T & ISO/IEC, 2003) is the 

latest video coding standard, which significantly outperforms prior standards in terms of 

video quality and coding performance. For example, compared with MPEG-2 (ITU-T & 

ISO/IEC, 1994) and MPEG-4 (ISO/IEC, 1999), H.264/AVC can save 64% and 39% of 

bit rates in average (Joch, Kossentini, Schwarz, Wiegand, & Sullivan, 2002). Due to the 

higher coding performance and better subjective quality of the H.264/AVC standard, it 

plays pivotal roles in a wide range of video applications such as digital camcorder, 

multimedia phone, DVD player, digital TV broadcasting, and video conferencing. 

The superior compression performance of H.264/AVC originates mainly from its 

inter prediction part (i.e. motion estimation (ME)) with new features including variable 

block-size (VBS), quarter-pixel accuracy, and multiple reference frames (MRF). 

However, H.264 ME requires huge computational complexity and memory bandwidth. 
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Therefore, optimization of the H.264 ME at algorithm level accompanied by its 

acceleration with efficient dedicated architectures is required for real-time applications. 

This thesis is concerned with the H.264 ME that consists of integer motion estimation 

(IME) and sub-pixel motion estimation (SME). In this thesis, we study the H.264 IME 

and SME algorithms and architectures, and propose efficient low cost architectures for 

them.  

1.2 The Need for Video Compression 

Digital videos are voluminous and contain huge amount of data. Therefore, video 

compression techniques are required to reduce transmission bandwidth as well as 

storage space. To explain the huge amount of data in digital video, consider a standard-

definition television (SDTV) video sequence with a resolution of 720×576 and a frame 

rate of 30 frames per second (fps). If Red-Green-Blue (RGB) color space is used for 

video color representation and with one byte for each component, three bytes per pixel 

are required for carrying the color information. Therefore, each frame requires 

720×576×3×30= 37.32 MB. As a result, in order to store one-hour video, it needs 

60×60×37.32=134.35 GB storage space. For streaming of this video over a network, the 

required bandwidth is 37.32×8=298.56 Mbps. It is clear that for bigger resolutions such 

as high-definition television (HDTV), much higher storage capacity and bandwidth are 

required. In addition, the voluminous video data increase the complexity as well as 

implementation cost of the video processing systems that use uncompressed digital 

video. Therefore, it is essential to compress digital video even with increasingly 

available storage space and transmission bandwidth (Lee & Kalva, 2006). 
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1.3 H.264/AVC  

The latest and widely accepted video coding standard, ITU-T H.264 or MPEG-4 

Advanced Video Coding (AVC) that is commonly known as H.264/AVC, is the result 

of the collaborative work between the ITU-T Video Coding Expert Group (VCEG) and 

the ISO/IES Moving Picture Expert Group (MPEG) referred as the Joint Video Team 

(JVT). The main goals of H.264 are enhanced compression efficiency, network friendly 

video representation for interactive (video telephony) and non-interactive applications 

(broadcast, streaming, storage, and video on demand) (Ostermann et al., 2004). MPEG-

2, the previous popular standard for digital TV systems, had been established 10 years 

before H.264/AVC and was not able to satisfy the requirement of new and emerging 

applications. For example, HDTV requires higher transmission bandwidth or 

transmission media such as Cable Modem and xDSL offers much lower data rates than 

broadcast channels, and thus improved coding performance was required to facilitate the 

use of such technologies (Wiegand, Sullivan, Bjontegaard, & Luthra, 2003). In addition, 

the prior video coding standards for video telecommunication such as H.261, H.263, 

H.263+ were not suitable for recent and future wireless or wired networks as well as 

their formatting and error robustness requirements.  

The H.264/AVC standard consists of a Video Coding Layer (VCL) and a Network 

Abstraction Layer (NAL) to achieve its goals. The H.264 VCL determines the source 

coding approaches and algorithms, which results in higher coding performance. The 

H.264 NAL formats the VCL representation of the video and provides header 

information to package that data for network transport (Sullivan & Wiegand, 2005). 

This thesis is concerned with the main part of the H.264 Video Coding Layer, which is 

motion estimation. However, the interested readers can find the details of the H.264 

Network Layer Abstraction in (Wenger, 2003) and (Stockhammer, Hannuksela, & 

Wiegand, 2003) including error resilience issue.  
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As shown in Figure 1.1, the H.264/AVC video coding layer is similar to the prior 

video coding standards, which is a hybrid of motion compensation and transform coding 

techniques. However, it employs several new coding tools to improve its coding 

performance. Motion estimation with variable block sizes, quarter-pixel accuracy and 

multiple reference frames is adopted to exploit more temporal redundancy. Intra 

prediction with several prediction modes is applied to remove spatial redundancy by 

using neighboring samples of prior coded blocks. Furthermore, context-based adaptive 

binary arithmetic coding is used in the last stage of encoder exploiting more statistical 

redundancy. In-loop deblocking filter is employed to reduce blocky artifacts leading to 

improvement of the perceptual quality. The detailed descriptions about the new coding 

tools in H.264/AVC can be found in some excellent papers (Ostermann et al., 2004; 

Sullivan & Wiegand, 2005; Wiegand, Sullivan et al., 2003). 

By using these new coding tools, H.264/AVC can outperform prior video coding 

standards in terms of coding performance and video quality. Table 1.1 shows the 
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Figure ‎1.1 : Typical block diagram of a block-based hybrid video encoder. 
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average bit rate saving of H.264/AVC main profile (MP) compared with MPEG-2 MP 

@ main level (ML), H.263 high latency profile (HLP) and MPEG-4 advanced simple 

profile (ASP) standards using several video sequences where H.264 considerably 

outperforms other coders (Schafer, Wiegand, & Schwartz, 2003). That makes 

H.264/AVC the best standard for video compression, especially in bandwidth and 

storage limited applications. 

Although H.264/AVC has the best performances compared with previous successful 

standards, its gain in coding performance comes at the price of huge computational 

complexity. For example, the profiling at instruction level shows that H.264/AVC is 

about 6 times more complex than MPEG-4 simple profile (SP) at the encoder and 2.2 

times more complex at the decoder (Lian, Tseng, & Chen, 2006). The higher 

computational complexity of H.264/AVC increases the difficulty of its implementation, 

particularly for encoders that require much more computation than decoders. With the 

up-to-date technique, the hardwired encoder is still essential for real-time applications, 

especially when facing HDTV specifications. For example, the hardware encoder design 

of Huang et al. (2005) achieved 1200 times speed-up in comparison with Pentium-IV 3 

GHz CPU (Liu et al., 2009). 

 

Table ‎1.1 : Average bit rate saving of H.264 relative to prior standards (Schafer et al., 

2003). 

Coder MPEG-4 ASP H.263 HLP MPEG-2 

H.264/AVC 38.62% 48.80% 64.46% 

MPEG-4 ASP - 16.65% 42.95% 

H.263 HLP - - 30.61% 
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1.4 The Importance and Challenges of Motion Estimation 

Design for H.264/AVC 

Motion estimation is the heart of all video coding standards such as MPEG and 

H.26X series. Over the past two decades, hundreds of studies have been proposed to 

design efficient motion estimation algorithms and VLSI architectures for real-time 

applications. In the latest video coding standard, H.264/AVC, motion estimation is 

characterized with three new tools including VBS, quarter-pixel accurate motion vector 

(MV), and MRF. These tools significantly improve the coding performance of 

H.264/AVC. However, they require huge computational complexity and memory 

bandwidth. Therefore, there is a need for novel and efficient designs that support new 

features of motion estimation in H.264/AVC. 

C.-Y. Chen and Fang et al. (2006) used software profiling to demonstrate the huge 

computational complexity and memory access of the H.264 encoder and to find its 

critical components. Their instruction profiling of the H.264/AVC baseline encoder 

shows that for SDTV (720 × 480)/HDTV720p (1280 × 720) video with four/one 

reference frames, 30 fps, and a search range of [-64, +63] and [-32, +31] in horizontal 

and vertical directions, the computational complexity is 2,470/3,600 Giga-Instructions 

Per Second (GIPS). As shown in Figure 1.2, the main part of the computational 

complexity (i.e. 97.32%) is occupied by motion estimation part. The huge 

computational complexity of motion estimation is much more than the capability of 

current general-purpose processors. Therefore, acceleration of motion estimation in 

H.264/AVC by dedicated hardware is required for real-time applications.  

In addition, based on the profiling results, the H.264/AVC ME requires a very large 

memory access so that for SDTV (720 × 480)/HDTV720p (1280 × 720), it needs 

3,800/5,570 Giga-Bytes per second (GBPS), respectively. Consequently, there is a need 
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for effective techniques to lower the memory access requirement of motion estimation 

for real-time applications.  

In summary, the profiling results reveal that the huge computational complexity and 

the memory access requirement of the H.264/AVC ME are the main bottleneck of video 

encoding systems. Therefore, design of efficient hardware architectures for integer and 

sub-pixel motion estimation is of vital importance for real-time applications.  

Figure ‎1.2 : Runtime percentage of functional blocks in H.264/AVC baseline encoder (C.-

Y. Chen, Fang et al., 2006). 

 

1.5 Research Objective 

The main objective of our research is to design low cost hardware architectures for 

IME and SME in H.264/AVC. Due to different characteristics of IME and SME, 

different but appropriate design considerations and techniques should be used for each 

part at algorithm and architecture levels.  

At algorithm level, we investigate algorithms that have good coding performance and 

are suitable for hardware implementations. In addition, we try to optimize their 
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computational complexity and memory bandwidth while maintaining their coding 

performances.  

As for architecture level, investigation of new hardware architectures and enhancing 

of state-of-the-art designs are taken into consideration. These hardware architectures 

should have regular and simple structure, good performance in terms of speed, hardware 

cost, hardware utilization, memory bandwidth, and processing ability. 

1.6 Research Scope and Applications  

The scope of this thesis is to design the H.264/AVC IME and SME architectures for 

real-time encoding of medium toward large resolutions such as HDTV. Since these 

architectures target area-constrained applications (i.e. portable multimedia devices), 

their area costs, pin count, and power consumptions should be small. Regarding the 

IME design, since the heart of IME architectures is processing element array, our 

concern is to design a high performance processing element array featured with regular 

structure, efficient memory bandwidth, and small area cost. As for SME design, the 

main concern is to reduce huge computational load and memory access requirement of 

interpolation process, and to design an efficient SME hardware accelerator with small 

hardware cost and memory bandwidth.  

For implementation of IME and SME architectures, there are different design 

alternatives that can be mainly classified into two categories including processor-based 

designs and application specific integrated circuit (ASIC) designs. Processor-based 

designs show better programmability and lower performance whereas ASIC designs 

provide the best performance with little flexibility (Y.-L. Lin, 2006). Between these two 

categories, there are other options such as digital signal processors, multimedia 

processors, and Field Programmable Gate Arrays (FPGAs), which provide moderate 

performance and flexibility. Among all of design alternatives, ASIC approach is the 
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most suitable choice for our research due to its best performance. In addition, most of 

the reported designs in literature are based on ASIC design so that we can use them as 

reference for evaluating the performance of our designs. 

1.7 Thesis Organization  

Chapter 2 describes the H.264 IME, its research methodology and common design 

metrics for evaluating of motion estimation designs. In addition, state-of-the-art IME 

architectures are reviewed and evaluated based on introduced design metrics. Chapter 3 

analyzes the SME features in the H.264 standard and provides a thorough survey of 

SME algorithms and architectures. In Chapter 4, the proposed bit-serial architectures for 

the H.264 IME are presented in detail. Chapter 5 describes our SME algorithm and its 

hardware architecture. Finally, Chapter 6 draws a conclusion and presents future work 

and directions. 
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Chapter 2  
 

Review of Integer Motion Estimation Designs  

2.1 Introduction 

Motion estimation with integer pixel accuracy, i.e. referred as motion estimation 

(ME) in this chapter, is used as a powerful technique in video coding systems to remove 

temporal redundancy between successive frames, which leads to high level of coding 

performance in such systems. Motion estimation is a computationally intensive process, 

which typically consumes more than 50% of computation of encoders. Among different 

motion estimation algorithms, full search (i.e., exhaustive search) block matching 

motion estimation algorithm is widely used due to its better coding performance and 

regularity compared with fast search algorithms such as four-step search (Po & Ma, 

1996) and diamond search (Tham, Ranganath, Ranganath, & Kassim, 1998). 

In this algorithm, each luminance frame is divided to macroblocks (MBs) of size 

N×N ( i.e. 16×16). Then, each MB at the current frame is matched against a 

corresponding MB at the reference frame within a search range of [–w, w-1], as 

depicted in Figure 2.1.  

The most common matching criteria are Sum of Absolute Differences (SAD) and 

Sum of Square Differences (SSD), as denoted in equations (2.1) and (2.2), respectively. 
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Figure ‎2.1 : Block matching motion estimation algorithm. 
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Although SSD can lead to a better prediction result, SAD is commonly used in video 

coding systems as matching criterion owing to its good accuracy and lower 

computational complexity compared to SSD (S.-H. Wang, 2007).  

When there is more than one object in an MB with different moving directions, fixed 

block sized motion estimation decreases the coding performance. Therefore, it is more 

efficient to use variable block-size motion estimation to find the best match for each 

object. For this reason, in H.264/AVC motion estimation with variable block-size (i.e. 

16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 block sizes, as shown in Figure 2.2) is 

adapted to improve video coding performance. In addition, after conducting motion 

estimation for all block sizes, inter-mode decision is carried out for determining the 

optimal coding mode that improves the coding performance. Besides, H.264/AVC 

supports motion estimation with MRF, i.e. up to five prior coded frames can be used as 

reference in inter prediction, which can enhance the performance of H.264/AVC. 

Although variable block-size motion estimation and MRF contribute to the rate-

distortion (RD) performance of the H.264 encoder, they increase the computation 

complexity, memory bandwidth, and difficulty of motion estimator implementation.  
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2.2 Research Methodology and Design Metrics Assessment  

As mentioned in previous chapter design of motion estimation for H.264 consists of 

two parts i.e. algorithm and architecture. In this thesis, we use H.264 reference software 

for implementing and evaluation of our algorithms where we compare them with the 

full search algorithm in terms of peak signal to noise ratio (PSNR) which is explained in 

the following paragraphs. As for architectures, we use Verilog-HDL for implementation 

of our designs and synthesize them in Silterra 0.18 μm technology using Synopsys 

Design Compiler. Now we discuss the design metrics for assessment of motion 

estimation designs. Generally, there are a number of important design metrics for 

assessment of motion estimation designs including the quality of algorithm, silicon area, 

operating frequency, throughput, memory bandwidth, and hardware utilization (C.-Y. 

Chen, Chien et al., 2006; Kuhn, 1999), which are described below. 

 Algorithm quality: This metric is used for evaluation the performance of fast 

search motion estimation algorithm against full search algorithm. Generally, a fast 

search algorithm has a lower computational cost than the full search algorithm. 

However, video quality degradation and irregularity are the penalties. The most 

common metric for evaluating the quality of a fast algorithm is peak signal to 

noise ratio (PSNR), whose formula is as follows: 

              
    

   
              

where the Mean Square Error (MSE) of the current frame (IC) and its 

reconstructed frame (IR), which consist of H×W pixels, is calculated from: 
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In equation (2.4), IC(i, j) and IR(i, j) are the pixel values in current and 

reconstructed frames, respectively. 

To evaluate the video quality of a fast algorithm, the PSNR difference between 

this and the full search algorithm is defined as: 

                                                                 

 Silicon area/Hardware cost: Generally, the size of a VLSI chip is defined in 

terms of square millimeter/micrometer, which will be available after completing 

the chip design. However, the equivalent gate count of a VLSI design (in terms of 

2-input NAND gate) is another widely accepted criterion for estimating the 

hardware cost at architecture level. Since most of the motion estimation designs in 

the literature use the gate counts as the measuring criterion, we utilize the gate 

counts for the evaluating hardware cost in this thesis. 

 Operating frequency: The required operating frequency is dominated by the 

degree of parallelism in hardware. The smaller the degree of parallelism is, the 

higher the required frequency is (C.-Y. Chen, Chien et al., 2006). Generally, a 

smaller degree of parallelism results in lower hardware cost because in this case 

reduced number of parallel architectures are used. In addition, since dynamic 

power is proportional to the operating frequency, the designer can compromise 

between power, area cost and the required frequency by selecting an optimized 

degree of parallelism.  

 Throughput: The throughput is another important metric for the performance of 

motion estimation designs, and it shows the processing ability of motion 

estimation architectures. This metric can be defined as the number of processed 

macroblocks per second (MB/s) by an architecture. Note that the throughput 

depends on other design parameters such as search range and number of reference 
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frames. To have a fair comparison between different motion estimation designs in 

this thesis, we measure the throughput under search range of [-16, 15], one 

reference frame, and for Common Intermediate Format (CIF) video resolution. 

 Memory bandwidth: Memory bandwidth is defined as the number of bits, which 

hardware has to access from memory for each macroblock (C.-Y. Chen, Chien et 

al., 2006). This parameter influences the traffic of system bus and its power 

consumption. Memory bandwidth is influenced by data reuse technique. For 

providing a fair comparison, the memory bandwidth of motion estimation designs 

is defined for CIF video @ 30 fps, one reference frame, and a search range of [-

16, 15] specifications.  

 Hardware utilization: Besides the above-mentioned design metrics, hardware 

utilization is another metrics that may be used for motion estimation hardware 

architectures, which refers to the percentage of computing cycles/operating cycles 

for an MB. The operating cycles include three parts i.e. latency, computing cycles, 

and bubble cycles (C.-Y. Chen, Chien et al., 2006). Computation cycles are the 

required number of cycles for calculating one SAD. The higher the hardware 

utilization is, the better the hardware efficiency is. 

2.3 Review of Motion Estimation Designs 

Block matching motion estimation has played an important role in improving of 

coding performance in the block based video coding standards including MPEG and 

H.26X series. However, it is computationally most demanding part of video encoders 

and thus its acceleration with efficient algorithms and hardware architecture has been 

under consideration. Consequently, over the past two decades, many video coding 

scientists have extensively studied motion estimation to find the best efficient ways for 

its implementation at algorithm and architecture levels. Owing to existence of 
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comprehensive and thorough surveys of block matching motion estimation algorithms 

and/or architectures in the literature (C.-Y. Chen, Chien et al., 2006; Dufaux & 

Moscheni, 1995; Huang, Chen, Tsai, Shen, & Chen, 2006; Pirsch, Demassieux, & 

Gehrke, 1995; Pirsch & Stolberg, 1998; Tseng et al., 2005), it is not essential to provide 

an in depth and complete survey in this thesis. Instead, we quickly explore the design 

space of motion estimation and review six representative motion estimation designs, 

which will be used later as reference for comparison to our designs.  

