
EFFECT OF SELECTED BACTERIA ON THE ANTIBACTERIAL AND ANTIOXIDANT ACTIVITIES OF CENTELLA ASIATICA

ARASH RAFAT

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF BIOLOGICAL SCIENCES
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Arash Rafat

(I.C/Passport No: R12477817)

Reg	Registration/Matric No: SHC080055					
Nan	Name of Degree: Doctor of Philosophy (PhD)					
Title	of Project Paper/Research Report/Dissertation/Thesis ("this Work"): Effect of selected				
bact	teria on the antibacterial and antioxidant activities of Cen	tella asiatica				
Field	d of Study: Microbial Biotechnology					
Ιc	lo solemnly and sincerely declare that:					
(1)	I am the sole author/writer of this Work;					
(2)	This Work is original;					
` ,	Any use of any work in which copyright exists was done	by way of fair dealing and for				
	permitted purposes and any excerpt or extract from, or r	reference to or reproduction of				
	any copyright work has been disclosed expressly and su	ufficiently and the title of the				
	Work and its authorship have been acknowledged in this	s Work;				
(4)	I do not have any actual knowledge nor do I ought reason	onably to know that the making				
	of this work constitutes an infringement of any copyright	work;				
(5)	I hereby assign all and every rights in the copyright to the	is Work to the University of				
	Malaya ("UM"), who henceforth shall be owner of the co	pyright in this Work and that any				
	reproduction or use in any form or by any means whatso	pever is prohibited without the				
	written consent of UM having been first had and obtaine	d;				
(6)	I am fully aware that if in the course of making this Work	I have infringed any copyright				
	whether intentionally or otherwise, I may be subject to le	egal action or any other action				
	as may be determined by UM.					
Can	Candidate's Signature Date					
Sub	Subscribed and solemnly declared before,					
Witr	Witness's Signature Date					
Nan	Name:					
Des	ignation:					

ABSTRACT

The role of selected naturally distributed bacteria on the antibacterial and antioxidant activities and production of phenolic compounds in one of the most important Asian medicinal plants namely Centella asiatica was investigated based on the effects of beneficial and pathogenic bacteria on the metabolic pathways of plants as reported in literature. Firstly, antibacterial and antioxidant properties and production of phenolic compounds of two subspecies of C. asiatica which are commonly used in Malaysia (University of Malaya Herbarium Voucher Specimens: KLU047364 and KLU047552) were evaluated and the most potent of them was chosen for the rest of the study. Different antioxidant assays were used to investigate the antioxidant activities of different samples while a disc diffusion method was applied to measure the antibacterial activity of these samples. Total phenolic contents of different parts of C. asiatica were also evaluated using Folin-Ciocalteu method. The selected C. asiatica subspecies was then treated with selected pathogenic and beneficial bacteria. Antibacterial and antioxidant activities and production of phenolic compounds in different parts of the plant inoculated with the pathogenic bacteria (Enterobacter sp.) were studied at early and late stages of infection. The antibacterial and antioxidant capacities as well as production of phenolic compounds were also investigated in different parts of the selected subspecies of C. aisiatica after treatment with the beneficial bacteria (*Pseudomonas sp.*). Production of phenolic compounds in the treated plants was also analyzed using high performance liquid chromatography (HPLC) and then compared to the non-treated plants (controls). Based on the importance of endophytic bacteria and their interactions with the host plant, some endophytic bacteria

associated with C. asiatica were also isolated and identified using 16S rDNA sequencing method. Antibacterial and antioxidant potential of the cell-free supernatant of these endophytic bacterial cultures were also evaluated. A multiple callus-subculturing method was used to produce endophytic bacteria-free calli after optimization of an in vitro callus induction protocol for C. asiatica. The results confirmed the promising antibacterial and antioxidant activities of both examined subspecies of C. asiatica. However, the subspecies KLU047364 showed better antibacterial and antioxidant activities compared to KLU047552 and thus selected for the rest of the study. C. asiatica in early response to Enterobacter sp. infection increased the production of phenolic compounds. Both antibacterial and antioxidant activities of the plant were also enhanced in early stage of infection while the production of phenolic compounds and antioxidant activity of plant was reduced in late stage of infection. Antibacterial and antioxidant activities as well as total phenolics production of C. asiatica were increased after treatment with the beneficial Pseudomonas sp. bacteria. HPLC results showed irregular changes in amount of phenolic compounds produced in C. asiatica after treatment with the bacteria. All isolated endophytic bacteria could inhibit the growth of Pseudomonas aeruginosa except Bacillus gibsonni. The isolated endophytic bacteria also showed fair antioxidant potentials. The best result for callus production from leaf explant of C. asiatica was obtained from the combination of 6-benzylaminopurine at concentration of 3mg/ml and 1-naphthaleneacetic acid at a concentration of 3mg/ml. The multiple callus-subculturing method resulted in 75% endophytes-free callus.

