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Chapter 1

INTRODUCTION

1.1. The Mitochondrion

The mitochondrion (Alberts et. al., 2007) is one of the most important organelle in a

cell. Its size ranges from 0.5μm to 1.0μm in diameter, making it one of the three largest

organelle in a cell (together with nucleus and vacuole – largest in plant cells). Similar to

the structure of a nucleus (normally eukaryotes), the mitochondrion has multiple

internal compartments that carry out specialized functions. The compartments are outer

membrane, intermembrane space, inner membrane, cristae space and the.

The outer mitochondrial membrane (Alberts et. al., 2007) encapsulates the

whole organelle, preventing external molecules from penetrating into the mitochondrion.

Large number of integral protein and porins provide channels for molecules 5000

Daltons or less to diffuse into the organelle. The larger molecules or protein can enter

via the binding to the large multisubunit protein called translocase of the outer

membrane. The intermembrane space resides between the outer and inner

mitochondrion membrane that deals with the protein composition in itself. Protein such

as the protein cytochrome c will pass through this space or reside here.

The inner membrane (Alberts et. al., 2007) houses multiple proteins that can be

grouped into five groups; redox reactions of oxidative phosphorylation, adenosine

triphosphate (ATP) synthase, specific transport proteins which regulate metabolite

passage into and out of the matrix, protein import machinery and mitochondrion fusion

and fission protein.
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The cristae (Alberts et. al., 2007) expands the surface area of the inner

membrane through the folding or invagination of the membrane, providing further

compartmentalization that enhance the ATP production. The matrix contains the

majority of the proteins of the mitochondrion, together with enzymes, ribosome, tRNA

and its own genome.

Figure 1.1 Structure of mitochondrion

(Source: http://en.wikipedia.org/wiki/Mitochondrion)

The mitochondrion (Alberts et. al., 2007) has a central role in energy

transduction in form of ATP which is used as a source of chemical energy in cells.

Besides being the power generator of the cell, the mitochondrion is also involved in

other important functions, including ion homeostasis, intermediary metabolism,

signaling, cellular differentiation and apoptosis or cell death, as well as the control of

the cell cycle and cell growth. All this depends on the molecules reside or produced

inside the mitochondrion.
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According the endosymbiotic theory (Burger et. al., 2003), the mitochondrion

DNA (mtDNA) has separate evolutionary origin. It is thought that the genome of a

prokaryotic cell was engulfed by eukaryotes cells. An indirect evidence is that some

circular shape of the mitochondrial genome is the similar to those found in prokaryotic

cells such as bacteria.

A typical metazoan (e.g. Homo sapiens) mtDNA is around 16 kbp long,

encoding for 37 genes (Boore, 1999). There are three types of genes: protein coding

genes (13), tRNA genes (22) and rRNA genes (2). These genes are well-annotated and

rarely found to differ within species in terms of gene order arrangement. The mtDNA

genes are ideal for phylogenetic tree building as gene order can also be used for closely

related species to find distantly related species because their gene order will differ.

Figure 1.2 Mitochondrial Genome of Homo sapiens

(Source: OGRe Genome Viewer)

Figure 1.3 Mitochondrial Genome of Gallus gallus

(Source: OGRe Genome Viewer)
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Figure 1.4 Mitochondrial Genome of Pan paniscus

(Source: OGRe Genome Viewer)

1.2. Bootstrapping

Bootstrapping (Efron et. al., 1993) is used as means of approximating the distribution of

an estimator of a population parameter using pseudo-samples obtained by resampling

from the observed data. The standard error (SE) of the estimator can then be found by

checking the standard deviation (SD) of the bootstrap distribution and its 95%

confidence interval (CI) is found by taking the 2.5th and 97.5th quantiles.

By resampling columns of a multiple sequence alignment used to construct a

tree, and then comparing the bootstrap phylogenies with the observed tree, one could

estimate this SD by reporting the bootstrap support (p), which is the proportion of times

a node is retained in the replicates. High bootstrap support is equivalent to low SD.