2.3.1 Exploration of Design Space  

Design of motion estimation consists of algorithm and architecture parts. Motion 

estimation algorithms can be divided into two main categories, namely lossless and 

lossy algorithms. The full search algorithm belongs to the first category and provides 

the best video quality whereas fast algorithms belong to the second category having 

lower video quality and computational complexity compared with the full search 

algorithm. For the hardware implementation, the full search algorithm is much more 

suitable than a fast search algorithm due to its regularity, lack of data dependencies and 

optimality (Li & Leong, 2008). In addition, the hardware design of fast search 

algorithms includes the following challenges: unpredictable data flow, irregular memory 

access, difficult mapping to systolic arrays, low hardware utilization, and sequential 

procedures with data dependence that cannot be parallelized (Huang, Chen et al., 2006). 

Furthermore, the silicon area of architectures that are based on fast algorithms should be 

significantly smaller than that of full search algorithm for cost efficiency (Tseng et al., 

2005). Because of the above-mentioned reasons, the full search algorithm is often 

adopted in motion estimation architectures.  

As for hardware architectures, the main design challenges of motion estimation can 

be considered as meeting the huge computational complexity of motion estimation in 
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real-time applications with a reasonable silicon area, high hardware utilization, 

minimized memory bandwidth, and low I/O bit width. There are different kinds of 

motion estimation hardware architectures in the literature such as one-dimensional (1-

D), two-dimensional (2-D) systolic/semi-systolic arrays and adder tree architecture. 

Generally, these architectures are composed of the same parts called processing 

elements (PEs) where each PE computes the absolute difference between one pixel of 

the current block and one pixel of the search area. ‘PE array is the trend of motion 

estimation architectures. Tradeoffs can be made between area (number of PEs) and 

throughput (processing capability), SAD latency (total cycles to compute a SAD) and 

memory bit width/bandwidth (serial/parallel loading), PE utilization and data 

alignment circuits (shift registers/memory with circular addressing), and bus 

bandwidth. The designers have to carefully select what can be sacrificed and what must 

be insisted on for target applications’(Tseng et al., 2005). 

2.3.2 State-of-the-Art Motion Estimation Architectures 

Now we review six representative hardware architectures from 2004 to 2009 that 

belong to the most frequently cited works by the H.264 motion estimation designs (C.-

Y. Chen, Chien et al., 2006; J. Kim & Park, 2009; Li & Leong, 2008; Lopez, Callico, 

Tobajas, Lopez, & Sarmiento, 2008; Ou, Le, & Hwang, 2005; Yap & McCanny, 2004).  

 Work of Yap and MaCcany (2004): Yap and MaCcany proposed a 1-D systolic 

array architecture, as shown in Figure 2.3. It consists of 16 PEs and similar to 

conventional 1-D architecture (K. M. Yang, Sun, & Wu, 1989). Reference pixels 

are broadcasted to all PEs and right reference pixel for each PE is selected by 

control signal. Propagating register are used for propagating current pixel and the 

SAD of 4×4 blocks are stored in the PEs and are then reused for producing of 
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bigger block sizes. Due to small hardware cost, this architecture is suitable for 

area-constrained applications such as portable multimedia devices.  

 

Figure ‎2.3 : 1-D Architecture of Yap and MaCcany. 

 

Work of Uo et al. (2005): An efficient architecture for the H.264 motion 

estimation was implemented by Ou et al. This architecture consists of 16 SAD 

modules for 16 4×4 blocks and each module has four 1-D PE arrays. Figure 2.4 

shows the structures of the SAD module and 1-D PE array where each 1-D PE 

array includes four PEs. As seen in this figure, each 1-D PE array includes four PEs 

and therefore there are 256 PEs in the architecture. The reference pixels are 

broadcasted into PEs and current pixels are propagating with propagation registers 

in a similar way to the work of Yap and MaCcany. However, because of using 256 

PEs, the processing ability as well as the hardware cost of this architecture is much 

higher than the design of Yap and MaCcany. 
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Figure ‎2.4 : The basic structure of the PE array in the work of Ou. et al. (a) structure of 

the PE array for the module i (b) structure of the 1-D array in the PE array. 

 

 Work of C.-Y. Chen et al. (2006): C.-Y. Chen et al. proposed a 2-D PE array 

along with propagation registers and one 2-D adder tree, as shown in Figure 2.5. 

Propagation registers not only store the reference pixels but also enable data 

reusing by reconfiguration technique, which improve hardware utilization and 

memory bandwidth. The proposed 2-D adder tree consists of 16 2-D adder tree for 

generating 16 SADs of the smallest blocks, which are reused for calculating the 

SAD of bigger blocks. 
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Figure ‎2.5 : C.-Y. Chen et al. architecture. 

 

 

 Work of Li and Leong (2008): A low cost most significant bit (MSB) first bit-

serial architecture VBS motion estimation was proposed by Li and Leong, as 

shown in Figure 2.6. This architecture consists of 16 4×4 SAD adder trees for 

computing the SADs of all 4×4 blocks and a SAD merger for producing the SAD 

of other bigger blocks. Due to the nature of MSB-first arithmetic, the authors 

employ the SAD early termination technique that enhances the average hardware 

performance. However, because of serial operations, the processing capability of 

the proposed architecture is not sufficient for medium or large resolutions. 
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Figure ‎2.6 : Top level architecture of Li and Leong design. 

 

 

 Work of Lopez et al. (2008): Lopez et al. contributed a new architectural 

template based on 1-D motion estimation arrays, as shown in Figure 2.7. The 

proposed template allows different allocation alternatives for the computational 

resources within motion estimation architectures. Their architecture consists of 

four independents groups with four PEs each that allows different design tradeoffs 

in terms of area cost and memory bandwidth. 
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Figure ‎2.7 : The architectural template of Lopez et al. 

 

 

 Work of Kim and Park (2009): A 1-D architecture was introduced by Kim and 

Park, as shown in Figure 2.8. This architecture has a similar structure to that of the 

conventional 1-D architecture with 16 PEs. The main idea in the architecture of 

Kim and Park is the scanning order of search candidates. While the raster scan is 

often adopted in motion estimation designs (Yap & McCanny, 2004), Kim and 

Park propose a new scan order that calculates the SAD values on “as-early-as-

possible” basis, which means the new scan order makes the SAD values to be 

reused as early as possible. As a result, the number of required register for storing 

the SAD values is decreased and therefore the silicon area is saved.  
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Table 2.1 summarizes the design metrics of the reviewed state-of-the-art motion 

estimation architectures for CIF video @ 30 fps, one reference frame, and a search 

range of [-16, 15] specifications. In Chapter 4, we will use this table as reference for 

evaluation and comparison of the performance of our designs relative to the surveyed 

architectures.  
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Figure ‎2.8 : Architecture of Kim and Park. 
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Table ‎2.1 : Design metrics evaluation of the reviewed motion estimation designs. 

                                                 
1
 Not available 

2 Worse case 
3 “(4, 4) arch”; 
4 “(16, 1) arch”; 
5 “(4, 4) arch”; 
6 “(16, 1) arch”; 

Architecture Design Metrics 

Yap and MaCcany (2004) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 61 

Operating frequency (MHz) 294 

Throughput (MB/s) 17,944 

Memory bandwidth (Kbits/MB) 4,194 

Hardware utilization (%) 100 

Ou et al. (2005) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 597 

Operating frequency (MHz) 200 

Throughput (MB/s) 195,312 

Memory bandwidth (Kbits/MB) N/A
1 

Hardware utilization (%) 100 

C.-Y Chen et al. (2006) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 88.6 

Operating frequency (MHz) 110.8 

Throughput (MB/s) 106,250 

Memory bandwidth (Kbits/MB) 139
2
 

Hardware utilization (%) 100 

Li and Leong (2008) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 55 

Operating frequency (MHz) 420 

Throughput (MB/s) 22,786 

Memory bandwidth (Kbits/MB) 4718 

Hardware utilization (%) N/A 

Lopez et al. (2008) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 33.41
3
/21.3

4
 

Operating frequency (MHz) 100 

Throughput (MB/s) 5,910 

Memory bandwidth (Kbits/MB) 541
5
/2,166

6
 

Hardware utilization (%) 100 

Lim and Park (2009) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 39.2 

Operating frequency (MHz) 416 

Throughput (MB/s) 25,390 

Memory bandwidth (Kbits/MB) 4,194 

Hardware utilization (%) 100 
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2.4 Summary 

This chapter briefly explained the H.264 motion estimation as well as its block 

matching criteria. In addition, we introduced the design metrics for evaluation of ME 

designs including algorithm quality, silicon area, operating frequency, throughput, 

memory bandwidth, and hardware utilization. Besides, we explored the design space of 

motion estimation and reviewed six representative motion estimation architectures. 

Finally, we concluded this chapter by tabulating the performance of the surveyed 

motion estimation designs based on introduced design metrics, which will be used later 

as reference works for the evaluation of our designs. 
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Chapter 3  
 

A Survey of Algorithms and Architectures for 

Sub-Pixel Motion Estimation in H.264/AVC 

3.1 Introduction 

Video coding standards make possible storage and transmission of high volume raw 

digital video data in limited storage and transmission bandwidth environments. The 

latest block based video coding standard, H.264, provides much better compression 

efficiency and subjective video quality compared with all the previous standards such as 

MPEG-2, H.263, and MPEG-4. For instance, compared with MPEG-4, H.263, and 

MPEG-2, H.264 can save 39%, 49%, and 64% of bit rate in average, respectively (Joch 

et al., 2002).  

The higher compression performance and subjective quality in H.264/AVC are 

achieved by using new functionalities such as motion estimation with variable block-

size and quarter-pixel accuracy, multiple reference frames (Wiegand, Zhang, & Girod, 

1999), Lagrangian mode decision (Sullivan & Wiegand, 1998; Wiegand, Schwarz, Joch, 

Kossentini, & Sullivan, 2003), advanced entropy coding (Marpe, Schwarz, & Wiegand, 

2003), and so on.  

The heart of the H.264/AVC encoder is motion estimation that is used for removing 

of temporal redundancy in a sequence of images. In H.264/AVC, ME is conducted in 

two stages. In the first stage, integer motion estimation with different block sizes 

(16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4) is performed and up to 41 integer 

motion vectors (IMVs) of all blocks and sub-blocks are determined whereas up to 5 
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reference frames can be searched. In the second stage, SME is started which is usually 

conducted in two steps, as shown in Figure 3.1. In the first step, half-pixel refinement is 

performed by searching eight half-pixel positions around the best integer MV. Then, the 

quarter-pixel refinement is carried out in the same manner around the best half-pixel 

position. Finally, mode selection is conducted.  

The H.264/AVC SME typically improves coding efficiency between 2-6 dB PSNR 

(Yi-Hau Chen, Chen, Chien, Huang, & Chen 2008). However, due to the use of VBS, 

MRF and interpolation scheme for producing sub-pixel values, two sub-pixel search 

steps and matching process, the computational budget and the memory access 

requirement of the quarter-pixel accurate ME are highly intensive. Therefore, not only 

efficient and fast algorithms are demanded to reduce the huge computation and memory 

access bandwidth of the H.264 SME but also dedicated hardware architectures are 

required to accelerate the SME process for real-time applications.  
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Figure ‎3.1 : SME refinements in H.264/AVC. 
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There are a few effective surveys on algorithms and architectures for video 

compression techniques that have already been published (C.-Y. Chen, Chien et al., 

2006; Dufaux & Moscheni, 1995; Huang, Chen et al., 2006; Pirsch et al., 1995; Pirsch 

& Stolberg, 1998; Tseng et al., 2005). These surveys mainly focus on former standards 

such as MPEG-2 and MPEG-4 and they do not cover the new functionalities introduced 

later in H.264 such as SME with VBS, MRF, Lagrangian mode decision, and so forth. 

Motivated by the above issue, we try to provide a comprehensive survey about the most 

significant SME algorithms and architectures and address the SME design challenges 

and strategies at algorithmic and architectural levels.  

The rest of this chapter is organized as follows. Section 3.2 analyzes the H.264 SME 

and shows the impact of its features on coding performance. Section 3.3 investigates the 

design space of SME algorithms reviewing recent approaches and the concepts behind 

them in the state-of-the-art SME algorithms. Section 3.4 explores the design challenges 

and choices of SME architectures and surveys the advanced SME architectures. In 

addition, the design metrics for evaluation of SME designs are reviewed and the 

evaluation of the reviewed SME architecture is provided. Finally, Section 3.5 provides a 

summary of this chapter.  

3.2 Analysis of the H.264 SME 

Design of a new and an efficient SME algorithm or hardware architecture relies on a 

careful analysis and an in-depth understanding of the SME features and characteristics. 

A thorough understanding of the SME features is essential for providing an insight into 

the design parameters (such as performance and subjective quality) and how to make an 

optimal tradeoff between them. In this section, we evaluate the performance of the 

H.264 SME algorithm and investigate the effect of its features on coding performance 

through some experiments. 
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Different technical features are used in the H.264 SME such as VBS, quarter-pixel 

resolution, and MRF, which improve the coding performance of the H.264 encoder at 

the price of increased computation and memory bandwidth. To evaluate the impact of 

different SME features on coding performance, we do several experiments. We use a set 

of tests consisting of several CIF and quarter CIF (QCIF) image sequences with the 

following conditions: 

 Search range is 16. 

 R-D optimization is on. 

 The quantization parameter is 28. 

 Entropy coding method is Context-based Adaptive Variable Length Coding 

(CAVLC). 

 Frequency for encoded bit stream is 30. 

 Number of coded pictures is 300 for all sequences and the H.264 reference 

software ("Joint Video Team Reference Software version 11," 2007) is used for 

experiments. 

Tables 3.1-3.4 show gain in performance respecting to the reference conditions when 

extra features in the encoder are used for QCIF, CIF, 4CIF and HD videos, as described 

below. 

(a) Integer motion estimation (IME) with 1 reference frame, SAD as distortion 

criteria, and only 16×16 blocks (i.e. reference conditions). 

(b) Increasing motion vector accuracy to quarter-pixel. 

(c) Allowing all VBS except sizes below 8×8 block. 

(d) Allowing all VBS except 4×4 blocks. 

(e) Using all VBS. 

(f) Increasing number of reference frames to two. 

(g) Using three reference frames. 



30 

(h) Using five reference frames. 

(i) Changing the distortion criterion (i.e. replacing the SAD with the Sum of 

Absolute Transformed Differences (SATD)). 

 

Table ‎3.1 : Effectiveness of the H.264 SME features on coding performances in QCIF 

videos. 

Case 

 

Container Foreman News 

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB) 

(a) 0 0 0 0 0 0 

(b) -35.20 1.654 -37.54 2.009 -20.39 1.339 

(c) -41.93 2.043 -47.51 2.788 -28.54 2.014 

(d) -42.88 2.106 -48.54 2.946 31.00 2.258 

(e) -43.20 2.113 -48.78 2.970 -31.23 2.283 

(f) -43.31 2.132 -49.92 3.188 -31.32 2.302 

(g) -45.96 2.276 -49.78 3.239 -31.62 2.324 

(h) -46.22 2.311 -50.75 3.334 -31.74 2.341 

(i) -46.76 2.355 -51.01 3.385 -32.41 2.422 

 

 

 

Table ‎3.2 : Impact of the H.264 SME features on coding performances in CIF videos. 

Case 

 

Flower Mobile Mother-daughter 

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB) 

(a) 0 0 0 0 0 0 

(b) -47.27 2.523 -65.30 3.503 -39.69 1.958 

(c) -56.72 3.303 -69.19 3.920 -44.99 2.317 

(d) -58.20 3.479 -70.06 4.038 -45.73 2.381 

(e) -58.21 3.484 -69.99 4.043 -45.78 2.386 

(f) -59.04 3.610 -73.86 4.657 -46.42 2.449 

(g) -60.00 3.724 -74.84 4.910 -46.55 2.463 

(h) -60.87 3.845 -75.47 5.113 -46.96 2.498 

(i) -61.45 3.927 -76.39 5.229 -47.83 2.569 
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Table ‎3.3 : Effectiveness of the H.264 SME features on coding performance in 4CIF 

videos. 

Case 

 

City Crew Soccer 

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB) 

(a) 0 0 0 0 0 0 

(b) -57.74 3.703 -18.01 1.133 -36.39 1.606 

(c) -62.62 4.266 -25.96 1.770 -41.54 1.900 

(d) -63.24 4.355 -26.59 1.829 -42.31 1.949 

(e) -63.29 4.356 -26.55 1.827 -42.38 1.955 

(f) -65.37 4.832 -30.28 2.170 -42.90 1.998 

(g) -65.19 4.799 -30.89 2.235 -43.33 2.029 

(h) -65.59 4.880 -31.81 2.328 -43.83 2.061 

(i) -65.56 4.933 -32.70 2.438 -44.05 2.082 

 

 

 

Table ‎3.4 : Impact of the H.264 features on coding performances in HD1080 videos. 

Case 

 

Blue_sky Rush_hour Station 

ΔBR (%) ΔPSNR (dB) ΔBR (%) ΔPSNR(dB) ΔBR (%) ΔPSNR(dB) 

(a) 0 0 0 0 0 0 

(b) -18.43 0.904 -11.72 0.340 -36.28 1.385 

(c) -23.38 1.207 -20.33 0.623 -40.71 1.636 

(d) -24.20 1.231 -20.65 0.636 -40.52 1.622 

(e) -24.31 1.239 -20.60 0.634 -40.74 1.642 

(f) -23.11 1.176 -23.53 0.743 -39.50 1.572 

(g) -23.23 1.182 -23.96 0.762 -39.29 1.565 

(h) -23.56 1.201 -25.45 0.819 -40.08 1.625 

(i) -23.84 1.223 -25.20 0.808 -37.87 1.500 

 

In Tables 3.1-3.4, the average bit rate difference percentage (ΔBR(%)) and PSNR 

difference in terms of dB (ΔPSNR(dB)) between two cases are calculated (Bjntegaard, 

2001), where case (a) is considered as the reference for other cases (i.e. case (b) to case 



32 

(i)). From the simulation results, we can see that when a new feature is added, better 

performance is achieved at the cost of extra computation, while the gain in performance 

is not equal for all video sequences and depends on video contents. From the simulation 

results, following observations can be made. 

Quarter-pixel motion estimation provides considerable improvement over integer 

motion estimation in terms of bit rate saving and video quality.  

As for VBS, the more varied the block sizes are, the better coding efficiency is. 

However, as seen in Tables 3.1 and 3.2, elimination of the 4×4 block will have 

negligible effect on coding performance whereas it leads to a lot of computation 

reduction. From the hardware point of view, it can result in many clock cycles reduction 

in the SME process. By using different VBS, a good tradeoff between the video quality 

and the required clock cycles can be achieved. 

On the subject of MRF motion estimation, use of two reference frames usually brings 

a sensible coding gain compared with one reference frame. However, increasing the 

number of reference frames is not always advantageous. As shown in Tables 3.1-3.4 

3.2, while the number of reference frames is increased to three or five, marginal coding 

performance improvement is achieved. However, the computational complexity and 

memory bandwidth are proportional to the number of searched reference frames. As a 

useful key point for designers, it is worth to mention that more than 80% of selected 

best reference frames is either one of the first two nearest reference frames (Huang, 

Hsieh, Chien, Ma, & Chen, 2006). 

