BIODIVERSITY AND EPIDEMIOLOGY STUDY OF MACROPARASITES FROM STRAY CATS IN PENINSULAR MALAYSIA

NORHIDAYU BINTI SAHIMIN

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCE
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
ABSTRACT

The occurrences of macroparasites from 543 stray cats were studied in four urban cities from west (Kuala Lumpur), east (Kuantan), north (Georgetown) and south (Malacca) of Peninsular Malaysia between May 2007 to August 2010. The hosts were infested with a minimum of one species and a maximum of six species of macroparasites. Of all four locations, Georgetown had the highest species diversity followed by Malacca, Kuala Lumpur and Kuantan.

Five ectoparasites species were recovered namely, Ctenocephalides felis, Felicola subrostratus, Haemaphysalis bispinosa, Heterodoxus spiniger and Lynxacarus radovskyi. This study also recorded the dog louse, Heterodoxus spiniger for the first time in Malaysia from two cats in Georgetown. The cat fur mite, Lynxacarus radovskyi also reported for the first time on domestic cats from Peninsular Malaysia. Overall, species diversity of ectoparasites was low compared to previous studies. Similar infestations were observed between males and females meanwhile higher diversity of species richness was observed in adults compared to juveniles. Results showed no significant effect determining the ectoparasites distribution in stray cats population for any of the factors investigated.

Up to nine species of helminthes were recovered with overall high prevalences of infection in Kuantan (83%), Kuala Lumpur (75.1%), Georgetown (71.6%) and lastly Malacca (68%). The nine helminthes comprised of six nematode species (Toxocara malayensis, Toxocara cati, Ancylostoma braziliensis, Ancylostoma ceylanicum, Strongyloides sp., Physaloptera praeputialis), two cestode (Taenia taeniaformis,
Dipylidium caninum) and one trematode species (*Playtnosomum fastosum*). Most helminthes were present in all study sites except for the sole presence of *Strongyloides sp.* and the absence of *Physaloptera praeputialis* in Kuala Lumpur. Variation in host age was observed playing a significant role especially for *Ancylostoma braziliense* and *Ancylostoma ceylanicum*. Adults were significantly higher compared to juvenile cats, but reversely for *Toxocara Malaysiensis* and *Toxocara cati*. No significant difference occurred between host sexes meanwhile the season affect was linked with differences in the host population between seasons, with twice as many cats being caught in the dry season, during a period of more active foraging.

Pearson’s product-moment correlation coefficient analysis showed positive co-occurrences have been shown to occur between the four endoparasite species (*Ancylostoma braziliense*, *Ancylostoma ceylanicum*, *Toxocara Malaysiensis* and *Toxocara cati*) occupying similar niches within the alimentary tract of cats. Strong correlation were observed between *Toxocara cati* and *Toxocara Malaysiensis* (*p*=0.982), *Toxocara cati* – *Toxocara Malaysiensis* and *Toxocara cati* – *Ancylostoma ceylanicum* (*p*=0.994) and between *Toxocara cati* – *Ancylostoma braziliense* and *Toxocara cati* – *Ancylostoma ceylanicum* (*p*=0.919).

In the molecular characterization study, amplification of ITS 1 and ITS 2 regions of *Toxocara Malaysiensis* rDNA was successful using universal Fallas-Kaplan primer with estimated product length 1200bp. Hence, further analysis should be carried out in the future in order to corroborate present results obtained.
Lastly, the zoonotic potential of three endoparasite species namely *Ancylostoma braziliense*, *Ancylostoma ceylanicum* and *Toxocara cati* in this study underscores the role of stray cats in Peninsular Malaysia as reservoir host for zoonotic disease. This study also provided a reliable basis for an ongoing monitoring, comparison and assessment of the local cat-borne endoparasites in Peninsular Malaysia.
ABSTRAK