Figure 1.5 shows the bootstrapping of a multiple sequence alignment in action

which resample and create nth subsamples that are theoretically assumed to be available

in the real world. During resampling step in the bootstrap iteration, one column is

randomly selected and replaced. It will be continued to create a bootstrap replicate

(subsample). Later a new tree is constructed using the subsample and compared against

the original tree. If the clade exists in the new tree it will be scored 1 while a non-

existent clade is scored 0. This will continue until all the iteration is over.
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However this may not be reflected in an actual sequence as the sequences

created may not comply to some conditions such as the availability of sudden gaps and

there’s no start or stop codons at the beginning and end of sequences.

Figure 1.5 Bootstrapping includes column resampling and creating sequences
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However when used in phylogenetic trees, bootstrapping assumes that such

resampled sequences exist somewhere in the genome and assumes that the real sequence

is one of the realization from the subsample. This assumption is unlikely to be true as

evolutionary pressure constraints sequence evolution, so certain sequences cannot exist.

This represents a significant departure from classical bootstrapping where the

bootstrapped values are true realisations from the distribution of the population.

Unfortunately, it appears that bootstrapping phylogenetic trees has developed a

kind of necessity among molecular phylogeneticists (Hillis et. al., 1993), possibly

because of the appearance of scientific objectivity that it lends to this craft. The only

scientifically valid way to assess the value of bootstrapping phylogenetic trees is to

empirically determine node support using real sequences.

1.3. Objectives

The objective of this project is to assess the bootstrap method empirically using nodes

built from phylogenetics tree from actual genes rather than the artificial resampling of

single genes.  The assessment is based on the degree of discrepancy in estimated node

support between the two methods.



7

Chapter 2

LITERATURE REVIEW

2.1. Mitochondrion in Evolution

There are several advantages of using mtDNA as a phylogenetic tool (Boore et. al.,

1998). All organisms will have mitochondrion (whether encapsulated or not) that have

varying and complex states between taxa. Mitochondrion is also unambiguously

homologous and also selectively neutral to minimize convergent changes as it is past

down maternally (most of the cases). mtDNA is also labile enough to generate a strong

signal at many branches but not so labile that subsequent changes would erode it. Other

genes may not have all these criteria.

According to Boore et. al., 1998, the mitochondrion gene order can be used as

one of the reference point in the inference of a phylogenetic tree. This is because across

the metazoan, the gene contents almost all the same and also homologous even across

organism – plant, fungi and protists. The great number of potential arrangements makes

convergence a rare occurrence, therefore, gene arrangements are likely to be shared only

as a result of common ancestry. The gene arrangement is also stable and infrequent

rearrangement as there is no genetic recombinant and almost inherited maternally which

retain the signal of ancient common ancestry.
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The arrangement of genes in mtDNA is highly conserved. However mutation

such as nucleotide substitution, point deletion and insertion may can the arrangement to

change. For example, a slipped strand mispairing (Boore et. al., 1998) will cause gene

duplication within taxa during replication which causes shift in subsequent sequences.

Another mechanism happen due to the nature of mitochondrion genome as it is circular

and if the origin and termination shifts, some of the genes in between may also be

duplicated. The gene order is good for phylogeny between distantly related taxa but

poor between closely related taxa as the gene arrangement often remain the same

between closer taxa.

The mitochondrion is also smaller in size compared to the whole genome and

remains almost the same size across taxa. This smaller size happens due the gene loss

and transfer to the nucleus (Adams, 2003). Most of the coding sequence is transferred to

nucleus or is loss due to duplicating genes in the cell.
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2.2. Bootstrapping in Phylogenetic

Efron propose the idea of bootstrapping (Efron, 1982). Later, bootstrapping in

phylogenetics was proposed by Felsenstein in 1985. In the journal he shows that how a

phylogenetic can be more trusted with addition of bootstrap support value to show its

occurrence during bootstrapping.

According to Hillis and Bulls (1993), bootstrapping is a circumstantial method

through a series of experiments using simulated samples. Bootstrapping will be affected

by multiple factors. The factors are number of characters, taxa, bootstrap iterations

performed, rate of change, tree topology, position of the group of interest within the tree,

variance of rates of change among lineages,  independence of characters, and method of

phylogenetic inference. The final bootstrap support value may not reflect the actual

phylogenetic accuracy where underestimation or overestimation may occur, depending

on the rate of changes in the sequence.

Felsenstein and Kishino (Felsenstein et. al., 1993) point that the result from

Hillis and Bulls (1993) relies too much on the P-value instead of the claimed unbiased

confidence interval to justify the validity of bootstrap support value. Felsenstein and

Kimura think that it this may be an overestimation and overreaction to the reliance to P-

value but until a better way of summarizing the result of a tree, the biologist will

continue with bootstrapping support.