Regarding distortion cost, SATD has slightly higher video quality than SAD at the 

cost of increased computation. However, from the hardware point of view, SATD 

requires a higher hardware cost than SAD.  
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In summary, the SME hardware/software designers can make a good tradeoff 

between coding performance and computational complexity by using different SME 

functionalities and considering aforementioned observations.  

3.3 Investigation of Algorithms 

This section investigates the design space of SME algorithms and reviews the design 

challenges of SME algorithms and possible choices to cope with them. In addition, it 

surveys the state-of-the-art of SME algorithms.  

To design a new and an efficient algorithm, designers should take into consideration 

several design issues. The new algorithm should have lower computational complexity 

and memory access compared with the H.264 SME. In addition, it should lead to similar 

coding performance compared to the H.264 SME algorithm. Moreover, it should be a 

hardware friendly algorithm for hardwired applications. This issue will be discussed in 

the next section. The designers should carefully consider all of the functions in SME 

algorithm and the impact of each function on the coding performance and computational 

complexity to identify the main bottlenecks and possible solutions. Although the 

proposed analysis in the previous section covers some of aforementioned issues, the 

details of SME bottlenecks and solutions are still not given, which will be discussed in 

the following paragraphs. 

The VBS feature is one of the main contributors to the computation and memory 

bandwidth. Because in the H.264 SME each block has its own motion vector, and 

therefore it should process each block separately with multiple reference frames, which 

increases the computational complexity, memory bandwidth, and processing time. A 

simple but effective way for lowering computation, memory access and processing time 

is to reduce the number of block sizes before or during SME stage. For example, 

removing all block modes of size below 8×8 leads to 42.9% reduction in computation 
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complexity at price of small quality drop (Song et al., 2007). However, this technique is 

not suitable for low or medium frame size and results in more video quality degradation. 

In other studies (Abdelazim, Yang, & Grecos, 2009; Su et al., 2006), different mode 

filtering methods are introduced that select only some of the best modes for SME 

refinement. As a result, a lot of computation, memory access, and processing time are 

saved at the price of small video quality drop.  

Interpolation is a computationally intensive process in SME, which requires a lot of 

memory access as well as computation to produce half- and quarter-pixels. Matching 

error surface function can provide a good way for reducing computation and memory 

bandwidth of the interpolation process. ‘It is generally believed that the fast ME 

algorithm works best if the error surface inside the search window is unimodal. As 

shown in Figure 3.2, the error surface of the integer pixel ME is not unimodal due to 

the large search window and complexity of video content. Therefore, the IME search 

would easily be trapped into a local minimum. On the other hand, since the sub-pixels 

are generated from the interpolation of integer pixels, the correlation inside a sub-pixel 

search window is much higher than that of the integer pixel search window. Thus, the 

unimodal error surface will be valid in most cases of the sub-pixel. As a result, the 

matching error decreases monotonically as the search point moves closer to the global 

minimum’ (Y.-J. Wang, Cheng, & Chang, 2007).  

Under unimodality assumption of error surface at sub-pixel resolution, the matching 

costs at sub-pixel precision can be calculated. Accordingly, the interpolation process is 

avoided and thus the computation and memory requirement are considerably saved. 

Several models for error surface function have been developed with different levels of 

accuracies and complexities. For instance, Suh and Jeong (2004) proposed five 

mathematical models of error surface with distinct performances. Among their models, 

the first and the second models are based on an inverse matrix solution that have better 
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coding performances, and are more suitable for hardware implementations. However, 

the above-motioned work only supports half-pixel accuracy. In a later study (Hill, 

Chiew, Bull, & Canagarajah, 2006), an algorithm has been proposed to support the 

quarter-pixel precision. It shows that the unimodal assumption does not necessarily 

work for all sub-pixels resolution. That is why the resulting performance of quarter-

pixel interpolation free algorithm is less than the full search SME. To compensate the 

quality drop, the authors have introduced the “complete-system model,” which provides 

near full search SME performance at the price of an increased complexity due to use of 

interpolation. However, this model is not a hardware friendly algorithm.  

 

 

 

Figure ‎3.2 : Error surface of (a) integer motion estimation (search range: 32) (b) sub-pixel 

motion estimation with 1/8 pixel accuracy (Y.-J. Wang et al., 2007). 

 

 

Another way for reducing the computation and memory requirement of the 

interpolation process is to use an interpolation filter with reduced complexity. H.264 

uses a 6-tap finite impulse response (FIR) filter with (1/32, −5/32, 20/32, 20/32, −5/32 

and 1/32) coefficients and a 2-tap bilinear filter with (1/2, 1/2) coefficients for 

producing half-pixel and quarter-pixel positions, respectively. On the other hand, the 

computation cost and memory requirement of a filter are proportional to its tap length. 
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Accordingly, the half-pixel interpolation is the bottleneck of the interpolation process in 

the H.264 SME. To address this problem, R. Wang, Huang, Li, and Shen (2004) 

proposed a 4-tap filter with (-1/8, 5/8, 5/8 and -1/8) coefficients which decreased the 

computation and the memory bandwidth compared with the standard 6-tap filter.  

In addition to the tap length of an interpolation filter, the suitability of its coefficients 

for hardware/software implementation is another important issue. As seen in the above 

paragraph, some of the coefficients in the H.264 6-tap FIR filter and the proposed filter 

of R. Wang et al., (2004) are not a power of two. As a result, they need multiplication, 

addition, subtraction, and shift operations. Among these operations, multiplication is the 

most expensive one and demands more overhead for implementation. To cater to this 

issue, Tsai, Chen, Chen, and Chen (2005) proposed a multiplication free filter with 6-

tap length. In a later study (Hyun & Sunwoo, 2009), both the tap-length and the 

multiplication issues were considered by introducing a multiplication free 4-tap filter 

that led to computation and memory bandwidth reduction. 

Due to the existence of two-iterative search for the half-pixel and quarter-pixel 

refinements in the H.264 SME that are usually carried out in a sequential manner, the 

processing time is increased. From the hardware point of view, this problem poses a 

restriction on required clock cycles for high-resolution video such as HDTV and higher 

resolutions. To bring a solution for this problem, the single-iteration algorithm for 

HDTV has been proposed by T.-Y. Kuo, Lin, and Chang (2007). Compared with 

conventional two-iteration scheme, the cycle count in the single-iteration method is 

halved. Therefore, the long computation latency is reduced and HD size requirement 

can be achieved. In addition, the number of the search points is reduced to 6 points that 

leads to computation and memory bandwidth reduction. In this algorithm, the initial 

search center is determined by the motion information of neighboring blocks, which 

enhances the coding performance. In recent studies (Yi-Hau Chen, Tzu-Der Chuang et 
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al., 2008; Y.-K. Lin et al., 2008), the single-iteration technique is widely adapted as one 

of the effective methods to reduce the long processing time in high resolution 

specification as well as the computation and memory bandwidth. 

Bit-width reduction is another choice for the complexity and memory bandwidth 

saving. The main idea is to represent each pixel with a lower number of bits (usually 

one or two bits) using bit transformation. As a result, SME can use bit transformed data 

and therefore the computation and memory access are reduced. Akbulut, Urhan, and 

Erturk (2006) proposed the first bit transformed SME. After the interpolation of 

reference frame with 8 bits/pixel bit-depth, they used 1-bit transform to represent each 

pixel with 1 bit. Then, the SME refinement was carried out as usual. However, they 

used 8-bit data at the interpolation process and their method added an extra complexity 

due to transforming 8-bit data to 1-bit samples using multi-band pass filter. Motivated 

from the above drawback, Celebi, Akbulut, Urhan, Hamzaoglu, and Erturk (2008) 

introduced all-binary SME algorithm. In order to reduce the computation of 

interpolation, 8-bit pixel values were transformed before the interpolation. Furthermore, 

by replacing the multi-band pass filter with multiplication free one-bit transform 

(Erturk, 2007), further computation was saved. However, for motion compensation it 

should be noted that residue data should be transformed back to pixel domain requiring 

additional computation.  

3.4 Exploration of SME Architectures 

In this section, the design challenges and strategies of the H.264 SME are discussed. 

Besides, representative SME hardware architectures are surveyed. In addition, reviewed 

SME architectures are evaluated based on designs metrics. 
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3.4.1 Hardware Architecture Design: Challenges and Strategies 

Due to the huge computation and memory access requirement of the H.264 SME, 

acceleration of the SME process by dedicated hardware architectures is of vital 

importance for real-time application. Nevertheless, design of such architectures is a 

challenging job. The reason is that besides the extra ordinary huge computation and 

memory bandwidth, the SME algorithm in the H.264 reference software has been 

developed without architectural considerations. In the H.264 reference software, the 

SME is based on a sequential flow with a great deal of data dependency. From the 

hardware point of view, the sequential operations (processing) restrict the parallel 

processing, which in turn reduce the processing power. Besides, the data dependency 

increases the memory requirement at the price of an added storage space, area cost, and 

power consumption as well. Therefore, the data flow of the full search SME algorithm 

should be carefully reordered and optimized to permit concurrent operations with a 

reduced data dependency, which consecutively enables the parallel processing under the 

restrictions of sequential SME procedure. An example for analysis of the H.264 SME 

flow is the work of Yi-Hau Chen, Chen, Chien, Huang, and Chen (2008) where the 

authors simplify its complex encoding procedure into several encoding loops. In 

addition, they propose two decomposing techniques to parallelize the SME algorithm 

while maintaining high hardware utilization and achieving data reuse. 

The main building blocks of the H.264 SME consists of three parts i.e., interpolation 

unit, processing unit that is responsible for search and cost calculation, and mode 

decision. Among them, the interpolation unit is computationally intensive while 

processing and mode decision units demand less computation. Therefore, design of 

hardware architecture is performed by a particular emphasis on interpolation unit as the 

most computational intensive unit. However, design of efficient hardware architectures 
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for less computational demanding units is still important as they can affect the overall 

performance of the design. 

The main design challenges for the interpolation unit are hardware utilization and 

huge memory bandwidth that arise from the VBS, and the 6-tap FIR filter that is used 

for generation of half-pixels. Due to the seven different block sizes, the interpolation 

unit should be carefully designed to achieve maximum hardware utilization. The 

common solution for this issue is the use of 4×4 interpolation unit. As all bigger blocks 

can be decomposed into 4×4 blocks, the complete hardware utilization can be achieved. 

However, since each 4×4 block needs a 9×9 interpolation window, the 4×4 based 

interpolation increases the memory bandwidth. On a contrary way, the use of a 16×16 

interpolation unit leads to the lowest memory bandwidth, which is due to the covering 

of all block sizes, at the price of low hardware utilization. Examples that are based on 

4×4 and 16×16 interpolations are the designs of T.-C. Chen, Huang, and Chen (2004) 

and C. Yang, Goto, and Ikenaga (2006), respectively. As for the FIR filter, the previous 

reported papers in the literature (Park, Muhammad, & Roy, 2003; Samueli, 1988) are 

not suitable for the H.264 interpolation unit because of their too low input bandwidth 

(Lei, Wen, Zeng, & Ji, 2004). In another work (Song, Liu, Goto, & Ikenaga, 2005), an 

architecture for the H.264 interpolation unit is presented that has a 6-tap FIR filter with 

a pipelined architecture, which increases its processing ability. In a recent paper (Lu, 

McCanny, & Sezer, 2009), by exploiting the mixed use of parallel and serial-input FIR 

filters, a high throughput rate and efficient silicon utilization are achieved so that the 

proposed design can support SDTV and HDTV applications.  

On the subject of less computationally demanding units, i.e. absolute operation, 

SATD and inter mode decision, the discussion on this subject is not provided here. 

However, the interested readers are referred to the following studies for more 

information. Vanne, Aho, Hamalainen, and Kuusilinna (2006) and T.-C. Wang, Huang, 



40 

Fang, and Chen (2003) proposed efficient architectures for absolute difference operation 

and SATD function, respectively. As for the inter mode decision, it is difficult to find an 

architecture design with details in literature. However, the interested readers are referred 

to the work of H.-C. Kuo (2006) for a detailed example.  

In addition to the hardware architectures for the SME building blocks, efficient 

memory design is another important issue. The reason is that the SME uses the data-

intensive interpolation method to generate sub-pixels within up to five reference frames 

that calls for a great deal of data access through the frame memory. This data access is a 

slow process and in addition, it leads to a lot of power consumption and decreases the 

overall performance of the design. The common solution for this problem is data 

reusing technique (Soudris et al., 2000; Wuytack, Catthoor, Nachtergaele, & De Man, 

1996; Wuytack, Diguet, Catthoor, & De Man, 1998). In this technique, the temporal 

data locality is exploited and the previous accessed data is reused in future, which result 

in data access reduction. Accordingly, the power consumption is decreased. The data 

reuse method can be performed offline or online. In the offline scenario, frequently 

accessed data is stored in on-chip memory and will be recycled offline in future access. 

In this way, the data access from the frame memory can be decreased. In the online data 

reuse scheme, the current accessed data is shared between different places that work in 

parallel and therefore data access reduction is achieved. Y.-H. Chen, Chen, Tsai, Tsai, 

and Chen, (2008) introduced an effective data reuse methodology, which formulated the 

SME algorithm as the nested loops structures and explored data locality by the use of 

loop analysis. Based on their technique, the amount of memory access is significantly 

reduced that leads to a lot of saving in memory access power. Haihua, Zhiqi, and 

Guanghua (2007) have proposed a hardware implementation for interpolation unit that 

uses single-step interpolation method along with data reusing scheme, which can save 

the memory bandwidth, and processing cycles.  
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3.4.2 Hardware Architectures of the H.264 SME  

This sub-section surveys the state-of-the-art SME architectures and classifies them 

into full and fast SME architectures. A full SME architecture is based on the full search 

SME algorithm whereas a fast SME architecture is a hardware design of a fast SME 

algorithm. Three full SME architectures (T.-C. Chen et al., 2004; Wu, Kao, & Lin, 

2010; C. Yang et al., 2006) and four fast search SME architectures (T.-Y. Kuo et al., 

2007; Song et al., 2007; Tsung, Chen, Ding, Tsai et al., 2009; Y.-J. Wang et al., 2007) 

are selected as the representative designs. The details as well as the comparisons of 

which are provided in the following paragraphs.  

T.-C. Chen et al. (2004) proposed the first H.264 SME architecture. To bring a 

solution for the complex sequential procedure flow of the H.264 SME, they presented 

the 4×4 block decomposition and vertical integration techniques to enable the mapping 

of the SME flow in hardware with features of regular schedule, full utilization, parallel 

processing, and reusability. As shown in Figure 3.3, the main important parts of the 

proposed architecture are interpolation engine, nine 4×4 processing units, and 

Lagrangian mode decision engine. The interpolation engine produces half-pixels and 

quarter-pixels by using 1-D FIR and bilinear filters, respectively. The 4×4 processing 

units generate residues and SATD values. Since there are nine positions in each sub-

pixel refinement, nine 4 4 block processing units are used. The “Lagrangian mode-

decision” is responsible for finding the best mode among 41 modes in each macroblock. 

The area cost of the proposed design is 79 K gates and it can support SDTV format with 

30 fps, one reference frame and all MB modes at the clock frequency of 100 MHz. The 

maximum performance of this design is 52 K MB/s. 
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Figure ‎3.3 : Block diagram of Y.-C. Chen’s design. 

 

Based on the work of Y.-C. Chen et al. (2004), Yang et al. (2006) introduced a high 

performance architecture of the H.264 SME for HDTV application with two new 

techniques. Firstly, while Y.-C. Chen et al. (2004) used 4-pixel interpolation unit, they 

proposed a 16-pixel interpolation to increase processing capability. However, four times 

increase of the data width of the interpolation and the search engine only brought 52.5% 

of clock cycle saving. Secondly, they replaced 1-D filters in design of Y.-C. Chen el al. 

with diagonal filter and fully pipelined 1-D filters in the interpolation unit. As a result, 

the delay path was decreased and higher clock frequency was achieved without a 

considerable increase of area cost. The clock frequency of the design of Yang et al. is 

285 MHz that supports HD1080p format in 30 fps for one reference frame. The area 

cost and the maximum throughput of the proposed design are 189 K gates and 250K 

MB/s. 

Wu et al. (2010) presented a three-engine parallel SME architecture to support high-

resolution application. To cope with the high bandwidth input data problem, which led 
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to high bandwidth memory and a high hardware cost, they used a reference pixel 

scheduling method and an efficient memory organization to ensure that each engine can 

fetch the right reference pixel at the right time with minimum hardware cost. In 

addition, they dispatched 41 sub-blocks of each MB to the three engines in a load-

balancing and interlaced ways to increase the throughput. Furthermore, they introduced 

a resource-sharing scheme for SATD generators to reduce the number of the required 

SATD generators from three units to two units. Their proposed SME architecture takes 

311.7 K gates and can support HD1080 30fps at clock frequency of 154MHz.  

Based on the work of Y.-C. Chen et al. (2004), Y.-J. Wang et al. (2007) contributed a 

fast SME architecture. Their architecture was a hardware realization of a fast algorithm 

with reduced number of search points. As a result, the number of 4×4 processing units 

decreased to five instead of nine in design of Y.-C. Chen et al. Compared with the work 

of Y.-C. Chen et al., it saves 40% and 14% of area cost and searching time at the price 

of less than 0.2 dB PSNR quality drop. However, due to the use of the 4-pixel 

interpolation units and 1-D FIR filters, it has a limited power processing and can only 

support SDTV format.  

Song et al. (2007) proposed a fractional motion estimation engine for HD1080p 

resolution. To achieve real-time encoding, they presented three techniques. Firstly, they 

removed all modes below 8×8 block and supported one reference frame. Therefore, 

88.6% of the computations were saved with 0.1 dB loss. Secondly, they used two 

reusing methods, namely lossless inside-mode and cross-mode (Shao, Liu, Goto, & 

Ikenaga, 2007), which saved about 65% pixel generation and SATD calculation. 

Thirdly, they removed the pipeline bubbles between the half-pixel and the quarter-pixel 

stages by optimization the SME scheduling. The area cost of the proposed engine is 

203.2 K gates and it can encode real-time HDTV1080p at 30 fps under the clock 

frequency of 200 MHz. 
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T.-Y. Kuo et al. (2007) presented an SME architecture for HDTV and high profile. 

They proposed two techniques for solving the associated problems with HDTV video 

size and high profile. Firstly, the proposed architecture was based on the single-iteration 

algorithm. Consequently, its processing time was halved compared with conventional 

two-step full search algorithms. In addition, the number of its search candidates was 

reduced to six points that resulted in reduction of processing units and hardware cost. 