Sebuah kajian mengenai kekerapan kehadiran makroparasit daripada 543 ekor kucing terbiar telah dianalisa di empat bandar maju di Malaysia dari bahagian Barat (Kuala Lumpur), Timur (Kuantan), Utara (Geoergetown), dan Selatan (Melaka) dalam satu tempoh waktu iaitu dari Mei 2007 hingga Ogos 2010. Didapati perumah (kucing) telah dijangkiti sekurang-kurangnya satu spesies makroparasit dan 6 spesies makroparasit adalah yang paling banyak. Antara semua kawasan, Georgetown mempunyai bilangan spesies tertinggi dari segi kepelbagaian dan ia diikuti dengan Melaka, Kuala Lumpur dan akhir sekali Kuantan.

menunjukkan tiada perbandingan besar terhadap pembahagian ektoparasit pada populasi kucing terbair bagi setiap faktor yang disiasat.

Sembilan spesies helminth telah dijumpai dengan keseluruhan sebaran sebanyak 83% di Kuantan, 75.1% di Kuala Lumpur, 71.6% di Georgetown dan 68% di Melaka. Sembilan helminth tersebut terdiri daripada 6 spesies nematoda (*Toxocara malaysiensis, Toxocara cati, Ancylostoma braziliensis, Ancylostoma ceylanicum, Strongyloides sp., Physaloptera praeputialis*), dua spesies cestoda (*Taenia taeniaformis, Dipylidium caninum*) dan satu spesies trematoda (*Playtnosomum fastosum*). Hampir kesemua helmint telah didapati dalam semua kawasan kajian kecuali dengan kehadiran *Strongyloides sp.* dan ketiadaan *Physaloptera praeputialis* di Kuala Lumpur. Perbezaan bagi umur perumah yang telah dipantau memberi peranan penting terutamanya bagi *Ancylostoma braziliense* dan *Ancylostoma ceylanicum*. Kucing yang matang lebih banyak dijangkiti berbanding kucing muda. Namun ia bertentangan bagi *Toxocara malaysiensis* and *Toxocara cati*. Tiada perbezaan yang ketara berlaku di antara jantina perumah sementara perubahan cuaca menunjukkan perbezaan pada populasi perumah antara musim, dengan tangkapan 2 kali ganda lebih banyak pada musim panas.

Analisis ‘Pearson’s product-moment correlation coefficient’ menunjukkan kekerapan positif antara empat spesies endoparasit iaitu (*Ancylostoma braziliense, Ancylostoma ceylanicum, Toxocara malaysiensis and Toxocara cati*) malah menduduki tempat yang sama dalam saluran pencernaan kucing. Hubung kait yang kuat telah diperhatikan dan diteliti antara *Toxocara cati* dan *Toxocara malaysiensis* (p=0.982), *Toxocara cati – Toxocara malaysiensis* dan *Toxocara cati – Ancylostoma ceylanicum* (p=0.994) dan
diantara Toxocara cati – Ancylostoma braziliense dan Toxocara cati – Ancylostoma ceylanicum (p=0.919).

Di dalam kajian pencirian molekul, amplifikasi ITS 1 dan rantau ITS 2 bagi rDNA Toxocara malaysiensis telah berjaya dengan menggunakan primer Fallas-Kaplan dengan anggaran 1200bp produk panjang. Oleh itu, analisis lanjut perlu dijalankan pada masa akan datang untuk menyokong keputusan kajian yang deperoleh ini.

Akhir sekali, tiga spesies endoparasit iaitu Ancylostoma braziliense, Ancylostoma ceylanicum and Toxocara cati yang terdapat pada kucing terbiar di Semenanjung Malaysia menunjukkan potensi penyakit zoonotik. Kajian ini juga menunjukkan asas bagi kawalan berterusan, perbandingan dan penilaian terhadap endoparasit bawaan kucing di Semenanjung Malaysia
ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. Without Him, nothing is possible.

I am deeply grateful to my supervisor, Dr. Siti Nursheena Mohd Zain for her support, guidance and encouragement throughout this project.

I am indebted to Prof John Lewis and Dr. Paul Pal from Royal Holloway, University of London, Mr. John Jeffery from Faculty of Medicine, University of Malaya, Dr. Chandrawathani from Veterinary Research Institute Ipoh, Prof Pakeer Oothuman from Faculty of Medicine, International Islamic University Malaysia and Dr Shahrul Anuar from School of Biological Science, University of Science Malaysia for their guidance and support.