However mathematics models are only suitable if genes are independent of each

other. However this may not be case in any organism especially complex species. For

example, co-dependency can be found between FoxO3 and Pax3/7 to co-ordinately

recruit RNA polymerase II and form a pre-initiation complex (PIC) to activate MyoD

transcription in myoblasts (Hu et. al., 2008).
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2.3. Software

R (R Development Core Team, 2012) is a language and environment for statistical

computing which can be further enhanced using additional packages. For building and

analysis of phylogenetic tree, the package, Analyses of Phylogenetics and Evolution

(APE) and phangorn is essential package in R.

According to Paradis (2004), APE is a package written in the R language for the

use in molecular evolution and phylogenetics as well as providing reading and writing

data and manipulating phylogenetic trees, with several advanced methods for

phylogenetic and evolutionary analysis. There are limitation as in APE which nicely

complemented by phangorn (Schliep et. al., 2011) especially in tree building with

reconstruction method phylogenies with distance based methods, maximum parsimony

or maximum likelihood (ML) and performing Hadamard conjugation with other

features as well.

Molecular Evolutionary Genetics Analysis is a freeware tool for mining online

databases, building sequence alignments and phylogenetic trees, and using methods of

evolutionary bioinformatics in basic biology, biomedicine, and evolution (Kumar et. al.,

2008). Currently it is at version 5 with additional features (Tamura et. al., 2011). With

additional of a collection of maximum likelihood (ML) analyses for inferring

evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid),

inferring ancestral states and sequences (along with probabilities), and estimating

evolutionary rates site-by-site. Using computer simulation, the result from MEGA5

compares favorably with other software packages (e.g. RaxML7, PhylML3) in terms of

efficiency and accuracy of phylogenetic tree. Additionally, MEGA5 provides a user

friendly interface for building and analyze phylogenetic tree with other features as well.
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Python the COmparative GENomic Toolkit (PyCogent) (Knight et. al., 2007) is

a multipurpose framework which can be used for analyses of biological sequences in a

novel probabilistic manner, devising workflows, and generating publication quality

graphics that relies on connectors to remote databases, generalized probabilistic

techniques for working with biological sequences that uses various built-in libraries,

and controllers for third-party applications such as MUSCLE and ClustalW. This is very

useful when dealing with a very large amount of data as well as a smaller one as it can

provide automation.
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Chapter 3

METHODOLOGY

There are four major steps in execution of the study as shown in Figure 3.1.

Figure 3.1 Major steps in execution of the study

In identification, a trusted and well curated tree is selected (Perelman et. al.,

2011) as the gold standard for the phylogenetic tree.  The tree is widely accepted and

proven to be true. The taxa include Pan paniscus (bonobo or also known as pygmy

chimpanzee), Homo sapiens (human), Gorilla gorilla (western gorilla), Pongo

pygmaeus (bornean orangutan), Hylobates lar (common gibbon) and Gallus gallus (red

junglefowl or chicken) as the outgroup.

The next step, extraction, the whole genome of mitochondrion of each taxa is

identified, selected and extracted from National Center for Biotechnology Information

(NCBI) using EFetch() method in PyCogent. The GI chosen are 5835820 (for Hylobates

lar), 5835163 (for Pongo pygmaeus), 5835135 (for Pan paniscus), 5835149 (for Gorilla

gorilla), 5834843 (for Gallus gallus) and 251831106 (for Homo sapiens).

Identification Extraction Sequence
Manipulation Analysis
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Encoded into each of the retrieved sequence, there is additional information

which tells the position of start and stop of the genes inside the whole mitochondrial

genome sequence. The position of the genes is well curated. Using the start and stop

information, the position of the genes is extracted into separate fasta files, according to

their respective species.

Alignment using MUltiple Sequence Comparison by Log- Expectation

(MUSCLE) with gap penalty of -500 is used on all the extracted genes, including the

whole mitochondrial genome sequence. A gap penalty of -500 is applied because the

default value of the gap penalty of MUSCLE in MEGA is -400. Additional gap penalty

is applied so that the aligned sequences will not contain too many unrestricted gaps but

not too much until no gaps can be inserted. All of this is automated using the PyCogent

from extraction from NCBI to the 37 separated fasta files of each gene of each taxa.