Secondly, since the high profile of H.264 uses the costly 8×8 SATD, they replaced it 

with 4×4 SATD leading to silicon area reduction. The proposed architecture supports 

HD720p 30 fps with a clock frequency of 70 MHz, 62.2 K gates, and 0.043 dB PSNR 

video quality degradation. 

In a later study (Tsung, Chen, Ding, Tsai et al., 2009), an SME architecture for quad 

full high definition (QFHD) was introduced that was based on the single-iteration 

algorithm. To cater to the huge computation and memory bandwidth requirement of the 

QFHD specification, several optimization techniques were used. Firstly, the 6-tap 

interpolation filter was replaced by a bilinear filter and thus memory bandwidth and 

area cost were saved. Secondly, based on the distributive law in SATD, the residues in 

the quarter-pixel SME were estimated while the half-pixel residues were known. 

Therefore, the calculations of sub-pixels were decreased. Thirdly, a cache-based 

memory (Tsung, Chen, Ding, Chien, & Chen, 2009) was used that resulted in 

bandwidth reduction. The clock frequency and throughput of the proposed design are 

280 MHz and 1659 K MB/s, which are sufficient for the 4096×2160 QFHD real-time 

processing. 
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3.4.3 Design Metrics and Evaluation of the Reviewed Architectures 

The illustrated design metrics for evaluation of the H.264 IME designs in Chapter 2 

can be used for evaluation of the H.264 SME designs as well. These design metrics are 

algorithm quality, silicon area, operating frequency, throughput, memory bandwidth, 

and hardware utilization. However, although the memory bandwidth and hardware 

utilization are two important evaluation metrics, none of the reviewed SME 

architectures provides any data regarding these two parameters except the work of Y.-C 

Chen et al. (2004), which only gives the details of hardware utilization.  

Therefore, since these two metrics are not available for the surveyed architectures in 

the literature, we only use four design metrics for the evaluation of the SME designs 

including algorithm quality, silicon area, operating frequency, and throughput. Please 

note that for a fair evaluation of the throughput in SME architectures, we should 

consider the number of modes that is supported by each architecture. The reason is that 

the number of block modes influences the throughput of SME architectures, which is 

due to sequential processing of block modes in SME architectures.  

Table 3.3 provides an evaluation of the aforementioned SME architectures based on 

the design metrics. From this table, three trends can be summarized as follows. First, 

under similar throughput condition, a full SME architecture has a higher area cost than a 

fast SME architecture with the benefit of the highest video quality. Second, fast SME 

architecture designs are generally preferred due to stringent real-time constrains. 

Finally, the single-iteration based fast SME architectures (T.-Y. Kuo et al., 2007; Tsung, 

Chen, Ding, Tsai et al., 2009) are suitable candidates for using in high-resolution 

application with a negligible quality drop and reasonable area cost. 

 

 

 



46 

Table ‎3.5 : Design metrics evaluation of the reviewed H.264 SME architectures designs. 

                                                 
7 All block modes and for SDTV resolution.  

8 All block modes and for HD1089 resolution.  

9 All block modes and for HD1080 specification. 

10 All block modes and for SDTV resolution. 

11 8×8 and above modes and for HD1080 resolution. 

12 All block modes and for HD720 resolution. 

13 Number of supported modes is not available, QFHD resolution, and 24 fps. 

Architecture Design Metrics 

Y.-C. Chen et al. (2004) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 79.3 

Operating frequency (MHz) 100 

Throughput (MB/s) 49 K
7
 

C. Yang et al. (2006) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 189 

Operating frequency (MHz) 200 

Throughput (MB/s) 250 K
8
 

Wu et al. (2010) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 311.7 

Operating frequency (MHz) 154 

Throughput (MB/s) 250 k
9
 

Y.-J Wang et al. (2007) Quality loss (dB PSNR) -0.1 to -0.2 

Silicon area (K gates) 48 

Operating frequency (MHz) 100 

Throughput (MB/s) 50 K
10

 

Song et al. (2007) 

 

Quality loss (dB PSNR) -0.1 

Silicon area (K gates) 203.2 

Operating frequency (MHz) 200 

Throughput (MB/s) 250 K
11

 

T.-Y. Kuo et al. (2007) 

 

Quality loss (dB PSNR) -0.043 

Silicon area (K gates) 62.2 

Operating frequency (MHz) 70 

Throughput (MB/s) 71.3 K
12

 

Tsung, Chen, Ding, Tsai et 

al et al. (2009) 

Quality loss (dB PSNR) -0.02 

Silicon area (K gates) 448 

Operating frequency (MHz) 280 

Throughput (MB/s) 830 K
13
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3.5 Summary 

This chapter reviewed recent state-of-the-art H.264 SME algorithms and 

architectures. First, the H.264 SME was analyzed and the impact of its functionalities on 

coding performance was investigated. Then, design space of SME algorithms was 

explored representing design problems, approaches, and recent advanced algorithms. 

Besides, design challenges and strategies of SME hardware architectures were discussed 

and promising architectures were surveyed. Finally, design metrics as well as evaluation 

of the surveyed SME architectures were given. 
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Chapter 4  
 

Analysis and Design of the Proposed Low-Cost 

Bit-Serial Architecture for Integer Motion 

Estimation in H.264/AVC 

4.1 Introduction 

H.264/AVC is the latest video coding standard that outperforms all of previous 

standards in terms of coding efficiency. Compared with previous video standards, 

H.264/AVC can provide up to 50% coding gains on different bit rates and video 

resolutions (Wiegand, Sullivan et al., 2003). To achieve a higher coding performance 

and better subjective visual quality, H.264 uses many new features such as variable 

block-size motion estimation (VBSME), multiple reference frames, in-the-loop 

deblocking filtering, weighted prediction, and so on. 

H.264/AVC uses variable block-size motion estimation, which consists of seven 

block sizes (i.e. 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 block sizes). Compared 

with traditional fixed block-size motion estimation, variable block-size motion 

estimation results in a more accurate prediction that enhances the coding performance. 

Although the coding performance of variable block-size motion estimation is higher 

than traditional fixed block-size motion estimation, it requires more computation and its 

hardware implementation is more difficult than a fixed block-size hardwired motion 

estimator. The instruction profile of an H.264/AVC encoder shows that the 

computational load of a CIF video with 30 fps is 315 GIPS where integer variable 
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block-size motion estimation is computationally most demanding part of it, which 

amounts to 74.29% (234 GIPS) computation of the encoder (Song, Liu, Ikenaga, & 

Goto, 2006). Therefore, acceleration of integer motion estimation by hardware 

architectures is required for real-time application.  

To meet the real-time constraints of the H.264/AVC IME, several architectures have 

been proposed, most of which use the full search algorithm due to its regularity, simple 

control unit, and coding performance. Generally, IME architectures are based on 1-D (J. 

Kim & Park, 2009; Lopez et al., 2008; Yap & McCanny, 2004), 2-D (Ou et al., 2005) 

systolic or semi-systolic and adder tree (C.-Y. Chen, Chien et al., 2006) architectures. 

Most of these architectures use bit-parallel data path to increase their processing ability 

at the price of an extra silicon area and I/O bit width. Conventionally, 1-D architectures 

are used for area-constrained application such as mobile phones because of their small 

hardware cost and power consumption. However, 1-D designs have a lower processing 

ability than 2-D architectures, and thus may not be suitable for medium and large 

resolutions. Therefore, for current and future area-constrained applications such as 

portable multimedia devices with greater resolution toward high definition, new low 

cost IME architectures with higher processing capability are required. 

Bit-serial architectures can be a solution for the above-mentioned problem. In bit-

serial approach, each bit of a word with n-bit length is processed at a time. As a result, 

all of the bits are passed through the same logic leading to a significant reduction in area 

and pin count. In addition, due to the small path delay between registers in bit-serial 

architectures, they can operate at a higher clock frequency, and thus achieve a higher 

throughput.  

Li and Long (2008) have proposed an MSB bit-serial architecture for the H.264/AVC 

IME with small area cost. This architecture benefits from an early termination scheme 

for calculating SAD to enhance its performance. However, the performance of the 
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proposed architecture is not sufficient for medium or high resolutions. In addition, 

compared with the least significant bit (LSB) arithmetic, MSB scheme has longer 

latency and needs extra hardware to convert its data into redundant representation. 

In this chapter, we introduce two 2-D systolic array LSB bit-serial IME architectures, 

which are suitable for area restrictive portable systems. Both designs are based on FS 

algorithm and can support VBSME for video with different resolutions. The first design 

uses a 2-D systolic array along with 1-D data broadcasting and partial result propagating 

techniques. The second design has a 2-D bit-serial adder tree together with a 

reconfigurable reference buffer, which can take advantage of the data reusing between 

successive search candidates. As a result, it is an appropriate choice for higher 

resolutions when using hardware parallelism. To decrease the computational load as 

well as memory bandwidth and to increase the overall performance of the proposed 

designs, several optimization techniques have been applied. By using pixel truncation 

scheme and proposing the word length reduction technique, not only the required cycles 

for computing the SAD of one search position is reduced from 16 cycles to 5 cycles (i.e. 

67.75% reduction) but also the silicon areas, power consumption, memory bandwidth 

and latencies of the proposed design are decreased. In addition, to reduce the area cost, 

computational complexity, memory bandwidth, and power consumption further, three 

techniques have been used as follows: mode filtering, 1/2-subsampling and a power 

reduction method for the reconfigurable reference buffer. 

The rest of this chapter is organized as follows. In Section 4.2, advantages and 

challenges of bit-serial architectures are explored. Section 4.3 describes the proposed 

bit-serial architectures in details. In Section 4.4, the proposed optimization techniques 

are discussed showing the performance improvement caused by them. Section 4.5 gives 

the experimental results and provides a comparison with the previous architectures. 

Finally, Section 4.6 gives a summary of this chapter. 
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4.2 Bit-Serial Approach: Advantages and Challenges 

As described in introduction, bit-serial architectures result in lower area cost and pin 

counts compared with bit-parallel architectures, which in turn lead to smaller package 

size and thus lower production cost. In addition, bit widths of signals in bit-serial 

architectures are one bit and often to one destination, which simplify the routing and 

reduce propagation delay and interconnection density. However, due to the spreading of 

operations and data over the time, design of bit-serial architectures are often more 

complicated than their equivalent bit-parallel architectures, especially in complicated 

designs. Besides, in the bit-serial scheme, a higher clock frequency can be achieved, 

which increases the processing ability. Furthermore, small interconnection density and 

area cost of bit-serial architectures can be advantageous for VLSI designs with deep 

submicron technologies.  

In deep sub micron regime and beyond, as the scale of process technologies steadily 

shrinks, the interconnect (i.e. the interconnection parameter) will be determining cost, 

delay, power, and reliability of the future LSI designs (Sakurai, 2000). Therefore, a 

lower interconnection density could improve the overall performance of the designs.  

From the power consumption viewpoint, the bit-serial operation has its own 

advantages and drawbacks. The total power consumption of a CMOS circuit can be 

modeled as: 

DDleakageDDtotal VIFVCP ... 2 
 
 (4.1) 

where the first term ( FVC DD.. 2
) denotes the dynamic power and the second 

).( DDleakageVI  represents the leakage power. Since bit-serial architectures are usually 

working at a higher clock frequency (i.e. F), their dynamic power is higher. On the 

other hand, the total capacitance load (i.e. C) of a bit-serial architecture, which is 
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approximately proportional to the area cost, is less than a bit-parallel design, which 

decreases the dynamic power. However, note that a bit-serial architecture generally 

consumes higher dynamic power than its bit-parallel counterpart, as will be explained 

later in the last paragraph of this section. 

Regarding the leakage power, which is proportional to the number of transistors (i.e. 

area cost), a smaller circuit results in lower leakage power. Therefore, the bit-serial 

scheme demonstrates lower leakage power than its bit-parallel matching part. Lower 

leakage power may be beneficial to portable multimedia devices and electronic 

consumer systems that are often in standby mode, where only the leakage power is 

consumed. Considering the size of process technology, as it steadily shrinks, the leakage 

current is becoming higher and will be a major contributor to total power consumption. 

Therefore, for recent and future VSLI designs with deep submicron technology size, the 

use of bit-serial architecture, which has small silicon area, can provide lower leakage 

power compared with bit-parallel architecture. Interested readers are referred to some 

excellent papers (Elgharbawy & Bayoumi, 2005; N. S. Kim et al., 2003; Sakurai, 2000) 

for thorough and in depth information on leakage power. 

One of the major problems associated with the bit-serial approach is its long 

processing time. For example, a bit-serial full adder (FA) requires n clock cycles to add 

two n-bit inputs, whereas the counterpart bit-parallel architecture with n-bit data path 

takes one clock cycle. The number of the required clock cycles in bit-serial arithmetic 

can be even bigger than the bit length of the input operands. Actually, the bit length of 

the output result determines the required clock cycles in bit-serial structure. For 

instance, consider the 8-bit input pixel data in the IME process. Since there are 256 

pixels in an MB, the maximum final SAD value may have up to 16 bits. Therefore, the 

required cycles for calculating a SAD will increase to 16 cycles instead of 8 cycles. 
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From the hardware point of view, this problem can increase the hardware cost and 

power consumption too. 

Mostly, there are many serial shift registers inside bit-serial architectures working at 

a high clock frequency. At each clock cycle, all of the data are shifting inside the shift 

register consuming a significant part of total dynamic power (Tan, Eriksson, & 

Wanhammar, 1994). This problem is another drawback of bit-serial architectures 

especially for using them in low power applications. In the next sections, we describe 

our two bit-serial architectures providing solutions for the associated problems with the 

bit-serial approach. 

4.3 The Proposed Bit-Serial Architectures 

4.3.1 Hardware Architecture of the First Design 

Figure 4.1 shows the 2-D structure of our first design, which consists of serial 4×4 

processing units (PUs), 1-D serial adder trees, and serial propagation registers. Our 

architectures is featured with reusing of partial SAD results and broadcasting of 

reference pixel data techniques in a similar way employed by partial propagate SAD 

IME designs (Huang, Wang, Hsieh, & Chen, 2003; Liu, Huang, Song, Goto, & Ikenaga, 

2007). The proposed design utilizes 16 4×4 PUs for calculating the SADs of 4×4 blocks 

that these partial SADs are reused to generate the SAD of bigger blocks (i.e. 4×8, 8×4, 

8×8, 8×16, 16×8, and 16×16). Each 4×4 PU has four rows of serial processing elements 

(PEs), four 1-D serial adder trees and serial full adders (FAs), and propagation serial 

registers, as shown in Figure 4.2. Serial PEs are responsible for calculating the absolute 

difference between current MB pixels and search area pixels. 1-D serial adder trees add 

the absolute differences of rows where the sum result of each row is propagating down 

and adds with sum result of next row using a serial FA. 
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Figure ‎4.1 : Our proposed 2-D bit-serial architecture. 

 

There are 256 serial PEs in our architecture, which have great effect on its 

performance. Therefore, design of an efficient serial PE architecture is important. To 

address this issue, we present a new serial PE architecture, which is based on an 

efficient absolute difference algorithm (Vanne et al., 2006). In this algorithm, the 

absolute difference operation is expressed as: 
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Figure ‎4.2 : Hardware architecture of the 4×4 PU. 

 

where R indicates the reference pixel and C represents the current pixel. 

The proposed bit-serial architecture of this algorithm is shown in Figure 4.3. At each 

clock cycle, one bit of the current and reference pixels are inputted starting from LSB. 

As a result, their difference (i.e. R-C) is generated in n clock cycles where n is the bit 

length of R and C. At the first cycle of a new operation, an initial signal (ini1) is used to 

set the carry-in (Ci) to zero leading to a correct result. In the proposed architecture, the 

n
th

 carry-out (Co) bit is latched in a D flip flop (DFF) and its inverse is used to XOR 

with the R-C bits that are stored in an n-bit serial DFF. In addition, the nth Co has to 

sum with the XORed bits to produce the correct absolute difference using serial FA. 

The sum operation can be eliminated to save the hardware cost of 256 serial FAs of 

PEs, which can lead to maximum error of 256 in the worst case (Liu et al., 2007). To 

solve this problem, we use serial half adder (HA) to save the hardware cost and 
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guarantee an error free calculation, as shown in the proposed serial PE architecture (see 

Figure 4.3). 

 
Figure ‎4.3 : Structure of the proposed serial PE. 

4.3.2 Data flow of our first design. 

The data flow of the first architecture for a 48×48 search area is given in Table 4.1, 

where the Cbn(i, j) points to the pixels of the current MB, Rbn(i, j) indicates the reference 

pixels in the search area, bn refers to the n
th 

bit of each pixel, i signifies row’s index and 

j specifies column’s index. Here, the clkp and clks represent parallel and serial clocks so 

that clks is equal to n × clkp and n is the bit length of each pixel. Note that n should be 

equal to the bit length of the largest possible SAD of a 16×16 block to lead to a correct 

result, which for our case n is equal to 16. The clks is the main clock of the design and 

clkp is used to make easier the description of the data flow.  

During a clkp cycle, 16 reference pixels of the left side of zeroth row are loaded so 
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following cycle. This type of data flow reduces the hardware utilization because when 

starting a new column, 15 cycles are needed for reading the search candidate block 

pixels. To solve this problem, it is required to lead the reference pixels of next column 

too, when loading the reference pixels of 33
th

 row of each column (as shown in Table 

4.1). In Figure 4.1, two sets of reference pixels are read and multiplexers select the right 

row of reference data and therefore 100% hardware utilization is approached. Due to the 

broadcasting of reference pixel data in vertical direction, all of PEs of a column use the 

same data. Therefore, the vertical data reuse is achieved leading to memory bandwidth 

reduction. 

Table ‎4.1 : The data flow of our first design. 
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4.3.3 The Second Design: Bit-Serial Adder Tree Architecture 

Figure 4.4 shows the proposed bit-serial architecture, which is based on Adder Tree 

architecture (C.-Y. Chen, Chien et al., 2006). This architecture has a 2-D structure that 

is composed of a reconfigurable reference buffer, an PE array, 16 2-D bit-serial 4×4 

adder trees, and one 2-D VBS bit-serial adder tree that their details are explained in the 

following paragraphs. 

 

Figure ‎4.4 : Hardware architecture of the proposed Bit-Serial Adder Tree. 

 

 

The reconfigurable reference buffer stores reference pixels enabling data reuse 

feature that will be discussed in subsection 4.3.4. At each cycle, 256 bits of current and 

reference pixels are sent to the PE array. Concurrently, a row of reference pixels are 

loaded into the reference buffer updating reference pixel data. The PE array consists of 

256 serial PEs for calculating absolute difference of current and reference pixels whose 

structures are similar to the PE structures of the first design. Sixteen 2-D bit-serial 4×4 
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adder trees are used for computing the SADs of 4×4 blocks at the same time, as the 

hardware architecture of a 2-D bit-serial 4×4 adder tree is given in Figure 4.4. The 

SADs of 4×4 blocks are reused in the 2-D VBS bit-serial adder tree to generate the 

SADs of bigger blocks in parallel. 