Special thanks to all staff from Kuala Lumpur City Hall, Society for the Prevention of Cruelty to Animal (SPCA), PAWS Animal Welfare Society Malaysia (PAWS), Public
Health Unit, Majlis Perbandaran Pulau Pinang (MPPP), Vector Unit of Majlis Perbandaran Kuantan (MPK) and Dog’s Unit of Majlis Bandaraya Melaka Bersejarah (MBMB) for providing help and technical assistant.

Thanks are also extended to all my dear friends and colleagues, Nacer, Syazana, Yanti, Rossa, Kiah Yann, Asliza, and Faqih for their help and friendship.

Last but not least, I thank my family for their support and encouragement. I would not be able to complete this journey without all of you.

TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK v
ACKNOWLEDGEMENT viii
TABLE OF CONTENTS ix
LIST OF FIGURES xiii
LIST OF TABLES xvi
APPENDICES xxii
ABBREVIATIONS xxii

CHAPTER 1: INTRODUCTION

1.1 The host 1
1.2 Stray cats 2
1.3 Common parasites infecting cats and its distribution 3
 1.3.1 Cat ectoparasites 5
 1.3.1.1 Flea 5
 1.3.1.2 Louse 7
 1.3.1.3 Ticks and mites 8
 1.3.2 Cat endoparasites 12
1.3.2.1 Phylum Nematode
 1.3.2.1.1 *Toxocara spp.*
 1.3.2.1.2 *Ancylostoma spp.*
 1.3.2.1.3 *Strongyloides spp.*
 1.3.2.1.4 *Physaloptera praeputialis*

1.3.2.2 Class Cestode
 1.3.2.2.1 *Dipylidium caninum*
 1.3.2.2.2 *Joyeuxiella pasqualei*
 1.3.2.2.3 *Taenia taeniaeformis*

1.3.2.3 Trematode
 1.3.2.3.1 *Platynosomum fastosum*
 1.3.2.3.2 *Clonorchis sinensis*

1.4 Zoonotic diseases of cats
 1.4.1 Toxocariasis
 1.4.2 Cutaneous larva migrans
 1.4.3 Dipylidiasis
 1.4.4 Strongyloidiasis
 1.4.5 Clonorchiasis

1.5 Justification of study

1.6 Objectives

CHAPTER 2: STRAY CAT POPULATION AND THE MACROPARASITIC INFECTIONS IN URBAN CITIES OF PENINSULAR MALAYSIA

2.1 Introduction

2.2 Methodology
 2.2.1 Study area
 2.2.1.1 Climate of study area
 2.2.2 Sample collection and euthanization of stray cats
 2.2.2.1 Kuala Lumpur
 2.2.2.2 Georgetown
 2.2.2.3 Kuantan
 2.2.2.4 Malacca
2.2.3 Morphometric examination

2.3 Result

2.3.1 Population of stray cats

2.3.2 Macroparasite species richness in stray cats’ population

2.4 Discussion

2.5 Conclusion

CHAPTER 3: DIVERSITY OF ECTOPARASITES OF URBAN STRAY CATS IN PENINSULAR MALAYSIA

3.1 Introduction

3.2 Methodology

3.3 Results

3.3.1 Ectoparasites distribution according to host sex

3.3.2 Ectoparasites distribution according to host age

3.3.3 Ectoparasites distribution according to season factors

3.3.4 Ectoparasites distribution according to location

3.4 Discussion

3.5 Conclusion

CHAPTER 4: DIVERSITY OF ENDOPARASITES OF URBAN STRAY CATS IN PENINSULAR MALAYSIA

4.1 Introduction

4.2 Methodology

4.3 Results

4.3.1 Endoparasites distribution according to host sex

4.3.2 Endoparasites distribution according to host age

4.3.3 Endoparasites distribution according to season factors

4.3.4 Endoparasites distribution according to location

4.4 Discussion

4.5 Conclusion

CHAPTER 5: CO-OCCURRENCE RELATIONSHIPS BETWEEN INTESTINAL HELMINTH SPECIES IN THE STRAY CAT
CHAPTER 6: MOLECULAR CHARACTERIZATION OF *Toxocara malaysiensis*