Maximum likelihood (ML) tree is selected (Felsenstein et. al., 1985) and the

gold standard is constructed from the aligned mitochondrion genome in both MEGA

and R. Both tools will give a slightly different result. Bootstrap support will also be

added when building the tree. The pairwise distance uses the Tamura-Nei, 93(TN93)

model while the bootstrap iteration is at 1000. The tree building in MEGA involves a

friendly user interface while R uses automation in codes. In R, align sequence is read

using APE package and a pairwise distance matrix is calculated and is used for building

the neighbor-joining trees. Further calculation using phangorn package will produce the

ML tree with the bootstrap support (codes available in Appendix F and Appendix G).

The trees built are unrooted type and all the layouts are available in the Appendix D and

Appendix E.
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After all the ML trees using all the genes and the mitochondrial genome are

constructed from the sequence manipulation step, the analysis process begins. The

layout of each tree is recorded and every frequency of the same node as the gold

standard will be recorded. The frequencies represent the empirical estimate of the

mitochondrion tree. The recorded data will be analysed and multiple statistical methods

are applied to build graphs to enable clarity and understanding.
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Chapter 4

RESULTS

The golden standard of the ML tree for both MEGA and R is the same as they have the

same topology (almost the same bootstrap value as well)

Figure 4.1 Topology of the reference tree

The correct topology is the Homo sapiens with Pan paniscus, connected to Gorilla

gorilla, then Pongo pygmaeus, to Hylobates lar and finally the outgroup, Gallus gallus.

As seen from the Figure 4.1, the distance of Gallus gallus is very definite and this is

expected as it is the outgroup..
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Node A, B and C are shown in Figure 4.2. The node A (circled in red) is

between Homo sapiens and Pan paniscus. The node C (circled in green), is between

Pongo pygmaeus and Hylobates lar with Gallus gallus while node B (circled in blue) is

Gorilla gorilla which is between node A and B.

Figure 4.2 Position of node A, B and C on the topology of the reference tree
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The frequencies of the appearance of each node in the topology of the built trees

from each gene in mtDNA are recorded into tables. There are some differences in the

frequencies of the node between the tree generated by MEGA and R are captured into

tables. Each tables record for different type of genes in mtDNA and can be seen in

Appendix A (protein coding sequence), Appendix B (Ribosomal RNA Sequence) and

Appendix C (Transfer RNA Sequence). The total is summarized in in Table 4.1.

Table 4.1 Total Frequency of Node Appearance

Type
MEGA R

A B C A B C

Protein Coding 11 10 7 10 10 4

rRNA 0 0 2 0 0 2

tRNA 11 6 6 11 7 6

TOTAL 22 16 15 21 17 12

From the frequency we can construct an empirical estimate which can be

calculated by finding the percentage of the node over total gene (37) as show in Table

4.2.

Table 4.2 Empirical Estimate for Each Node

Type
MEGA (%) R (%)

A B C A B C

Protein Coding 30 27 19 27 27 11

rRNA 0 0 5 0 0 5

tRNA 30 16 16 30 19 16

TOTAL 60 43 40 57 46 32
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Figure 4.3 and 4.4 show the different empirical estimate calculated from the frequency

of node between MEGA and R.

Figure 4.3 Empirical estimate of the reference tree in MEGA

Figure 4.4 Empirical estimate of the reference tree in R

Pongo pygmaeus

Pan paniscus

H
om

o sapiens

1
0
0

Gorilla gorilla

1
0
0

9
6

Gallus gallus

H
ylobates lar

0.02

43

60

40

Pongo pygmaeus

Pan paniscus

H
om

o sapiens

1
0
0

Gorilla gorilla

1
0
0

9
6

Gallus gallus

H
ylobates lar

0.02

46

57

32



19

The use of R in the result is not for full comparison but a highlight of different

outcome from different tools. Only the result from MEGA5 will be used for the analysis

of the empirical estimates for bootstrap support. A comparison is done on the frequency

of each of the bootstrap value from the phylogenetic tree built. The tRNA and non-

tRNA (rRNA and protein coding) are separated due to the dissimilarity in length of

sequences. A summary of the data can be found in Table 4.3.