 

Figure ‎4.5 : Architecture of the proposed 2-D bit-serial 4×4 adder tree. 

 

4.3.4 Data Flow of the Proposed Reconfigurable Reference Buffer 

The data flow of our reconfigurable reference buffer is similar to SAD Tree 

architecture (C.-Y. Chen, Chien et al., 2006) except for one feature. The original 
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reference buffer into the proposed Bit-Serial SAD Tree, its architecture has to be 

modified so that it can support serial operation. 

The original reconfigurable reference buffer supports downward, leftward, and 

upward shift configurations and uses snake scan order that result in a high level of 

hardware utilization and data reuse. We add the bitwise shift right configuration to the 

original reconfigurable reference buffer to use it in our Bit-Serial Adder Tree. 

Table 4.2 shows the data flow schedule of the proposed reconfigurable reference 

buffer for a 48×48 search area where the clkp, clks, and Rbn(i, j) were defined for Table 

4.1. At each clkp cycle and during 0
th

 to 31
th

 cycles, one row of 16 reference pixels is 

loaded to the proposed reconfigurable reference buffer where the shift configuration is 

downward. When inputting the last 16 rows of an even column (i.e. 32
th

 to 47
th

 rows of 

reference pixels), an additional reference pixel is loaded which is used for data reusing 

later. When finishing an even column, the shift configuration is switched to leftward for 

one cycle. In the following cycles, the scan order continues from the last row data of the 

next right side column (i.e. an odd column) and the shift configuration is changed to 

upward where the loaded rows have 16 reference pixels. Please note that as the 

reference pixels have already been stored in the reconfigurable reference buffer, the 

SAD calculation can continue lacking bubble cycles. In addition, when loading the last 

16 rows of an odd column (i.e. 15
th

 to 0
th

 rows of reference pixels) an extra pixel is 

loaded. The same procedure will continue column by column with snake scan order, 

which leads high level of hardware utilization and makes possible the data reuse 

between two consecutive search candidates. 
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Table ‎4.2 : The data flow of our second design. 
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4.4 Proposed Techniques for Performance Improvement 

Our bit-serial architectures suffer from two major problems including dependency of 

the processing time to the bit length of the final SAD result and dynamic power 

consumption in the shift registers. Due to dependency of the bit length of the input data 

and the required cycles for computing the SAD of one search candidate to the bit length 

of the largest possible SAD (i.e. 16 bits for a 16×16 block), the performances of the 

proposed bit-serial architectures in terms of power consumption, processing ability, 

throughput, and latency are decreased. In addition, each PE has an n-bit shift register 

(i.e. n is the bit length of largest possible SAD) and the proposed reconfigurable 

reference buffer consists of N×N n-bit shift registers, which consume a significant 

amount of dynamic power. We have employed five optimization techniques to cope 

with these problems and improve the performances of the proposed designs further. 

The first technique is pixel truncation (Bahari, Arslan, & Erdogan, 2009; He & Liou, 

1997). We use current and reference pixels with only 5-bit precision. Consequently, the 

largest possible SAD of a 16×16 is reduced from 2
16

 to 2
13

. As a result, the required 

cycles for calculating the SAD of one search point as well as the PEs’ serial registers are 

decreased from 16 to 13, which lead to reduction of silicon area, memory bandwidth, 

and dynamic power as well as throughput improvement. 

The second technique is word length reduction by parallelism (Zhou & Kornerup, 

1995). In this technique, two FAs are used to obtain a higher computing rate in 

computing the SADs in a serial manner. As the final SAD of a 16×16 block can have up 

to 16 bits, by using two FAs, one for the low order 8 bits and another for the high order 

8 bits, the processing speed is doubled at the price of an added hardware cost. Taking 

into account the 5-bit truncated input pixels that may lead to a 13 bits SAD, we can use 

three FAs to triple the throughput, where the first, second and third FAs are responsible 

for the low order, middle order and high order 5 bits, respectively. However, replacing 
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of all FAs with a set of three FAs, will approximately increase the hardware cost of FAs 

by three. To increase the processing ability with an acceptable hardware cost, we 

propose several circuit optimization techniques as follows. 

Since the input pixels are truncated in our designs, we first configure their proposed 

PEs from 13 bits to 5 bits operation because the output result for absolute difference 

operation may have 5 bits of maximum bit length. This leads to a significant hardware 

cost reduction of the PEs and their propagation registers in the proposed architectures 

(see Figure 4.3). Then, for adding two absolute difference results in the first stages of 1-

D serial adder trees in Figure 4.2 and Figure 4.5, we propose an efficient serial adder 

that can add two 5-bit inputs while the processing time is still 5 cycles instead of 6 

cycles, as shown in Figure 4.6(a). When the sum result is less than 2
6
, the output result 

is presented with 5 bits using sl output that is the low order sum result. When the sum 

result is bigger than 2
6
-1, the sum result needs 6 bits, where the sixth bit is the carry-out 

signal in the 5th clk. By using an AND gate, the higher order sum result (i.e. sh) is 

calculated so that its bit length is only one. Due to the use of 256 PEs in each design, 

128 FAs are used in the first stages 1-D serial adder trees. Accordingly in the new 

designs, we only use 128 extra AND gates whereas the processing time for one 

searching candidate is reduced from 13 to 5 cycles. In Figure 4.6(a), please note that the 

ini signal is set to zero at the beginning of a new add operation for one cycle to obtain a 

correct result.  

For the second stages of the 1-D serial adder trees and other serial FAs in Figure 4.2 

and Figure 4.5, we use two FAs, one for the low order 5 bits and another for the high 

order 5 bits, as shown in Figure 4. 6(b). Note that in this figure the carry-in (ci) of the 

high order 5 bits should be the 5th carry-out (co) of the low order part. By using two 5-

bit FAs, the maximum value of 2
11

-1 can be calculated. Therefore, the SAD of 4×4 and 

4×8 and 8×4 block sizes can be computed with the proposed circuit in Figure 4. 6(b). As 
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for a 4×4 block seven sets of presented circuit in Figure 4.6(b) are used; for all block 

sizes smaller than 8×8 blocks, 16×7 +8 sets of this circuit are required. By using three 

FAs in a similar way as shown in Figure 4.6(b), we can calculated the SAD values of 

the bigger blocks (i.e. 8×8, 8×16, 16×8 and 16×16 blocks). Therefore, we only need 

nine sets of three FAs whereas the calculating of a search candidate is reduced to 5 

cycles. In summary, with the proposed word length reduction scheme the required 

cycles for processing of one search candidate and the bit length of the PEs’ shift 

registers are reduced from 16 bits to 5 bits, and thus hardware cost and dynamic power 

are significantly decreased. 

 

 

Figure ‎4.6 : Hardware architecture of (a) the proposed serial adder for adding 5-bit 

operands and (b) the proposed two parts serial adder. 

 

The third technique is 1/2-subsampling at the MB level. Since in the H.264 standard 

the video frames are processed MB by MB, with 1/2-subsampling at the MB level, we 

can roughly reduce the hardware cost of the PE array, computational load and memory 

bandwidth by a factor of two. Because with 1/2-subsampling, the number of the 

required reference pixels, current pixels, and PEs is reduced two times. 

The forth method is mode reduction in which by removing the 4×4 modes, 16 modes 

of 41 modes in the H.264 IME are reduced. Consequently, their corresponding circuits 

for obtaining minimum SADs and related MVs are saved. 
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The last method is a power reduction technique proposed in response to the dynamic 

power consumption of the bitwise shift right configuration in the proposed 

reconfigurable reference buffer. To facilitate the description of the proposed power 

saving method, consider an n-bit serial shift right register, as shown in Figure 4.7(a). 

This shift register supports downward, leftward, and upward shift configurations, where 

the reference data are in parallel from. When configuring in the bitwise shift right case, 

at each clks cycle, n bits are shifted consuming a lot of power whereas the corresponding 

PE circuit only uses one bit.  

To avoid the serial shift operation, we employ a multiplexer. In this way at each 

cycle, the appropriate bit is selected and sent to PE array circuit, as shown in Figure 

4.7(b). As a result, the power consumption is considerably decreased at the price of an 

extra hardware cost of multiplexer. Taking into account the bit length of reference pixel 

after applying the proposed optimization technique (i.e. 5 bits), we need to use an 8 to 1 

multiplexer, where three of its inputs are not used. To mitigate the hardware cost of this 

multiplexer, we utilize a 4 to 1 multiplexer connected to a 2 to 1 multiplexer to provide 

a 5:1 multiplexer, as shown in Figure 4.7(c).  

In summary, to cope with the long processing time and high dynamic power 

consumption problems of the proposed bit-serial IME designs, we apply several 

optimization techniques. By the word length reduction and bit-truncation techniques, we 

reduce the required processing time of a search candidate from 16 to 5 cycles, where the 

other design parameters such as power consumption, silicon area, and throughput are 

improved too. In addition, mode filtering and 1/2-subsampling methods are used to 

reduce the hardware costs further. Besides, the dynamic power of the proposed bit-serial 

reconfigurable reference buffer is decreased by using a power saving method at price of 

an extra area cost. 



66 

 

Figure ‎4.7 : Hardware architecture of (a) shift register, (b) the proposed power reduction 

circuit, and (c) the proposed improved power reduction circuit. 

4.5 Experimental Results and Analysis 

4.5.1 Evaluation of Rate-Distortion Performance  

In order to evaluate the impact of the proposed optimizations techniques on R-D 

performance, we incorporate them into the reference software (JM version 11) using 

several test sequences. Tables 4.3-4.6 give average bit rate and PSNR difference for 

case (a) to case (e) where the test conditions are similar to that of Chapter 3 for Akiyo 

(QCIF), Container (QCIF), Mobile (CIF), and News (CIF) test sequences. 

(a) FS IME with all block sizes and one reference frame. 

(b) 4×4 mode filtered variable block-size FS IME with one reference frame. 

(c) 3 bits truncated FS IME with all block sizes and one reference frame. 

(d) 1/2-subsampled FS IME with all block sizes and one reference frame. 

(e) Optimized FS IME (4×4 mode filtered + 3 bits truncated + 1/2-subsampled) with 

one reference frame. 

In Tables 4.3-4.6, each case is described by four points with PSNR and bit rate 

values where the average bit rate difference percentage (ΔBR( %)) and the PSNR 

difference in terms of dB (ΔPSNR(dB)) of each case are calculated with respect to the 

reference case (i.e. case (a)). In addition to the average bit rate difference percentage 

and the PSNR difference, Figure 4.8 and Figure 4.9 show the R-D plots for Carphone 
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(QCIF), Mother-Daughter (CIF), City(4CIF), and Blue-Sky(HD1080) test sequences 

where the performance of the FS IME algorithm and its optimized version that are 

similar to case (a) and case (e), correspondingly. As seen in Table 4.3-Table 4.6 as well 

as Figures 4.8-4.11, the proposed optimization techniques lead to very competitive 

results compared with the FS IME algorithm. The proposed techniques are simple but 

effective and reduce the computational complexity and the memory bandwidth of the FS 

algorithm. 

Table ‎4.3 : The impact of the proposed optimization methods on coding performance for 

Akiyo (QCIF) sequence. 

                    Case        
Criterion 

(a) (b) (c) (d) (e) 

Bit rate1 (kbps) 
PSNR1 (dB) 

10.2 
30.02 

10.1 
30.07 

10.8 
30.06 

10.1 
29.99 

10.1 
30.01 

Bit rate2 (kbps) 
PSNR2 (dB) 

20.0 
33.45 

20.0 
33.61 

20.1 
33.52 

20.1 
33.51 

20.4 
33.58 

Bit rate3 (kbps) 
PSNR3 (dB) 

30.1 
35.47 

30.1 
35.50 

30.1 
35.44 

30.4 
35.47 

30.8 
35.47 

Bit rate4 (kbps) 
PSNR4 (dB) 

60.0 
38.20 

60.1 
38.23 

60.0 
38.20 

60.0 
38.23 

60.3 
38.20 

ΔBR (%) 
ΔPSNR (dB) 

0.00 
0.00 

-2.03 
0.08 

-0.56 
0.02 

-0.71 
0.03 

-1.19 
0.04 

The Parameters for used sequences are 30 fps, ±16-pel search range, high complexity mode decision and 

300 encoded frames.  

 

 

 

 

Table ‎4.4 : The impact of the proposed optimization methods on R-D performance for 

Container (QCIF) sequence. 

                 Case        
Criterion 

(a) (b) (c) (d) (e) 

Bit rate1 (kbps) 
PSNR1 (dB) 

15.0 
29.69 

15.5 
29.73 

15.0 
29.79 

15.0 
29.76 

15.0 
29.67 

Bit rate2 (kbps) 
PSNR2 (dB) 

30.0 
32.18 

30.1 
32.17 

30.0 
32.17 

30.1 
32.15 

30.1 
32.11 

Bit rate3 (kbps) 
PSNR3 (dB) 

60.0 
34.40 

60.7 
34.38 

60.1 
34.39 

60.1 
34.34 

60.0 
34.40 

Bit rate4 (kbps) 
PSNR4 (dB) 

90.1 
36.34 

90.0 
36.34 

90.0 
36.34 

90.1 
36.41 

90.1 
36.34 

ΔBR (%) 
ΔPSNR (dB) 

0.00 
0.00 

0.21 
-0.002 

0.01 
0.004 

0.68 
-0.016 

1.58 
-0.054 
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Table ‎4.5 : The impact of the proposed optimization methods on coding performance for 

Mobile (CIF) sequence. 

                 Case        
Criterion 

(a) (b) (c) (d) (e) 

Bit rate1 (kbps) 
PSNR1 (dB) 

1599.7 
28.05 

1599.7 
28.04 

1599.7 
28.03 

1599.5 
27.98 

1599.6 
27.99 

Bit rate2 (kbps) 
PSNR2 (dB) 

2499.3 
30.55 

2499.5 
30.53 

2499.5 
30.54 

2499.4 
30.51 

2499.8 
30.49 

Bit rate3 (kbps) 
PSNR3 (dB) 

3499.4 
32.97 

3499.4 
32.95 

3499.1 
32.96 

3499.3 
32.94 

3499.4 
32.92 

Bit rate4 (kbps) 
PSNR4 (dB) 

4998.8 
35.92 

4998.2 
35.90 

4998.8 
35.91 

4998.4 
35.89 

4998.1 
35.85 

ΔBR (%) 
ΔPSNR (dB) 

0.00 
0.00 

0.26 
-0.019 

0.18 
-0.012 

0.59 
-0.041 

0.85 
-0.060 

 

 

 

 

 

 

 

Table ‎4.6 : The impact of the proposed optimization methods on coding performance for  

News (CIF) sequence. 

                 Case        
Criterion 

(a) (b) (c) (d) (e) 

Bit rate1 (kbps) 
PSNR1 (dB) 

40.1 
28.59 

40.1 
28.53 

40.1 
28.57 

40.1 
28.59 

40.1 
28.56 

Bit rate2 (kbps) 
PSNR2 (dB) 

80.2 
31.45 

80.2 
31.48 

80.2 
31.38 

80.2 
31.45 

80.2 
31.42 

Bit rate3 (kbps) 
PSNR3 (dB) 

150.5 
33.99 

150.5 
33.98 

150.5 
33.96 

150.5 
33.99 

150.6 
33.91 

Bit rate4 (kbps) 
PSNR4 (dB) 

250.8 
36.26 

250.7 
36.21 

250.7 
36.24 

250.8 
36.24 

250.7 
36.15 

ΔBR (%) 
ΔPSNR (dB) 

0.00 
0.00 

0.03 
-0.003 

1.10 
-0.046 

0.05 
-0.002 

1.31 
-0.054 

 



69 

 

 

 

 

 

 

 

 

 

 

 

 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

30 105 180 255 330 405 480 

P
S

N
R

 (
d
B

) 

Bit rate (Kbps) 

Mother-Daughter (CIF) 

FS IME 

Optimized IME 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

30 80 130 180 230 280 

P
S

N
R

 (
d

B
) 

Bit rate (Kbps) 

Carphone (QCIF) 

FS IME 

Optimized IME 

Figure ‎4.8 : R-D plot of Carphone test sequence for FS IME and its optimized version. 

Figure ‎4.9 : R-D plot of Mother-Daughter test sequence for FS IME and its optimized 

version. 
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Figure ‎4.10 : R-D plot of City test sequence for FS IME and its optimized version. 

 

  

 

 

 

Figure ‎4.11 : R-D plot of Blue-Sky test sequence for FS IME and its optimzed version. 
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4.5.2 Implementation Results and Reusability Discussion 

The proposed bit-serial IME architectures for H.264 have been implemented in 

Verilog-HDL and synthesized in Silterra 0.18 μm technology using Synopsys Design 

Compiler. Table 4.7 lists the implementation results of the proposed architectures. Due 

to bit-serial structure and applying of several optimization techniques, the hardware cost 

of the first and the second architectures are 29.28 K gates and 31.5 K gates, respectively 

making them good candidates for using in area-constrained designs. Taking into 

consideration a search range of [-16, +15] in the horizontal and vertical directions and 

the required cycles for processing one search candidate (i.e. 5 cycles), the proposed 

architectures can process an MB at 5120 clock cycles. As a result, CIF resolution with 

30 fps can be processed at 60.82 MHz where the first and the second designs consume 

19.94 mW and 11.77 mW under slow operating conditions (i.e. 1.62 V and 125°C). 

With the clock frequencies of 440 MHz and 427 MHz, the maximum throughputs of the 

first and the second proposed designs are 85.93 K MB/s and 83.39 K MB/s, 

respectively. Therefore, higher resolutions can be met with higher clock frequencies. 

For instance, real-time VBS FS IME of 720×480 video @ 30 fps with a [-16, 15] search 

range and one reference frame is satisfied at 207 MHz. Note that due to having of 

reconfigurable reference, the memory bandwidth of the second design is lower than the 

first design.  

 

 

Table ‎4.7 : Implementation results of the proposed designs. 

 Our first design  Our second design 

Technology  Silterra 0.18um Silterra 0.18um 

Voltage 1.62 V 1.62 V 

Gate counts 29.28 K gates 31.5 K gates 

Required frequency 60.82 MHz 60.82 MHz 

Max Throughput  85.93 K MB/s 83.39 K MB/s 

Memory Bandwidth  163 Kbits/MB 87 Kbits/MB 

Power consumption 19.94 mW 11.77 mW 
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In addition, since the first design has many propagation registers and the proposed 

reconfigurable reference buffer of the Bit-Serial Adder Tree benefits from power saving 

technique, the second design consumes a lower power consumption than the first 

design. 