6.1 Introduction
6.2 Methodology
 6.2.1 DNA Extraction
 6.2.2 Polymerase Chain Reaction (PCR)
 6.2.3 Agarose Gel Electrophoresis
 6.2.4 Gel Extraction (GE)
 6.2.5 Cloning
 6.2.5.1 Preparation of Luria Bertani (LB) Agar plates
 6.2.5.2 Preparation of LB Broth Medium
 6.2.5.3 DNA Ligation
 6.2.5.4 Transformation
 6.2.5.5 Selection of Transformants and Recombinants
 6.2.5.6 Plasmid Extraction
 6.2.5.7 Restriction Enzyme Digestion
 6.2.6 Sequence Analysis
6.3 Results
 6.3.1 Polymerase Chain Reaction (PCR)
 6.3.2 Gel Extraction
 6.3.3 Colony Screening
 6.3.3.1 Colony Library
 6.3.3.2 Restriction Enzyme Digestion
LIST OF FIGURES

Figure 1.1 Top ten Countries with most pet cat population (Source: Maps of World) 2
Figure 1.2 Life cycle of the cat’s flea, *Ctenocephalides felis*. (Source: DPDx) 6
Figure 1.3 Life-cycle of the cat’s louse, *Felicola subrostratus*. (Source: Lecture 7 - Parasitic skin diseases - Insects) 8
Figure 1.4 Life cycle of tick. (Source: Ticks) 10
Figure 1.5 Life cycle of *Toxocara* species. (Source: DPDx) 15
Figure 1.6 Life cycle of *Ancylostoma* species (Source: DPDx) 18

Figure 1.7 Life cycle of *Strongyloides* species. (Source: DPDx) 21

Figure 1.8 Life cycle of *Dipylidium caninum* (Source: DPDx) 26

Figure 1.9 Life cycle of *Clonorchis sinensis* (Source: DPDx) 33

Figure 2.1 The location of study area, Kuala Lumpur, Georgetown, Kuantan and Malacca in Peninsular Malaysia. Image excerpt from Google Earth™ mapping service. 46

Figure 2.2 Distribution of stray cats captured in Peninsular Malaysia 55

Figure 2.3 Distribution of stray cats captured by season, host age and sex from Peninsular Malaysia 55

Figure 2.4 Frequency distribution of infracommunity richness of parasites in the stray cats’ population from Peninsular Malaysia. 57

Figure 3.1 *Ctenocephalides felis* 77

Figure 3.2 *Felicola subrostratus* 77

Figure 3.3 *Heterodoxus spiniger* 77

Figure 3.4 *Haemaphysalis bispinosa* 77

Figure 3.5 *Lynxacarus radovsyki* 77
Figure 3.6 Prevalence of ectoparasite species recovered from stray cats in Peninsular Malaysia.

Figure 4.1 *Toxocara cati*

Figure 4.2 *Toxocara malaysiensis*

Figure 4.3 *Physaloptera praeputialis*

Figure 4.4 *Platynosomum fastosum*

Figure 4.5 *Taenia taeniaeformis*

Figure 4.6 *Dipylidium caninum*

Figure 4.7 Mouth part of *A. braziliense*

Figure 4.8 Mouth part of *A. ceylanicum*

Figure 4.9 Transverse striation of *A. braziliense*

Figure 4.10 Transverse striation of *A. ceylanicum*

Figure 4.11 Bursa copulatrix of *A. braziliense*

Figure 4.12 Bursa copulatrix of *A. ceylanicum*

Figure 4.13 Prevalence of endoparasite species recovered from stray cats in Peninsular Malaysia.

Figure 6.1 Diagram of the ribosomal DNA gene family.