Table 4.3 Summary of bootstrap values in node A, B and C from MEGA

Type Node A Node B Node C

Min 43 59 49

1st Quarter 67 79 63

Median 84 88 67

Mean 76 86 68

3rd Quarter 90 99 69

Maximum 96 100 91

Variance 305 212 121

Standard Deviation 18 15 11
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Figure 4.5 Histogram of frequency of bootstrap support for (a) Node A, (b) Node B

and (c) Node C for protein and rRNA genes. The dotted line reflect the

empirical estimate from all genes

From Figure 4.5, we can see that bootstrap support for the same nodes in different trees

tend to be much higher than the empirical node support.
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Figure 4.6 The distribution of bootstrap values against sequence length for node A

(represented by ○), node B (represented by ■) and node C (represented

by +) using protein and rRNA genes.

Figure 4.6 shows the distribution of the bootstrap value against the sequence length. The

difference of the highest bootstrap support (100%) with lowest bootstrap value (43%) is

57% thus the variation is quite sizeable.
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Figure 4.7 Histogram of frequency of bootstrap support for (a) Node A, (b) Node B

and (c) Node C for tRNA genes. The dotted line reflect the empirical

estimate from all genes

Similarly to the histogram of protein and rRNA, the empirical node support tends to be

much smaller than the bootstrap support values.
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Figure 4.8 The distribution of bootstrap values against sequence length for node A

(represented by ○), node B (represented by ■) and node C (represented

by +) using tRNA genes only

Figure 4.8 shows that the distribution of bootstrap values for tRNA genes (centered

around sequence length of 68) is quite variable. The difference of the highest bootstrap

value (99%) with lowest bootstrap value (35%) is 64%, wider than that seen for protein

and rRNA genes.
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Figure 4.9 Histogram of frequency of bootstrap support for (a) Node A, (b) Node B

and (c) Node C for all genes. The dotted line reflect the empirical

estimate from all genes

As mentioned, Figure 4.9 also shows a tendency of bootstrap values skewed to the right

of the empirical node support.
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Further calculation can be done where we can find the percentage of the obtained

bootstrap support compared with the empirical estimates. Using the formula as follows,

we can calculate the result:

Total number of non-zero bootstrap values < empirical estimate
Total number of non-zero bootstrap values

The probability of a bootstrap support value falls on or above the empirical

estimate for node A is 32% while node B is 6% and node C is 6%. As we move further

away from the tip, the percentage of bootstrap values tend to drop and only 6% in the

other two nodes, B and C.
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Figure 4.10 The distribution of the nodes from bootstrap value against sequence

length for protein and rRNA (represented by ○) and tRNA (represented

by ■) using all genes

From the linear regression of bootstrap values against sequence length, the slope

coefficient is almost 0, 0.01 (p-value = 0.12) which is statistically significant. Sequence

length and bootstrap value seemed and was not to be independent of each other.
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Chapter 5

DISCUSSION

A full genome tree is very hard to do as only limited organisms have well-curated and

completely sequenced genome available. A fully sequenced genome does not bring

much value as we will need it to be fully curated to maximize the number of genes

available for analysis within the genome. We only select the overlapping genes from

each taxa but the intersection between the organisms will become smaller and

eventually becomes null set as the number of taxa increases. Only a well curated

genome from a well define phylogeny can be used. The mitochondrial genome was

chosen because it is separated from the nuclear genome and it can be found in all

organisms. Furthermore the gene content in mitochondrial genome is similar among

metazoan (Boore et. al., 1998) thus maximizing the chance of overlapping genes.

Even with automation in PyCogent to extract additional genes from the taxa, the

condition of the NCBI database hinders this. There is minimal uniformity in the naming

convention such as title and also the parameter such as keyword. The title of same gene

or protein differs from one sequence to another. For example the result of searching for

“cytochrome c” in the nucleotide database resulted in “Pan paniscus cytochrome c

(CYCS) gene, complete cds” and “Chicken cytochrome c gene, allele CC10, complete

CDS”. Both titles lack uniformity. Besides that the search mechanism of NCBI depends

on both the keywords and title that are not standardized and may return inaccurate result.
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There are many reasons why the frequencies of the node differed between

MEGA and R even though the parameters used were the same. In MEGA additional

parameters were asked from the user such as the Nearest-Neighbour-Interchange (NNI)

and specification of the type of the sequence – vertebrate, plant etc (Tamura et. al.,

2011). These small modifications may thus cumulatively affect the outcome of the final

tree.