The proposed designs can be reused for higher resolutions such as HD format by 

adopting the parallelism technique whereas the processing ability as well as the memory 

bandwidth of them can be improved further. For example, consider HD720 resolution 

with one reference frame, [-32, +31] search range, and 30 fps. The required frequency 

for satisfying the real-time IME for the above specifications with one set of our bit-

serial architecture is 2,211 MHz. By using five sets of the first or the second designs, 

which work in parallel, these specifications can be met under 368.5 MHz. When using 

the first architecture, we need to five sets working in parallel. As a result, the processing 

ability increase 500% at price of the hardware cost of five sets of the first design. Please 

note that the reference pixels in each row can be reused by these parallel architectures, 

and therefore the memory bandwidth is decreased as well. If we use the second design 

for the above specification, we need one reconfigurable reference buffer with only 

seven extra reference pixels in each row and five sets of PE array. Consequently, the 

processing ability increases by a factor of five and 80% of the memory bandwidth is 

roughly saved. When using the parallelism, the second design shows a better 

performance compared with the first design in terms of hardware cost. Because in 

parallelism, the second design only requires one reference reconfigurable buffer with 

extended size and the required number of its PE array is defined by the degree of the 

parallelism (i.e. N). Whereas for the first design, we need to use N sets of the first 

architecture that increases its hardware cost by a degree of N.  
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4.5.3 Design Metrics Evaluation and Comparison 

Table 4.8 lists the design metrics for the proposed bit-serial architectures and the 

state-of-the-art architectures that were surveyed in Chapter 2 including the designs of 

Yap and MaCcany (2004), Ou et al. (2005), Y.-C. Chen et al. (2006), Li and Leong 

(2008), Lopez et al. (2008), and Lim & Park (2009). Since the required operating 

frequency, maximum throughput, and memory bandwidth are affected by the search 

range, frame size, the number of reference frames, and frame rate, and in order to 

provide a reasonable comparison, the given design metrics in Table 4.8 are for the same 

specifications i.e. a [-16, 15] search range, 352×288 frame size, one reference frame, 

and 30 fps.  

Regarding the algorithm quality metric, because of using the FS IME algorithm, all 

of the architectures in Table 4.8 achieve the highest coding performance. Note that 

owing to the use of optimization methods, our bit-serial architectures have a very 

negligible quality degradation that is only about 0.05 dB PSNR in average. However, 

when considering the advantages of the optimization methods that were explained in 

Section 4.4, this quality loss can be ignored.  

As seen in Table 4.8, due to the optimized bit-serial architectures, the area costs of 

our designs are lower than the previous architectures except for “(16, 1) arch” design of 

Lopez et al. However, “(16, 1) arch” requires much higher memory bandwidth and has 

much lower throughput than our designs. In addition, compared with prior low cost 

designs (i.e. 1-D architectures (J. Kim & Park, 2009; Lopez et al., 2008; Yap & 

McCanny, 2004) and MSB bit-serial architecture (Li & Leong, 2008), our bit-serial 

architectures need the lowest number of cycles for processing one search candidate (i.e. 

5 cycles), and thus they outperform other designs in terms of the required frequency and 

the maximum throughput. When our design is compared with 2-D designs (i.e. the 

designs of Ou et al. and Y.-C. Chen et al.), our architectures need a higher clock 
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frequency for real-time encoding of the above-mentioned specifications due to serial 

operation. However, the hardware costs of our designs are much lower than 2-D 

architectures. The reason is that these 2-D architectures consist of 256 bit-parallel PEs 

and therefore need to lower clock frequencies to meet the real-time constrains of Table 

4.8. In addition, these 2-D architectures have higher throughputs relative to our designs 

at the price of higher silicon areas. Please note that by using hardware parallelism, as 

described in subsection 4.5.2, we can achieve higher throughput rate with reasonable 

hardware cost. 

Another important design parameter is the memory bandwidth that is defined as the 

required number of bits that an MB has to read from memory. In fact, the memory 

bandwidth is affected by the level of data reusing so that a higher level of data reusing 

leads to a lower memory bandwidth. Among all of architectures in Table 4.8, the 

proposed Bit-Serial Adder Tree design has the lowest memory bandwidth due to pixel 

truncation and data reusing in the vertical and horizontal directions enabled by the 

reconfiguration reference buffer. In addition, the first design outperforms the 1-D and 

MSB bit-serial architectures as it uses the pixel truncation and broadcasting of reference 

data whereas the 1-D designs only use broadcasting technique and the MSB bit-serial 

architecture does not benefit from the reconfigurable reference buffer or data 

broadcasting technique.  

Regarding the hardware utilization, when ignoring the start up cycles, all of the 

architectures in Table 4.8 are approaching 100% hardware utilization except the design 

of Li and Leong (2008) that includes 761 cycles on-line delay for calculating the SAD 

of each MB that takes 18432 cycles. 
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Table ‎4.8 : Design metrics evaluation and comparison. 

Architecture Design Metrics 

Yap and MaCcany (2004): 1-

D architecture with 16 PEs. 

Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 61 

Operating frequency (MHz) 194.6 

Maximum Throughput (MB/s) 17,944 

Memory bandwidth (Kbits/MB) 4,194 

Hardware utilization (%) 100 

Ou et al. (2005): 2-D 

architecture with 256 PEs 

Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 597 

Operating frequency (MHz) 12.16 

Maximum Throughput (MB/s) 195,312 

Memory bandwidth (Kbits/MB) N/A 

Hardware utilization (%) 100 

Y.-C. Chen et al. (2006): 2-D 

parallel adder tree 

architecture with 256 PEs.  

Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 88.6 

Operating frequency (MHz) 12.16 

Maximum Throughput (MB/s) 106,250 

Memory bandwidth (Kbits/MB) 139 

Hardware utilization (%) 100 

Li and Leong (2008): MSB 

bit-serial design with 256 

PEs.  

Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 55 

Operating frequency (MHz) 274 

Maximum Throughput (MB/s) 22,786 

Memory bandwidth (Kbits/MB) 4718 

Hardware utilization (%) 95.87 

Lopez et al. (2008): 1-D 

architectural template 

Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 33.41/21.3 

Operating frequency (MHz) 100 

Maximum Throughput (MB/s) 5,910 

Memory bandwidth (Kbits/MB) 541/2,166 

Hardware utilization (%) 100 

Lim and Park (2009): 1-D 

architecture with 16 PEs. 

Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 39.2 

Operating frequency (MHz) 195 

Maximum Throughput (MB/s) 25,390 

Memory bandwidth (Kbits/MB) 4,194 

Hardware utilization (%) 100 

Our first design: 2-D bit-

serial architecture with 128 

PEs. 

Quality loss (dB PSNR) -0.05 

Silicon area (K gates) 29.28 

Operating frequency (MHz) 60.8 

Maximum Throughput (MB/s) 85930 

Memory bandwidth (Kbits/MB) 163 

Hardware utilization (%) 100 

Our second design: Bit-serial 

adder tree architecture with 

128 PEs.  

Quality loss (dB PSNR) -0.05 

Silicon area (K gates) 31.5 

Operating frequency (MHz) 60.8 

Maximum Throughput (MB/s) 83390 

Memory bandwidth (Kbits/MB) 87 

Hardware utilization (%) 100 
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4.6 Summary 

In this section, we have presented two low cost bit-serial H.264 IME architectures 

and addressed the advantages and challenges of the bit-serial structure. Our 

architectures benefit from SAD and data reusing techniques reducing their memory 

bandwidth. The first design has a 2-D structure featured with broadcasting of reference 

pixel data and propagating of partial sum and SAD results. The second design uses 2-D 

bit-serial adder tree connected to a reconfigurable reference buffer making it suitable for 

hardware parallelism. With the aim of solving the design challenges of bit-serial 

architectures and in order to improve the performance of the proposed designs, we have 

used several optimization methods including pixel truncation scheme and word length 

reduction technique, mode filtering, 1/2-subsampling and a power reduction method for 

the reconfigurable reference buffer. These optimization methods significantly improve 

the performance of our designs in terms of area cost, memory bandwidth, throughput, 

and power consumption. The experimental results show that the proposed designs can 

process real-time VBS IME of CIF resolution with [-16, 15] search range, one reference 

frame and 30 fps at 60.8 MHz and with less than 32 K gates. Finally, the performance 

evolution and comparison with the previous representative designs have been provided 

showing the advantages and weaknesses of our designs relative to them. 
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Chapter 5  
 

Algorithm Analysis and Bit-Serial Architecture 

Design for Sub-Pixel Motion Estimation in H.264 

5.1 Introduction 

H.264/AVC employs SME with quarter-pixel accuracy that can improve R-D 

efficiency by 4 dB PSNR (T.-C. Chen et al., 2004). However, as described in Chapter 3, 

the computational load and the memory bandwidth of the quarter-pixel accurate ME are 

highly extensive due to the use of VBS, MRF, interpolation scheme for producing sub-

pixel values, two sub-pixel search steps, and matching process. In addition, as seen in 

the H.264/AVC reference software, MB processing in the SME algorithm is usually 

sequential with a lot of data dependency, which is not suitable for hardware 

implementation. From the hardware point of view, the above problem restricts the 

degree of parallelism at the architecture level, which in turn decreases the processing 

capability (i.e. throughput) of the design. Consequently, the hardware architecture may 

not be able to meet the required throughput of real-time applications, especially for 

HDTV resolution. Therefore, design of fast algorithms and efficient hardware 

architectures for the H.264/AVC SME are required for real-time applications. Besides, 

all of the SME designs in the literature (i.e. the reviewed designs in Chapter 3) use 

parallel data path to increase their processing capability at the price of higher area costs 

and pin counts. Consequently, they may not be suitable for area-constrained 

applications.  
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In this chapter motivated by the above-mentioned issues, we propose a fast SME 

algorithm and its low cost architecture requiring low computational complexity and 

memory access requirement. The proposed algorithm is based on parabolic interpolation 

free algorithms (Suh & Jeong, 2004). We review parabolic interpolation free algorithms 

and extend their accuracy from half-pixel to quarter-pixel. In addition, we analyze the 

computational complexity and the memory bandwidth requirement of the H.264 SME in 

the reference software and the proposed algorithm. According to our analysis, the 

proposed algorithm significantly reduces the computational budget and the memory 

requirement in comparison with the interpolate and search method in the reference 

software with an acceptable video quality. Besides, to lower the computational 

complexity and the memory bandwidth further, we propose a fast version of the 

proposed algorithm along with SAD truncation and mode filtering techniques. For the 

hardware architecture design, we choose bit-serial structure for implementing our 

algorithm to benefit from its advantages. In addition, we use reusability, source sharing, 

and power saving techniques in our architecture that lead to area saving and power 

consumption reduction. Our architecture can support real-time HD1080 format with 

20.3 K gates at the operation frequency of 88.3 MHz. 

The rest of this chapter is organized as follows. Section 5.2 reviews the parabolic 

based SME algorithms and presents the details of the proposed algorithm. In Section 

5.3, the computational budget and the memory access requirement of the proposed 

algorithm and the standard interpolate and search method are analyzed. Section 5.4 

presents the proposed optimization techniques that reduce the computational complexity 

of the proposed algorithm. In Section 5.5, the proposed bit-serial architecture for 

quarter-pixel accurate ME is described and our power saving technique is presented. In 

Section 5.6, the experimental results and comparison between our design and the 
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previous architectures are provided. Finally, Section 5.7 gives a summary of this 

chapter.  

5.2 The Proposed Low Complexity Algorithm 

5.2.1 Review of Parabolic Interpolation Free Algorithms 

Suh and Jeong (2004) introduced five mathematical models (i.e. Model 1, Model 2, 

Model 3, modified Model 2, and modified Model 3) for calculating of the sub-pixel 

motion vectors, which the complexity as well as the performance of each model 

depended on its order. To compute the coefficients of models, the SAD values of the 

neighboring positions around the best integer motion vector were used. After calculating 

the coefficients, the sub-pixel SAD values around the best integer motion vector were 

obtained. Then, the lowest sub-pixel SAD value determined the best sub-pixel MV. Due 

to avoiding of sub-pixel interpolation in the proposed models, their computational load 

and memory bandwidth were significantly reduced. Among the proposed models, 

Model 1 achieves the best coding performance due to considering all eight neighboring 

positions around the best integer motion vector at the price of more complexity. From 

the hardware point of view, Model 1 and Model 2 are more suitable than the other 

models. Please note that all of these five models only support half-pixel accuracy and do 

not involve the new coding tools of the H.264/AVC standard such as quarter-pixel 

accuracy motion vector, VBS, and Lagrangian mode decision. Therefore, for supporting 

the H.264/AVC SME with quarter-pixel accuracy, a new parabolic interpolation free 

algorithm is required. In the next sub-section, we explain our SME algorithm with 

quarter-pixel accuracy, which is based on Model 1 due to its good coding performance 

and suitability for hardware implementation.  
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5.2.2 The proposed Nine-Five Model Algorithm 

Our algorithm is based on Model 1, which we extend its accuracy form half-pixel to 

quarter-pixel featured VBS and Lagrangian mode decision coding tools. Due to the use 

of nine and five search points in half and quarter-pixel refinements, respectively, we 

name it nine-five model (NFM) algorithm. In Figure 5.1, suppose that after coarse IME, 

the SAD values of the best integer MV (IMV)candidate and its eight neighboring 

integer-pixels are known (i.e. (0,0) and ((-1,-1), (0,-1), (1,-1), (-1,0), (1,0), (-1,1), (0,1), 

(1,1)), respectively).  

 

Figure ‎5.1 : The search pattern of the proposed algorithm for sub-pixel motion estimation. 

 

We define the following equation as a parabolic surface function of SAD values.  
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In this equation ISAD, HSAD, and QSAD represent integer, half-pixel, and quarter-

pixel SAD amounts, respectively. By using the nine integer SAD values, all nine 

coefficients of equation (5.1) (i.e. A1-A9) can be calculated from equation (5.2) and 

equation (5.3). 
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By calculating the inverse matrix of equation (5.2), A1-A9 coefficients are obtained 

from equation (5.3). 
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Now by substituting A1-A9 and the values of -0.5, 0, and 0.5 for x, y in equation (5.1), 

the motion compensation (MC) prediction errors at the neighboring half-pixel positions 

(i.e. HSAD1-HSAD9) can be calculated from equation (5.4). 
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Then, the total coding costs of all half-pixel candidates are calculated using the 

estimated SAD and the coding cost of the corresponding MV:  

J=HSAD + λ × R .         (5.5) 

where λ is the Lagrangian multiplier, which is a function of quantization parameter (QP) 

and R is the total number of bits required for coding the MV information. The minimum 

J determines the optimal half-pixel accurate MV. After finding the optimal half-pixel 

accurate MV, we use a cross pattern around that to find the quarter-pixel accurate ME 

similarly (see Figure 5.1). By substituting the values of -3/4, -1/2, 0, 1/2, and 3/4 for x, 

y in equation (5.1), the SAD’s values at quarter-pixel positions (QSADs(x, y)) can be 

calculated. Finally, by using the equation (5.5) (where HSAD is replaced by QSAD), the 

optimal quarter-pixel accurate MV is obtained. 



83 

5.3 Computational Complexity and Memory Access Analysis  

This section presents a direct approach for calculating the computational complexity 

(CC) and the memory access (MA) requirement of the SME algorithm in the reference 

software and the proposed algorithm. All of the calculations are based on macroblock 

(MB) as the MB processing is adopted in the H.264/AVC video coding systems. Based 

on our analysis, we can approximately estimate the required computation and the 

memory access of a certain specification (CS) in terms of its MB rate. The results of our 

analysis reveal that the computational budget and the memory access requirement of the 

proposed algorithm is much lower than the interpolate and search method in the 

reference software. 

5.3.1 Analysis of Computational Budget  

Here, the computational complexity is calculated in terms of the number of the 

required operations for one n×m block (i.e. 4×4 or 4×8 or 8×8 or 8×16 or 16×8 or 

16×16 block) in the quarter-pixel accurate ME process. The computational complexity 

of the interpolate and search method in the reference software for one n×m block 

consists of the following terms: interpolation, search, and matching process for the half-

pixel (HP) and the quarter-pixel (QP) refinements. The whole computational 

complexity can be formulated as follows: 

CCtotal(n×m) = CCHP(n×m) + CCQP(n×m).   (5.6) 

The total numbers of half and quarter-pixels in the interpolation process for one n×m 

block can be calculated from equations (5.7) and (5.8), respectively. 

Hn×m=3n×m+2(n+m) +1.   (5.7) 

Qn×m=12n×m+10(m+n) +10.   (5.8) 
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Note that in these equations, Hn×m and Qn×m represent the number of half-pixels and 

quarter-pixels within a search range of [-0.5, 0.5] and [-0.75. 0.75] for an n×m block, 

correspondingly. 

By considering the 6-tap filter, which is used in the half-pixel refinement, producing 

one half-pixel requires six add/subtract operations and one shift operation. For the 

quarter-pixel refinement with 2-tap linear filter, generating one quarter-pixel needs two 

add operations and one shift operation. The search range in the quarter-pixel ME is 

limited to (-1, +1) and 17 search points in total are checked. Therefore, one n×m block 

requires n×m×17 subtractions, n×m×17 absolute operations to calculate the absolute 

differences, n×m×17-17 additions to sum up the differences, and at least two 

comparisons for finding the best position with minimum distortion. Therefore, the 

computation complexity of one n×m block can be approximated, as given in equation 

(5.9). 

CC(n×m) ≈ 7 Hn×m+3 Qn×m + (n×m×51-15)search and match ≈ 108 n×m + 37 (m+n) + 22. 

(5.9) 

As for the NFM algorithm, its computational complexity for one n×m block is only 

84 add, 16 shift and one comparison operations in the half-pixel stage, and, 168 add, 24 

shift, and one comparison operations in the quarter-pixel stage. The computational 

complexity of different block sizes and for an MB with 41 modes in the interpolate and 

search method and the NFM algorithm are given in Table 5.1.  

Taking into account 41 blocks in each MB, the computational complexity of an MB 

can be expressed by equation (5.10). 
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Table ‎5.1 : The computational complexity of the interpolate and search method and the 

NFM algorithm for different block sizes. 

Block size Number of operations (1) Number of operations (2) 

16×16 28854 294 
8×16 14734 294 

8×16 14734 294 

8×8 7526 294 

8×4 3922 294 

4×8 3922 294 

4×4 2046 294 

MB (41 modes) 213382 12054 

(1) Interpolate and search method; (2) NFM algorithm 

 

Now, by using equation (5.10), the computational complexity of a certain 

specification (CS) can be formulated, as shown in equation (5.11). 

CCCS ≈ CCMB × ((W×H)/256) × (# reference frame) × (# frame per second)).   (5.11) 

where the W and H stand for width and height of the given frame size and (W×H)/256 

term determines the number of MBs in each frame. Table 5.2 lists the computation 

complexity of the NFM algorithm and the search and interpolate SME algorithm in the 

H.264 reference software for some specifications. From the results of Table 5.2, we can 

see that when all VBS are considered, the NFM algorithm can save 94.35% of the 

computational complexity in comparison to the interpolate and search method for the 

same specification. When a lower number of VBS modes are used, which are usually 

higher block sizes, the NFM algorithm can even save more computations. As an 

example consider the last row of Table 5.2 where only 8×8 and above modes are 

employed. In this case, the NFM algorithm saves 97.76% of the computational 

complexity relative to interpolate and search scheme. The reason is that the NFM 

algorithm requires a certain number of operations (i.e. 294 operations) for each block 

size whereas the interpolate and search method requires more computations for the 

higher block sizes, as shown in Table 5.1.  
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Table ‎5.2 : The computational complexity of the interpolate and search method and the 

NFM algorithm for some specifications. 