Figure 6.2 Gel Electrophoresis of *Toxocara malaysiensis* PCR products using Fallas and Kaplan primer pair.
Figure 6.3 Agarose gel electrophoresis of PCR products before gel extraction. (pre-GE).

Figure 6.4 Agarose gel electrophoresis of PCR products after gel extraction. (post-GE).

Figure 6.5 Colony screening of a) Toxocara malaysiensis (TM7) and b) Toxocara malaysiensis (TM8) by using M13 primers.

Figure 6.6 a) Toxocara malaysiensis (TM7) and b) Toxocara malaysiensis (TM8) clones after the restriction digestion by EcoR1.

LIST OF TABLES

Table 1.1 Scientific classification of Ctenocephalides felis

Table 1.2 Scientific classification of Felicola subrostratus

Table 1.3 Classification of ticks and mites

Table 1.4 Scientific classification of Toxocara spp.

Table 1.5 Scientific classification of Ancylostoma spp.
Table 1.6 Scientific classification of *Strongyloides* spp. 19

Table 1.7 Scientific classification of *Physaloptera praeputialis* 22

Table 1.8 Scientific classification of *Dipylidium caninum* 24

Table 1.9 Scientific classification of *Joyeuxiella pasqualei* 27

Table 1.10 Scientific classification of *Taenia taeniaeformis* 29

Table 1.11 Scientific classification of *Platynosomum fastosum* 31

Table 1.12 Scientific classification of *Clonorchis sinensis* 32

Table 1.13 Macroparasites previously recorded in cat population from Peninsular Malaysia. 35

Table 2.1 Number of stray cats examined by site, host age, sex and season from Peninsular Malaysia. 56

Table 2.2 The prevalence (%) of frequency distribution of infracommunity richness of parasites in stray cats according to location. 58

Table 2.3 The prevalence (%) of frequency distribution of infracommunity richness of parasites in stray cats according to season. 59

Table 2.4 The prevalence (%) of frequency distribution of infracommunity richness of parasites in stray cats according
to host sex.

Table 2.5 The prevalence (%) of frequency distribution of infracommunity richness of parasites in stray cats according to host age.

Table 2.6 Simpson’s Index values for the macroparasite infection in the stray cat population in Peninsular Malaysia.

Table 2.7 Brillouin Index values for the macroparasite infection in the stray cat population in Peninsular Malaysia.

Table 3.1 Quantitative analysis of ectoparasites recovered from stray cats captured in Peninsular Malaysia.

Table 3.2 Prevalence, mean intensity, abundance of infection ± standard error of the mean (SEM) and comparative analysis of cat’s ectoparasites between both host sexes in Peninsular Malaysia

Table 3.3 Prevalence, mean intensity, abundance of infection ± standard error of the mean (SEM) and comparative analysis of cat’s ectoparasites between host ages in Peninsular Malaysia

Table 3.4 Prevalence, mean intensity, abundance of infection ± standard error of the mean (SEM) and comparative analysis of cat’s ectoparasites between seasonal factors in Peninsular Malaysia