In R the tree is constructed directly through the use of parameters in the method

of the APE and phangorn, with limited function arguments. This is because the

packages are optional and not bundle into the core of R and it will be difficult to have

constant updates. It will be easier in MEGA as it is packaged together as a software

bundle and its component can be updated regularly as it shipped together with the core

program.

The result of the regression of bootstrap values against sequence length suggest

that equal weighting of each length as there seemed to be no biased towards larger

bootstrap values for longer sequences.

One of the concerns from the study is that the genes evolution and species

evolution may not happen at the same rate (Maddison, 1997). That is why some of the

genes tend to have different result compared with the whole mitochondrion genome.

However when dealing with more reserved genes which is very crucial for the survival

of an organism, we can get a more correct tree. We are supposing that the true species

tree can be represented by an average of the evolutionary histories of the gene tree. The

frequencies of the faster mutating genes will be cancelled out by the slower mutating

genes to obtain the average and the true tree.
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As mentioned, the gene order can be used as a phylogeny tool (Boore et. al.,

1998). In Figure 5.1, the order of gene Cytochrome b and ND6 gene (along with some

tRNAs) is different between Homo sapiens and Gallus gallus. It is reflected in the

mitochondrion genome tree where Gallus gallus is shown as an outgroup.

Figure 5.1 Gene order comparison of mitochondrion genome of Homo sapiens and

Gallus gallus (Source: OGRe Genome Viewer)

The result may not reflect the whole story as human themselves contains more

than 20,000 genes but we just use 37 from mitochondrion genome only. According to

Venter (2001), there are 26,588 protein-encoding transcripts versus the 37 protein

coding gens in mtDNA which takes only a mere 0.14%. However this is a very good

estimate of the validity of the bootstrap support function in the phylogenetics. This is

because we use all the genes from mtDNA which represent the population and not a

virtual build-up of the sequences and also the tree used is supported not only by genes

but also other traits as well such as morphology and behaviour.



30

Even though a phylogenetic tree is built, the true relationship and phylogeny of

the taxa may not be reflected in the result. This is because in order to deduce the true

phylogeny more factors need to be taken into account. These include morphology and

also the behaviour (Queiroz et. al., 2009). For example, according to the result, Homo

sapiens and Pan paniscus is the closer compared to Gorilla gorilla in the tree. If we

compare the morphology between the three species, human and chimpanzee are more

similar in both size and overall structure. Gorilla is much more robust and its jaw

protrudes more compared to human. In behaviour, both human and chimpanzee use

tools regularly to complete tasks. This shows a different degree of intelligence

compared to those to do so.

With advancement in technology, the numbers of simultaneous tasks handled by

computers far exceed the human capability. This include the computational power of

both calculation and retrieval ability of a computer. Additionally we can easily retrieve

and align sequence multiple genes from different organism quickly which will generate

an ample amount of data. However this may not be feasible in Felsenstein days as

during his time in 1990s when the human genome was only officially initiated in 1990

and continued for more than 10 years (Venter et. al., 2001) and the overlapping genes

available across taxa were rather limited. Due to the limiting resources, the use of

‘virtual’ method such as bootstrapping where assumption that it does exist in real world

is needed to infer something that may not be found yet. However now that the huge

resources from publication, database and annotation are available, the assumption of

bootstrapping need to be challenged to bring molecular phylogenetics studies to a

higher level.

One of the methods to further justify the empirical estimate is that by using the

consensus of the identity value from each gene. This will strengthen and increase the

confidence from the constructed trees. This can be covered in further studies.
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Chapter 6

CONCLUSIONS

The concept of assessing the robustness of phylogenetic tree using bootstrap support

values for nodes appears to rest on shaky foundations. Using the mitochondrial genome,

it was found that bootstrap support values were generally much higher than node

support determined empirically using all 37 genes from the mitochondrial genome.

Even though there are doubts such as the different evolutionary rate in genes compared

to species evolutionary rate, we can assume that the average will return the true tree

especially on a larger sample size such as a whole nuclear genome which can be

focused on future studies. There is a sense of urgency to further explore the dissonance

between what bootstrap support purports to offer and what empirically determined

results say otherwise.