Specifications Features CCInterpolate & search CCNFM  

QCIF(15 fps)  VBS(all), MRF(5) 1,584.3×10
6
 89.5×10

6
 

CIF(30 fps)   VBS(all), MRF(5) 12,674.8×10
6
 716×10

6
 

SD480p(30 fps)  VBS(all), MRF(5) 43,209.8×10
6
 2,440.9×10

6
 

HD1080p(30 fps)  VBS(all), MRF(5) 259,259.1×10
6
 14,646×10

6
 

HD1080p(30 fps)  VBS(8×8-16×16), MRF(2) 57,296.4×10
6
 1,286×10

6
 

 

The low computational complexity characteristic of the NFM algorithm provides an 

attractive opportunity for the design of low cost and low power VLSI hardware 

architectures for the H.264/AVC SME targeting resource-constrained applications. 

5.3.2 Analysis of Memory Access 

In addition to the computational complexity, the memory access requirement is 

another important issue especially for designs with limited resources. That is because 

the memory access requirement affects the traffic load of reading/writing data from/into 

system memory, I/O, and interconnection bandwidth, and thus the power consumption 

and hardware utilization of the system. We define the memory access requirement in 

terms of the number of bits that one n×m block has to access memory and calculate it 

for the interpolate and search SME algorithm in the reference software and the proposed 

NFM algorithm. Not to mention that the memory access requirement can be reduced by 

careful data reusing and data scheduling schemes. 

In general, the memory access of one n×m block in the interpolation method can be 

divided into two main parts: producing the sub-pixels of reference frame(s) and the 

search and match process in the half and quarter-pixel refinements. For producing the 

half-pixels of one n×m block, each half-pixel requires six read operations and one write 

operation to save the produced half-pixel in the memory. While for producing one 

quarter-pixel, it decreases to two read and one write operations. Besides, in total, there 
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are 17 search points in the half and quarter-pixel refinements that each one at least 

requires 2×n×m read and 17 write operations for saving the search point results. 

Therefore, the memory access requirement of one n×m block in the interpolate and 

search method can be calculated by equation (5.12), where each pixel is represented by 

8 bits. 

MA(n×m) = MAHP + MAQP = [(8×6×n×m + 8×9×n×m)rd +(8×n×m+8×9))wr]HP + 

+[(8×2×n×m+8×8×n×m)rd+(8×n×m+8×8)wr]QP.   (5.12) 

Table ‎5.3 : The memory access of the interpolate and search method and the NFM 

algorithm for different block sizes. 

Block size MA interpolate and 

search  

MA NFM  

16×16 55432 144 

16×8 27784 144 

8×16 27784 144 

8×8 13960 144 

8×4 7048 144 

4×8 7048 144 

4×4 3592 144 

MB (41modes) 392648 5904 

 

 

As for the NFM algorithm, the memory requirement for one n×m block is reduced to 

nine read operations that are needed for reading nine integer SAD values with 16-bit 

width. The memory access requirement of different block sizes and for an MB with 41 

modes in the interpolate and search method and the NFM algorithm are given in Table 

5.3. According to our analysis, the memory access requirement of the NFM algorithm is 

only 144 bit per block, which is independent of the block size. Consequently, it can save 

98.5% of the memory access requirement compared to the interpolate and search 

method for each MB with all its 41 modes. 

Similar to the computational complexity, we can calculate the memory access 

requirement of a certain specification, as follows: 
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MACS ≈ MAMB ×(( W×H)/256) ×(# reference frame) ×(# frame per second).   (5.14) 

In Table 5.4 the memory access requirement of the interpolate and search algorithm 

as well as the NFM algorithm for some specifications are given. As seen in this table, 

the NFM algorithm can save 98.5% of the memory access requirement relative to the 

interpolate and search method when all 41 modes of MB is enabled. The reason is that 

the NFM algorithm avoids the interpolation process that significantly reduces its 

memory access requirement. From the hardware point of view, a higher memory access 

leads to a higher I/O data bus traffic and interconnection requirements, which have a 

significant effect on the performance of the hardware architecture. Besides, reduction of 

memory access is very beneficial to power constrained applications because in the 

image and video processing systems the data access requirement takes 50%-80% of 

power consumption (Y.-H. Chen et al., 2008). 

 

Table ‎5.4 : The memory access of the interpolate and search method and the NFM 

algorithm for some specifications. 

Specifications Features MAinterpolate & search MANFM  

QCIF(15 fps)  VBS(all), MRF(5) 2,915.4×10
6
 43.8×10

6
 

CIF(30 fps)   VBS(all), MRF(5) 23,323×10
6
 350.7×10

6
 

SD480p(30 fps)  VBS(all), MRF(5) 79,511.2×10
6
 1,195.6×10

6
 

HD1080p(30 fps)  VBS(all), MRF(5) 477,067.3×10
6
 7,173.4×10

6
 

HD1080p(30 fps)  VBS(8×8-16×16), MRF(2) 108,090.2×10
6
 1,574.6×10

6
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5.4 Optimization Techniques for Computational Complexity 

Reduction 

5.4.1 Fast NFM Algorithm  

To reduce the computational complexity of the NFM algorithm, we propose fast 

NFM (FNFM) algorithm, which is based on exploiting the associativity and the 

distributivity characteristics of the equations in the NFM algorithm. By a careful 

rearrangement of the NFM’s equations, finding and reusing the common terms, which 

participate in calculation of equations, more computation can be saved. In the FNFM 

algorithm, during the half-pixel refinement when the coefficients (i.e. A1 - A9) are 

produced, they are concurrently reused in the quarter-pixel stage to produce the SAD 

values of the quarter-pixels. Further, in the quarter-pixel stage like the half-pixel stage, 

the equations are categorized and all common terms are extracted. Then, these common 

terms are reused anywhere which is needed. For example in quarter-pixel refinement 

and from equation (5.1), QSAD (-1/4,-1/2) is as follow:  

QSAD (-1/4,-1/2) = A1/64 - A2/32 - A3/16 + A4/8 + A5/16 - A6/4 +A7/4 - A8/2 +A9. (5.15) 

After extracting the common terms in (5.15), the new representation is as follows: 

QSAD (-1/4,-1/2) = (A1/64 - A2/32) - (A3/16 - A4/8 + A6/4) + A5/16 - HSAD (-1/2, 0).  

(5.16)
  

Where not only (A7/4 -A8/2+A9) term is replaced by HSAD (-1/2, 0), which is calculated 

in half-pixel refinement, but also it and (A1/64-A2/32), (A3/16-A4/8+ A6/4), terms can be 

reused in calculation of QSAD (1/4, -1/2): 

QSAD (1/4,-1/2) = (A1/64 - A2/32) + (A3/16 - A4/8 + A6/4) + A5/16 - HSAD (-1/2, 0).  

(5.17)
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Table 5.5 shows the computational complexity of the NFM and the FNFM 

algorithms. In average, the FNFM algorithm save 46.28% or 96.92% of the 

computational complexity for each MB with 41 modes in comparison with the NFM 

algorithm or the interpolate and search method. However, both algorithms have similar 

coding efficiency. Note that lower computational load leads to lower hardware cost and 

power consumption. 

Table ‎5.5 : Complexity comparison of the NFM
1
 and the FNFM

2
 algorithms. 

Block size Number of operation
1
  Number of operation

2
 

16×16 294 160 
16×8 294 160 
8×16 294 160 
8×8 294 160 
8×4 294 160 
4×8 294 160 
4×4 294 160 
MB (41 modes) 12054 6560 

5.4.2 SAD Pixel Truncation and Mode Filtering Techniques 

The pixel truncation is well known in literature as a powerful technique for 

complexity reduction of block matching ME algorithm with acceptable video quality 

degradation. All previous works have been focused on the effect of pixel truncation for 

fix and variable block size IME (Bahari et al., 2009; He & Liou, 1997), but none for 

SME. In video coding systems, each pixel is generally represented by 8 bits. It has 

shown that up to 4 bits can be truncated with a little video quality degradation. Because 

of using integer SAD values in the FNFM algorithm, the pixel truncation cannot be used 

here. Therefore, we have proposed the SAD truncation technique to reduce the 

complexity of the FNFM algorithm. The maximum bit length of integer SAD values is 

16 bits, which happens for the SAD calculation of a 16×16 MB. According to our 

evaluation, up to 4 bits of SAD values can be truncated with very little video quality 

degradation. However, from the hardware point of view, the SAD truncation technique 

can lead to area saving and power consumption reduction at hardware implementation. 
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The reason is that the hardware cost of an operation is proportional to its operands bit 

length. Therefore, reducing the bit length can lead to lower area and power 

consumption. 

Our last optimization technique is 4×4 mode filtering that can save 39% of the 

computational complexity, memory access, and the processing time of each MB in the 

FNFM algorithm. The reason is that there are 16 4×4 modes in each MB (i.e. 39% of 

the modes in each MB). Besides, the computational complexity and memory access 

requirement of the FNFM algorithm does not depend on the size of blocks and all block 

modes are processed in a sequential manner. From a hardware point of view, 4×4 mode 

filtering increases the processing ability and lowers the power consumption.  

5.5 Bit-Serial Hardware Architecture Design for SME in 

H.264/AVC  

Generally after selection and evaluation of an algorithm, it is decomposed into its 

components to provide insight into how to design the best possible hardware 

architecture for it. In our particular case, the FNFM algorithm is decomposed into 

addition, subtraction, and shift components. These components can be efficiently 

implemented in hardware, either using bit-parallel or bit-serial architectures. Whereas 

bit-parallel architectures process n bits (where n is the world length of each data) at 

every clock cycle, bit-serial architectures process one bit at each clock cycle. As a 

result, bit-parallel architectures are suitable for applications that require high processing 

capacity whereas bit-serial architectures are good candidates for application with low to 

moderate throughput. Since the FNFM algorithm has very low computational 

complexity and memory access requirement, it can be embedded in bit-serial 

architecture with small hardware cost while it demonstrates a high processing ability. 
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Due to the above-mentioned advantages and other advantages that were described in 

Section 4.2, we choose bit-serial architecture for implementing the FNFM algorithm.  

 

5.5.1 The Proposed Bit-Serial Architecture  

The block diagram of the proposed bit-serial architecture for the FNFM algorithm is 

shown in Figure 5.2. It consists of four main modules: half-pixel ME, quarter-pixel ME, 

control, and MV predictor modules that are described in the following sub-sections. 

 

Figure ‎5.2 : The bock diagram of the proposed bit-serial design for the FNFM algorithm. 

5.5.2 Half-Pixel ME Module 

This module is responsible for calculating SAD values for half-pixel accurate MVs. 

We have proposed bit-serial pipeline architecture for this module, which is an efficient 

and compact implementation of the FNFM’s equations. The half-pixel ME module 

consists of two parts. In the first part A1 - A9 coefficients are produced that are used in 

second part for calculating HSAD1 - HSAD9. The schematic diagrams for the hardware 

architecture of these two parts are shown in Figure 5.3 and Figure 5.4, respectively. 
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They only use four basic components: shift registers, bit-serial adders, bit-serial 

subtractors, and delay elements.  

Shift register are responsible for division operations to produce the fractional terms 

that work serially. To avoid overflow and for having the correct calculations, the bit 

length of input data (i.e. integer SAD values) are extended by three bits. The next two 

components are bit-serial adder and bit-serial subtractor, which are responsible for 

addition and subtraction operations. 

 
 

Figure ‎5.3 : The schematic diagram of the half-pixel module: part one. 

 
Figure ‎5.4 : The Schematic diagram of the half-pixel module: part two. 
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The schematic diagrams of the bit-serial adder and the bit-serial subtractor are shown 

in Figure 5.5 and Figure 5.6, respectively. In each clock cycle one bit of A and the B 

inputs are fed into the bit-serial adder, starting from the least significant bits (LSBs). 

The produced carry-out (Cout) is kept in a flip flop and is used as carry-in (Cin) to add 

with the next coming bits. At the beginning of two new words addition, the Cin should 

be set to zero because there is no carry before theirs LSBs to add. In terms of time, the 

addition of two n-bit words takes n clock cycles. Due to the use of the two’s 

complement representation in our architecture, the subtraction of A-B is replaced by

1 BA . The bit-serial subtractor architecture is shown in Figure 5.6 where B input is 

inverted and Cin is set to one at the beginning of two new words subtraction.  

 

 

Figure ‎5.5 : The schematic diagram of the bit-serial adder architecture. 

 

 
Figure ‎5.6 : The schematic diagram of the bit-serial subtractor architecture. 
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5.5.3 Quarter-Pixel ME Module 

The proposed hardware architecture of the quarter-pixel ME module is shown in 

Figure 5.7, which its structure is similar to the half-pixel accurate ME module. This 

module is responsible for calculating the quarter-pixel accurate SAD values. These 

values are used in MV predictor module to find the best quarter-pixel accurate MV. To 

save the area further and increase the speed of the design, the calculated coefficients in 

the half-pixel accurate ME module (i.e., A1 ~ A9) are reused in this module. In addition, 

similar to the half-pixel accurate ME module, the quarter-pixel accurate ME module is 

benefitted from the use of the simplified equations that reuse the common terms. 

 
Figure ‎5.7 : The schematic diagram of the quarter-pixel module. 
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5.5.4 Control and MV Predictor Modules 

The last two modules of our bit-serial architecture are the control and the MV 

predictor modules. The control module is responsible for coordinating the tasks of the 

other modules, synchronization between them, and management of the data flow within 

the system. In general, Finite State Machine (FSM) is used for implementing the control 

module, which uses counters for transition between its states. These counters are usually 

increased or decreased by one at a time and their outputs are used for controlling the 

other modules through the system. This approach has two disadvantages: first, the 

transition number between the state bits is so large that leads to more dynamic power 

consumption. Second, due to the distribution of control signals throughout the system 

with different propagation delays, it is possible that the received codes go through 

unwanted state. To deal with these disadvantages, in our design we use Gray counter in 

which only one bit is changed at a time during counting. As a result, only one transition 

is done between states, which not only reduces the power consumption but also 

decreases the probability of the wrong states. 

The MV predictor module is responsible for finding the optimal MVs with half-pixel 

and quarter-pixel accuracies, which is based on equation 5.5. The bit-serial hardware 

architecture design for this module is a tough problem due to its complex structure and 

consequently it has lower throughput and performance in comparison to the previous 

discussed modules. Therefore, the MV predictor module requires a dedicated 

architecture to avoid performance degradation of the whole design. To cope with this 

problem, we have designed bit-parallel pipeline architecture for the MV predictor 

module at the price of more area cost and lower operating frequency. 
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5.5.5 The Proposed Power Reduction Technique 

Two kinds of shift registers are used in our architecture including shift right 

arithmetic registers (SRARs) and shift right register (SRRs). Nine shift registers as the 

inputs of Figure 5.3, nine shift registers as the inputs of Figure 5.4, and 25 shift registers 

as the inputs of Figure 5.7 are SRARs. Nine shift resisters as the outputs of Figure 5.4 

and 24 shift registers as the outputs of Figure 5.7 are SRRs. At each clock cycle, our 

architecture only needs one bit from every shift register, but 15 bits are shifted inside 

each shift registers that increase the power consumption.  

To save the power consumption, we propose a new power reduction technique for 

SRRs, which is named as Demultiplexers-Registers Combination (DRC). The proposed 

power reduction technique saves a significant part of power consumption in SRRs. In 

Figure 5.8, the DRC technique is illustrated by an example for nine shift resisters as the 

outputs of Figure 5.4. In the left side of Figure 5.8, m n-bit SRRs are working in parallel 

that for the above-mentioned example m and n are nine and 15, respectively. In each 

SRR, at the first clock cycle one bit is shifted to the right and this will be repeated until 

n
th

 clock cycle. At the next clock cycle, all bits of each SRR are placed at their outputs, 

which are used in the MV predictor module and this procedure is periodically repeated. 

Therefore, at each clock cycle 9×15 bits are shifted that lead to a lot of power 

consumption. To reduce the power consumption, we propose the DRC technique with 

the same functionality of SRRs, which its architecture is shown in the right side of 

Figure 5.8. In this architecture R1-Rn are m-bit registers with enable signals, and for the 

above-mentioned example, m and n are 9 and 15. At the first clock cycle, 9 bits are 

placed into the one register starting from R1. Note that the inputs of R1-Rn are connected 

together and the right register at the proper clock cycle is chosen by enable signal. In 

this method, the job of demultiplexer is done by the enable signals that leads to area 

saving and power reduction.  
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5.6 Experimental Results and Comparison 

5.6.1 Simulation Results 

To evaluate the performance of the proposed algorithm and optimization methods, 

we embed them into the H.264 reference software and assess them with several image 

sequences videos at the following test conditions: 

 The search range is [-16, 16].  

 The number of reference frames is 1. 

 Rate-distortion optimization is on. 

 Frequency for encoded bit stream is 30. 

 Number of coded pictures is 300 for all sequences. 

Table 5.6 shows the simulation results of the FNFM algorithm compared with the 

integer motion estimation of H.264 and Model 1 algorithm (Suh & Jeong, 2004) with 

half-pixel accuracy where our algorithm significantly outperforms them. For instance, 

compared to the full search IME and Model 1 algorithms, the proposed algorithm can 

typically lead between (0.9-4.2)/(0.3-1.6) dB PSNR improvement or (19%-50%)/(9%-

26%) in bit rate reduction, respectively.  
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Figure ‎5.8 : Illustration of DRC technique. 
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Table ‎5.6 : Comparison between the proposed SME algorithms and the full search IME. 

Sequence 
FNFM vs. IME FNFM vs. Model 1 

Δbit rate  ΔPSNR  Δbit rate  ΔPSNR  

Akiyo -31.20% 1.92 dB -14.18% 0.79 dB 

Carphone -24.04% 1.29 dB -9.16% 0.46 dB 

Foreman -42.67% 2.02 dB -15.07% 0.60 dB 

Mobile -50.74% 4.19 dB -25.58% 1.57 dB 

News -24.53% 1.47 dB -11.52% 0.63 dB 

Salesman -19.24% 1.04 dB -8.90% 0.47 dB 

Stefan -34.32% 2.69 dB -13.42% 0.90 dB 

Tennis -21.78% 0.93 dB -9.00% 0.36 dB 

 

In addition to the original half-pixel interpolation free algorithm and the full search 

integer motion estimation algorithm, we compare our algorithm to the quarter-pixel 

accurate interpolate and search algorithm of the H.264 reference software for 4CIF and 

HD1080 test sequences, as shown in Figures 5.9 and 5.10. Besides, since our algorithm 

has a low complexity feature, we compare it to the all-binary algorithm (Celebi et al., 

2008) as another low complexity algorithm. Figures 5.11 and 5.12 show the 

comparisons of rate-distortion curves between the FNFM, optimized FNFM, all-binary, 

and search and interpolate SME algorithms for Tennis (CIF)  and Foreman (Source 

Input Format (SIF)) test sequences where all of these algorithms have quarter-pixel 

accuracy. In this figures, the rate-distortion curves of the all-binary algorithm are 

borrowed from the work of Celebi et al. (2008).  