Table 3.5 Prevalence of ectoparasites recovered from stray cats captured in Kuala Lumpur, Georgetown, Kuantan and Malacca Town of Peninsular Malaysia
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Quantitative analysis of ectoparasites recovered from stray cats captured in Kuala Lumpur, Peninsular Malaysia.</td>
<td>84</td>
</tr>
<tr>
<td>3.7</td>
<td>Quantitative analysis of ectoparasites recovered from stray cats captured in Georgetown, Peninsular Malaysia.</td>
<td>85</td>
</tr>
<tr>
<td>3.8</td>
<td>Quantitative analysis of ectoparasites recovered from stray cats captured in Kuantan, Peninsular Malaysia.</td>
<td>86</td>
</tr>
<tr>
<td>3.9</td>
<td>Quantitative analysis of ectoparasites recovered from stray cats captured in Malacca, Peninsular Malaysia.</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Quantitative analysis of endoparasites recovered from stray cats captured from all locations in Peninsular Malaysia.</td>
<td>109</td>
</tr>
<tr>
<td>4.2</td>
<td>Prevalence, mean intensity, abundance of infection ± standard error of the mean (SEM) and comparative analysis of cat’s endoparasites between both host sexes in Peninsular Malaysia.</td>
<td>111</td>
</tr>
<tr>
<td>4.3</td>
<td>Prevalence, mean intensity, abundance of infection ± standard error of the mean (SEM) and comparative analysis of cat’s endoparasites between host ages in Peninsular Malaysia.</td>
<td>112</td>
</tr>
<tr>
<td>4.4</td>
<td>Prevalence, mean intensity, abundance of infection ± standard error of the mean (SEM) and comparative analysis of cat’s endoparasites between seasonal factors in Peninsular Malaysia.</td>
<td>113</td>
</tr>
<tr>
<td>4.5</td>
<td>Prevalence of endoparasites recovered from stray cats captured in Kuala Lumpur, Georgetown, Kuantan and Malacca Town of Peninsular Malaysia.</td>
<td>114</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Quantitative analysis of endoparasites recovered from stray cats captured in Kuala Lumpur of Peninsular Malaysia.</td>
<td>115</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Quantitative analysis of endoparasites recovered from stray cats captured in Georgetown of Peninsular Malaysia.</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Quantitative analysis of endoparasites recovered from stray cats captured in Kuantan of Peninsular Malaysia.</td>
<td>117</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Quantitative analysis of endoparasites recovered from stray cats captured in Malacca of Peninsular Malaysia.</td>
<td>118</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>The prevalence (%) distribution of stray cats infected with single infection of Ancylostoma braziliense only, Ancylostoma ceylanicum only and mixed infection of both Ancylostoma braziliense and Ancylostoma ceylanicum.</td>
<td>132</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>The abundance distribution of stray cats infected with single infection of Ancylostoma braziliense only, Ancylostoma ceylanicum only and mixed infection of both Ancylostoma braziliense and Ancylostoma ceylanicum.</td>
<td>133</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>The prevalence (%) distribution of stray cats infected with single infection of Toxocara cati only, Toxocara malaysiensis only and mixed infection of both Toxocara cati and Toxocara malaysiensis.</td>
<td>134</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>The abundance distribution of stray cats infected with single infection of Toxocara cati only, Toxocara malaysiensis only</td>
<td></td>
</tr>
</tbody>
</table>
and mixed infection of both *Toxocara cati* and *Toxocara malaysiensis*.

Table 5.5 Pearson’s product-moment correlation coefficients between intestinal helminthes species in stray cats from Peninsular Malaysia.

Table 6.1 Components for PCR.

Table 6.2 Sequence analysis of *Toxocara malaysiensis* using the BLASTn program.

APPENDICES

Appendix A Simpson’s Index
Appendix B Brillouin Index
Appendix C The Components of 5X TBE (Tris Borate EDTA Buffer)
Appendix D Plasmid Extraction (Solution I, Solution II and Solution III)
Appendix E Distribution of 129 Blast Hits on the Query Sequence
Appendix F Sequences producing significant alignment
Appendix G Clustal 2.0.11 Multiple Sequence Alignment
Appendix H Chromatograms

ABBREVIATIONS
n sample size
k negative binomial exponent
% percentage
µg/µl microgram per microliter
µl microliter
°C degree celcius
bp base pair
cm centimeter
dH₂O distilled water
DNA deoxyribonucleic acid
dNTP deoxyribonucleoside triphosphate
EDTA ethylenediaminetetraacetic acid
EtBr ethidium bromide
g gram
GE gel extraction
ITS Internal Transcribed Spacer
kb kilo base pair
LB Luria Bertani
MgCl₂ Magnesium Chloride
min minute
ml milliliter
mM miliMolar
mm millimeter
NaOH Natrium Hydroxide
ng nanogram

nm nanometer

OD Optical Density

PCR Polymerase Chain Reaction

rDNA ribosomal DNA

Taq Thermus aquaticus

TBE Tris Borate EDTA

TE Tris-EDTA

TM Toxocara malaysiensis

U Unit

UV Ultraviolet

V Volt

x Times