ABSTRAK

Kajian terhadap peranan sebilangan bacteria semulajadi keatas aktiviti anti-bakteria dan anti-oksidan dan penghasilan sebatian fenolik dalam satu tumbuhan perubatan yang terkemuka, Centella asiatica, telah dijalankan. Kajian dijalankan keatas dua sub-species tumbuhan ini yang sering mendapat kegunaan tempatan (University of Malaya Herbarium Voucher Specimens: KLU047364 and KLU047552). Sub-species yang menunjukkan potensi yang lebih dipilh untuk kajian berlanjutan. Asai anti-oksidan yang berlainan digunakan untuk menkaji kesan anti-oksidan manakala kaedah disk diffusion digunakan untuk menkaji kesan anti-bacteria. Kandungan sebatian fenolik bahagian bahagian C. asiatica telah ditentukan oleh kaedah Folin-Ciocalteau. Sub-species C. asiatica yang dipilih dirawat oleh bacteria yang pathogenic dan yang berguna. Aktiviti anti-oksidan dan antibakteria dan penghasilan sebatian fenolic oleh bahagian bahagian sub-species ini dikaji pada peingkat awal dan peringkat lanjutan. Penghasilan sebatian fenolik oleh tumbuhan yang dirawat juga dikaji dengan mengunakan kaedah HPLC dan dibandingkan dengan tumbuahan yang tidak di rawat. Bakteria endofitik yang terlibat dengan C. asiatica diasingkan dan dikenali dengan mengunakan urutan 16S rDNA. Kesan anti-bakteria dan anti-oksidan supernatant bebas sel daripada kultur bacteria ini juga di kaji. Kaedah multikultur digunakan untuk mengasilkan tisu callus bebas bacteria selepas satu protocol in vitro untuk pengasilan calli dioptimumkan. Keputusan kajian menunjukkan bahawa kedua sub-species ada potensi anti-bakteria dan anti-oksidan tetapi KLU047364, yang di pilih untuk kajian lanjutan, lebih berkesan berbanding dengan KLU047552. Dalam respons awal kepada jangkitan Enterobacter sp., C. asiatica meninggikan menghasilkan bahan fenolik. Kedua dua aktiviti anti-bakteria dan anti-oksidan dirangsangkan pada peringkat awal jangkitan dengan bacteria , manakala penghasilan bahan fenolik dan aktiviti anti-bakteria dan anti-oksidan dikurangkan pada peringkat lanjutan. Keputusan analisa HPLC menunjukkan penhasilan bahan fenolic dalam quantity yang tidak menentu. Semua bacteria kecuali Bacillus gibsomni endofitik yang diasingkan berupaya merencat ketumbuhan Pseudomonas aeroginosa. Bacteria endofitik juga menunjukkan sifat anti-oksidan yang sederhana. Keputusan yang terbaik untuk penghasilan callus adalah dengan kombinasi 6-benzylaminoourin pada kepekatan 3mg/ml dan asid 1-naphthaleneacetik pada kepekatan 3mg/ml. Kaedah multikultur menghasilkancallus 75% bebas daripada bacteria endofitik

ACKNOWLEDGEMENTS

All praises to the Almighty God for affording me the strength and determination to complete this study.

It is my pleasure to express my sincere gratitude and appreciation to my supervisor Associate Professor Dr. Koshy Philip from the Department of Microbiology, Faculty of Science, not only for his guidance and valuable advice but for his constant encouragement and the freedom that he provided to work and think throughout my research.

I am thankful to Prof. Dr. Sekaran Muniandy as my co-supervisor from the Department of Molecular Medicine, Faculty of Medicine for his valuable suggestions and useful discussions during my research.

I am also grateful to Assoc. Prof. Dr. Kamaruzaman Bin Sijam from the Department of Plant Pathology and Mohammad Bagher Javadi from the Department of Agriculture Technology, University Putra Malaysia for kindly providing the *Enterobacter sp.* and *Pseudomonas sp.* bacteria respectively.

I would like to thank University of Malaya for the use of laboratory facilities and for providing research grant PS151/2009A.

It's my pleasure to offer my thanks to all my laboratory mates, colleagues and friends especially Wuen Yew Teoh, Jeffery Saravana Kumar, Abdul-Muhsin M. Shami, Arash

Khorasani, Chee Poi Leng, Reza Ebrahimi, Behrooz Banisalam, Rajib Imdadul Haq, and Fazilia Mohd Hatta for maintaining a pleasant research atmosphere and making my stay in Malaysia an enjoyable one.