As seen in Figures 5.9 and 5.10, the FNFM algorithm has a small quality drop 

relative to the H.264 interpolate and search method. In addition, it significantly 

outperforms the all-binary SME algorithm in terms of video quality. According to our 

simulation results, the average PSNR loss of our algorithm compared to the interpolate 

and search method is less than 0.38 dB. However, as shown in Section 5.3, our 

algorithm reduces more than 96% of the computation budget and the memory access 

compared with the interpolate and search method. Compared to the FNFM algorithm, its 
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optimized version leads to a negligible quality drop (i.e. less than 0.06 dB PSNR). In 

addition, from the hardware point of view, the proposed optimization techniques lead to 

area cost reduction and power consumption saving at the hardware side. 
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Figure 5.9 : R-D plot of Crew test sequence for interpolate and search SME and 

optimized FNFM algorithms. 

Figure 5.10 : R-D plot of Rush-Hour test sequence for interpolate and search SME and 

optimized FNFM algorithms. 
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Figure ‎5.11 : Comparison of RD curves between FNFM, optimized FNFM, 

interpolated and search, and all-binary algorithms for Tennis test sequence. 

Figure 5.12 : Comparison of RD curves between FNFM, optimized FNFM, 

interpolated and search, and all-binary algorithms for Foreman test sequence. 
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5.6.2 Implementation Results and Comparison  

The proposed SME architecture with the quarter-pixel accuracy for H.264/AVC is 

implemented in Verilog HDL and synthesized in Silterra 0.18 μm technology using 

Synopsys Design Compiler. The proposed architecture costs at 20.3 K gates and 

approaches 100% hardware utilization, which is suitable for area-constrained 

applications. Due to the interpolation free feature of the proposed algorithm, the 

memory bandwidth of the proposed design is very small (i.e. 2.7 Kbits). The reason is 

that for calculating the SME motion vector of each mode, the proposed algorithm needs 

9 12-bit SAD values. Therefore, the memory bandwidth of each MB with 25 modes 

required 9×12×25 = 2.7 Kbits. The proposed design can process one block with any 

given size in 15 clock cycles. As a result, the proposed architecture is able to process 

one MB with 41 modes or 25 modes (i.e. when 4×4 mode filtering is applied) in 615 or 

375 clock cycles, respectively. With a maximum clock frequency of 255 MHz, our 

design can process up to 414 K MB/s or 680 K MB/s with 41 or 25 modes in each MB, 

respectively. Consequently, our design is able to support SME of HD1080 format with 

one reference frame, 30 fps and with 41 or 25 modes in each MB at the clock frequency 

of 149.44 MHz or 88.3 MHz.  

In addition to HD1080 format, the proposed architecture can be reused for other 

formats with different specifications. Table 5.7 shows some examples and their 

specifications. Not to mention that by using the hardware parallelism, the proposed 

architecture can support higher resolutions. For example, as shown in case (g) of Table 

5.7, two sets of the proposed design can support quarter-pixel accurate ME of quad full 

HD (QFHD) resolution (i.e. 4096×2160) with all blocks modes except 4×4 modes, one 

reference frames and 30 fps under the clock frequency of 199.4 MHz.  

Comparison between the proposed architecture and the previous SME hardware 

architectures are shown in Table 5.8. This comparison is based on the introduced design 
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metrics of Chapter 3 including algorithm quality, silicon area, operating frequency, and 

throughput. Regarding the algorithm quality, among all of the SME architectures, the 

proposed design has the highest quality lost that is about 0.37 dB on average. However, 

this amount of quality loss can be acceptable especially when considering the 

advantages of the proposed algorithm. For instance, compared with other designs the 

proposed design has the lowest computational complexity and memory access 

requirement due to its interpolation free characteristic.  

On the subject of silicon area, the proposed design significantly outperforms the 

other architectures. To be more specific, we provide the percentage of the improvement 

for our architecture relative to the previous designs in terms of area reduction. This 

improvement is obtained from the difference of the areas of the two designs divided by 

the area of the used architecture. According to our calculation, the proposed architecture 

provides between 57.71%-95.47% improvement in terms of area reduction relative to 

the prior designs. The reason is that our architecture is based on the interpolation free 

algorithm with very small computational complexity and uses bit-serial structure for 

hardware implementation. Please note that the lower hardware cost is beneficial to 

power consumption and can lead to dynamic power and static power reduction, as 

described in Section 4.2.  

Table ‎5.7 : Reusing of the proposed SME architecture in other specifications. 

Case Specifications(1) 
Throughput 

K MB/s 

Frequency  

MHz 

(a) QCIF(VBS(all) and MRF(5)) 14.85 K MB/s 9.13  

(b) CIF(VBS(all) and MRF(5)) 59.4 K MB/s 36.53  

(c) SD576(VBS(all) and MRF(5)) 243 K MB/s 149.44  

(d) HD720(VBS(all) and MRF(1)) 108 K MB/s 66.4  

(e) HD720(VBS(all except 4×4) and MRF(5)) 540 K MB/s 202.50  

(f) HD1080(VBS(all except 4×4) and MRF(2)) 486 K MB/s 182.25  

(g) QFHD(VBS(all except 4×4) and MRF(1)) 1036 K MB/s 194.4(2) 
(1)

 With 30 fps. 
(2)

 Using two SME architectures. 
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The next design metric is operating frequency that is affected by the frame size and 

the number of the supported block modes in each design. When a higher frame size and 

more block modes are used, the processing time is increased. As a result, for meeting 

the real-time constraint, the clock frequency should be increased too. Please note that a 

lower operating frequency usually means a lower dynamic power consumption. 

Therefore, lowering the working frequency can be advantageous for low power 

applications. Among all of the designs in Table 5.8, only the work of T.-Y. Kuo et al. 

(2007) has a lower operating frequency than the proposed design. The reason is that 

their design is able to support HD720 format but not higher resolutions. In a similar 

scenario, our design can support HD720p format at the operating frequency of 66.4 

MHz (i.e. case (d) in Table 5.7).  

The last design metric is throughput that depends on the number of processed modes 

in each MB as well as the operating frequency. As seen in Table 5.8, only the work of 

Tsung et al. (2009) achieves a higher throughput than ours. However, this advantage 

comes at the price of the highest area cost. For example, the design of Tsung et al. 

(2009) occupies 22.06 × higher area cost relative to our design. In addition, this design 

avoids half-pixel interpolation to reduce the processing time. As a result, it needs 

another unit for handling the luminance motion compensation. Besides, by using 

hardware parallelism, our design can achieve a higher throughput than the work of 

Tsung et al. (2009) with much lower area cost, as shown in case (g) of Table 5.7.  

Compared to the previous SME designs, the proposed design demonstrates a good 

performance in terms of design metrics, computational complexity and memory access 

requirement, however; it has a disadvantage. Since our algorithm avoids interpolation, 

our approach needs an interpolation unit for motion compensation. Fortunately, this is 

not a serious problem. Analysis of SMV by Y.-J Wang et al. (2007) reveals that more 

than 90% of the SMV is at the search center in all kinds of video content. This means 
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that in most cases after the SME the SMV and the IMV are the same. Therefore, only a 

small portion of the sub-pixels is required to be interpolated after the SME. As a result, 

the required interpolation unit of our method could be small. In other words, it should 

roughly save about 90% of area and power consumption compared to the interpolation 

units of the previous designs. 

 

Table ‎5.8 : Design metrics evaluation and comparison of SME architectures. 

 

Architecture Design Metrics 

Y.-C. Chen et al. (2004) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 79.3 

Operating frequency (MHz) 100 

Throughput (MB/s) 49 K 

C. Yang et al. (2006) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 189 

Operating frequency (MHz) 200 

Throughput (MB/s) 250 K 

Wu et al. (2010) Quality loss (dB PSNR) -0.00 

Silicon area (K gates) 311.7 

Operating frequency (MHz) 154 

Throughput (MB/s) 250 K 

Y.-J Wang et al. (2007) Quality loss (dB PSNR) -0.1 to -0.2 

Silicon area (K gates) 48 

Operating frequency (MHz) 100 

Throughput (MB/s) 50 K 

Song et al. (2007) 

 

Quality loss (dB PSNR) -0.1 

Silicon area (K gates) 203.2 

Operating frequency (MHz) 200 

Throughput (MB/s) 250 K 

T.-Y. Kuo et al. (2007) 

 

Quality loss (dB PSNR) -0.043 

Silicon area (K gates) 62.2 

Operating frequency (MHz) 70 

Throughput (MB/s) 71.3 K 

Tsung, Chen, Ding, Tsai et 

al et al. (2009) 

Quality loss (dB PSNR) -0.02 

Silicon area (K gates) 448 

Operating frequency (MHz) 280 

Throughput (MB/s) 830 K 

Our design Quality loss (dB PSNR) -0.37 

Silicon area (K gates) 20.3 

Operating frequency (MHz) 88.3 

Throughput (MB/s) 680 K 
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5.7 Summary 

The sub-pixel motion estimation, together with the interpolation of reference frames, 

is a computationally extensive part of the H.264 encoder that increases the memory 

access requirement 16-times for each reference frame. Due to the huge computational 

complexity and the memory access requirement of the H.264 SME, its hardware 

architecture design is a challenging job especially for area-constrained applications with 

medium and large resolutions. To solve the above difficulties, we proposed an algorithm 

and its hardware architectures along with several optimization techniques. In algorithm 

level, we presented the NFM for SME with quarter-pixel accuracy, which reduced the 

computational budget by 94.35% and the memory access requirement by 98.5% in 

comparison to the standard interpolate and search method. In addition, a fast version of 

the proposed algorithm (i.e. the FNFM algorithm) was contributed that reduced the 

computational budget 46.28% further while maintaining the video quality. In the 

architecture level, we introduced a novel bit-serial architecture for our algorithm. Due to 

advantages of the bit-serial architecture, it has a low gate counts, high speed operation 

frequency, low density interconnection, and a reduced number of I/O pins. In addition, 

several optimization techniques including the SAD truncation, mode filtering, source 

sharing exploiting, and power saving techniques were applied to the proposed 

architecture that improved the performance of the proposed architecture. Our design can 

save between 57.71%-95.47% of the area cost when compared to the previous designs 

and can provide higher throughput rate at a lower frequency for the same specification. 

Implementation results show that our design can support real-time SME of HD1080 

format with 20.3 K gates at the operation frequency of 88.3 MHz. 
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Chapter 6  
 

Conclusion, Future Work and Directions 

6.1 Conclusion 

This thesis has presented efficient IME and SME designs for H.264/AVC, which are 

tailored for area-constrained applications. All of the proposed designs are based on bit-

serial scheme due to its advantages such as small hardware cost, low pin count and so 

on. To cope with the huge computational complexity and the memory access 

requirement of IME and SME, different but appropriate design optimization techniques 

are used at the algorithm and the architecture levels.  

Regarding the H.264 IME, two low cost bit-serial architectures have been proposed 

based on the full search algorithm owing to its regularity and coding performance. Our 

architectures use SAD and data reusing techniques to reduce their memory bandwidth in 

different ways. The first design has a 2-D structure featured with the broadcasting of the 

reference pixel data and the propagating of the partial sum and SAD results. Due to the 

broadcasting of the reference pixels, it requires a small memory bit width and therefore 

is suitable for I/O constrained applications. The second design uses a 2-D bit-serial 

adder tree architecture connected to a bit-serial reconfigurable reference buffer making 

it suitable for hardware parallelism. The proposed reference buffer enables reference 

pixel data reusing in vertical and horizontal directions leading to a signification 

reduction of memory bandwidth. In addition, we have proposed a power saving 

technique to reduce the power consumption of the proposed bit-serial reconfigurable 
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reference buffer. To improve the overall performance of both designs, we have 

presented several optimization techniques. By using the pixel truncation method and 

presenting the world length reduction technique, 68.75% of the power consumption and 

the required time for processing of each search point are saved, where the latency, 

silicon area, and memory bandwidth are significantly decreased as well. Besides, we 

have employed 1/2-subsampling technique that approximately saves 50% of the 

hardware cost of PE arrays and memory bandwidth. In addition, 4×4 mode reduction 

technique is used to reduce the hardware cost further. The proposed designs can support 

full search VBSME of 720×480 video with 30 frames per second, two reference frames, 

and [-16, 15] search range at a clock frequency of 414 MHz with less than 32 K gates. 

As for the H.264 SME, first we have provided a through and in-depth survey on 

SME algorithms and architectures due to the lack of surveys for them in the literature. 

In addition, to solve the problems of the huge computational complexity and the 

memory access requirement of the H.264 SME, we have introduced a low complexity 

algorithm with quarter-pixel accuracy. The proposed algorithm uses a parabolic model 

to estimate SAD values for predicting optimal sub-pixel motion vector. According to 

our analysis, the proposed algorithm can save 94.35% of the computational complexity 

and 98.5% of the memory access requirement relative to the interpolate and search 

method in the reference software of H.264/AVC. In addition, the fast version of the 

proposed algorithm (i.e. the FNFM algorithm) has been presented that reduces the 

computational budget 46.28% further while maintaining the video quality. For the 

hardware architecture, the first bit-serial architecture of SME has been efficiently 

implemented, which greatly benefits from its attractive bit-serial architecture, 

pipelining, source sharing, and power saving techniques. Furthermore, due to the use of 

SAD truncation and mode filtering techniques, not only the latency and the gate count 

of the proposed architecture are reduced but also its throughput is increased. Compared 
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with the prior designs, the proposed architecture can save between 57.71%-95.47% of 

the area cost and can achieve higher throughput rate at lower frequency for the same 

specification. The implementation results show that our design can support real-time 

SME of HD1080 format with 20.3 K gates at the operation frequency of 88.3 MHz. 

6.2 Future Work and Directions 

In future, we will try to design a complete H.264/AVC encoder where we will 

integrate our IME and SME designs into it. For this aim, we need to design other 

building blocks of the H.264 encoder such as transform, inverse transform, quantization, 

inverse quantization, motion compensation, and entropy coding units.  

Although our architectures achieve very satisfactory results compared with the prior 

designs, they may not meet the required performance of the new multimedia 

applications and emerging video coding standards, which will unsurprisingly pose new 

design challenges. As a result, there may be some areas in the proposed designs that 

may need further research to improve their performances for real-time applications. In 

the following paragraphs, motion estimation (i.e. IME and SME) design challenges in 

some of the emerging multimedia applications and the next advanced video coding 

standard, H.265, are reviewed. 

Digital video systems will continue to evolve toward higher resolutions to provide 

better realistic images on displays. Ultra-high definition (UD) TV (Nakasu et al., 2007; 

Sugawara et al., 2003) is an emerging visual media, which undoubtedly requires a much 

higher computation and memory bandwidth than current applications. When video 

resolution increases, the number of MBs increases and the search range (i.e. is 

proportional to the frame size) should be increased too. As a result, the memory 

bandwidth and the computational complexity of IME and SME are increased which 
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make their design more difficult for real-time scenarios, especially for resource-

constrained applications. 

Another interesting emerging application is 3-D TV that provides a 3-D impression 

of 3-D natural scenes by using multiview video sequences. Such sequences are 

produced by capturing a 3-D scene using multiple cameras simultaneously. Motion 

estimation for multiview sequences suffers from two major problems. Firstly, it 

demands a lot of computation and memory bandwidth that are directly proportional to 

the number of capturing cameras. Secondly, due to the redundancy among closer 

cameras, compressing multiview sequences independently with H.264 is not efficient 

(Bilen, Aksay, & Akar, 2003). As a result, there may need new IME and SME 

algorithms to consider the redundancy problem that causes an added complexity in the 

algorithm flow. 

Although motion estimation in H.264 significantly improves the video quality, 

demands for higher coding performance are relentless. Consequently, development of 

new IME and SME algorithms will ceaselessly continue. Furthermore, IME and SME 

with enriched and improved features in future video coding standards will keep arriving, 

which will unsurprisingly increase the computation and the memory bandwidth. For 

instance, in H.265, the number of block modes as well as their sizes are increased, 

which result in more computation and memory bandwidth. In addition, the H.265 SME 

will use the adaptive interpolation filter instead of the H.264 interpolation filter with 

fixed weights to improve motion compensation prediction. The reason is that the time 

variation of image signal is not taken into account in the H.264 interpolation filters. 

Therefore, the prediction efficiency of motion compensation is limited. In the adaptive 

interpolation, based on the characteristics and statistics of each image, a set of 

coefficients for the interpolation filter is calculated which improves the coding 
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performance at the price of an added computation and irregularity (Vatis & Ostermann, 

2009; Wittmann & Wedi, 2008).  

Derived from the above discussion, motion estimation in the emerging and future 

multimedia applications will be characterized by massive computation, memory 

bandwidth, which will bring new challenges for designing of IME and SME hardware 

architectures. On the other hand, the continuous advances of microelectronic technology 

will provide more processing capability, which in turn will facilitate the hardware 

implementation of IME and SME architectures. However, conventional architectural 

approaches may not be able to fulfill the hard real time constrains of the emerging and 

future applications. As a result, besides of the conventional and current advanced 

algorithmic and architectural techniques, the video coding engineers may need to 

develop new and innovative methods for low cost, low power and efficient IME and 

SME hardware realizations. Furthermore, IME and SME hardware designers should 

consider some new challenges that will be brought by advanced VLSI technologies such 

as high static (leakage) power consumption and interconnection problems explained in 

Chapter 4. In the current and future VLSI designs, as process technology is steadily 

scaling down to deep submicron area; that is 90 nm and beyond, the static power that is 

proportional to the hardware cost, will grow much faster than dynamic power and it will 

be the main contributor to total power consumption. In addition, in deep submicron 

area, the interconnection parameter will be a very important design parameter and it will 

determine cost, delay, power, reliability and turn-around time of the future LSI's rather 

than MOSFET's (Sakurai, 2000). On the other hand, as the future multimedia 

applications are data intensive with a high bandwidth memory, parallelism at hardware 

level will be a must for meeting the real-time constrains and a lot storage space will be 

required for data saving. Consequently, the hardware cost and the number of wide 

length interconnections will be increased, which will lead to added static power and 
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interconnection density. Therefore, the use of static power reduction techniques together 

with reducing of area cost and memory bandwidth, which result in (static) power and 

interconnection reduction, are vitally important for the future advanced IME and SME 

architectures, especially for portable multimedia devices with limited resources. 
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