Last but not least, it is difficult to word my gratitude towards my family members for their encouragement and support during this period. I am grateful to my parents and my brother for supporting me in every possible ways.

TABLE OF CONTENTS

Al Al Al Ll Ll Ll	ORIGINAL LITERARY WORK DECLARATION ABSTRACT ABSTRAK ACKNOWLEDGEMENTS LIST OF FIGURES LIST OF TABLES LIST OF SYMBOLS AND ABBREVIATIONS LIST OF APPENDICES			
Cl	HAPTE	CR CR		
1	INTR	ODUC	TION	1
2	LITE	RATUI	RE REVIEW	5
	2.1	Bioact	tive Compounds Generated by Bioactivities in Plants	5
		2.1.1	Antibacterial Activity	6
		2.1.2	Antioxidant Activity	7
		2.1.3	Phenolic Compounds	11
	2.2	Biotec	chnological Techniques to Enhance the Bioactive	
			ounds Production in Plants	15
		2.2.1	Cell and Tissue Culture	16
		2.2.2	Genetic Transformation	17
		2.2.3	Physical Treatment	19
		2.2.4	Chemical Treatment	19
		2.2.5	Microbial Treatment	21
	2.3	Plant-	Bacteria Interactions	22
		2.3.1	Plant Beneficial Bacteria	23
		2.3.2	Plant Pathogenic Bacteria	27
		2.3.3	Endophytic Bacteria Associated with Plants	32
	2.4	Centel	lla asiatica	42
		2.4.1	Botanical Information	42
		2.4.2	C. asiatica in Malaysia	43
		2.4.3	Nutrient and Chemical Constituents	43
		2.4.4	Bioactive Compounds and Medicinal Value	44
		2.4.5	Phenolic Contents of C. asiatica	46
3	MET	HODO	LOGY	47
	3.1	Evalua	ation of Antibacterial and Antioxidant Activities as well as	
		Total 1	Phenolic Contents of Two Different Subspecies of Centella	
		asiatio	•	47
		3.1.1	Plant Material	47
		3.1.2	Sample Preparation and Extraction	48
		3.1.3	Antibacterial Activity Assay	49

		3.1.4 Antioxidant Activity Evaluation Assays	49
		3.1.5 Total Phenolic Content Determination	52
	3.2	Evaluation of Antibacterial and Antioxidant Activities and Total	
		Phenolic Contents of Centella asiatica after Inoculation with	
		Pathogenic Bacteria	53
		3.2.1 Preparation of Bacterial Suspension	53
		3.2.2 Inoculation Method and Growth Condition	53
		3.2.3 Sample Preparation and Extraction	54
		3.2.4 Evaluation of Antibacterial Activity of Plants Inoculated	
		with Pathogenic Bacteria	55
		3.2.5 Evaluation of Antioxidant Activity of Plants Inoculated	
		with Pathogenic Bacteria	55
		3.2.6 Determination of Phenolic Compounds	55
	3.3	Evaluation of Antibacterial and Antioxidant Activities and Total	
		Phenolic Contents of Centella asiatica after Inoculation with	
		Beneficial Bacteria	57
		3.3.1 Bacterial Suspension Preparation	57
		3.3.2 Inoculation Method and Growth Condition	57
		3.3.3 Sample Preparation and Extraction	58
		3.3.4 Evaluation of Antibacterial Activity of Plants Inoculated	
		with Beneficial Bacteria	58
		3.3.5 Evaluation of Antioxidant Activity of Plants Inoculated	
		with Beneficial Bacteria	58
		3.3.6 Determination of Phenolic Compounds	58
	3.4	C. asiatica Associated Endophytic Bacteria	59
		3.4.1 Isolation of Bacteria	59
		3.4.2 Identification of Isolated Bacteria	60
		3.4.3 Evaluation of Antibacterial and Antioxidant Activities of	
		Isolated Endophytic Bacteria	61
	3.5	Production of Bacteria-Free C. asiatica Callus	62
		3.5.1 Optimization of <i>C. asiatica</i> Callus Induction Protocol	
		Using BAP and NAA Growth Regulators	62
		3.5.2 Callus Multi-Subculture Method to Obtain Bacteria-Free	
		C. asiatica Callus	64
	3.6	Statistical Analysis	64
	DEGI	T TO	
4	RESU		65
	4.1	Evaluation of Antibacterial and Antioxidant Activities as well as	
		Total Phenolic Contents of Two Different Subspecies of Centella	65
		asiatica	65
		4.1.1 Antibacterial Activity	65
		4.1.2 Antioxidant Activity4.1.3 Determination of Total Phenolic Content	66 69
	4.2		09
	4.2	Evaluation of Antibacterial and Antioxidant Activities as Well as	
		Total Phenolic Contents After Inoculation with Pathogenic Bacteria	70
		Dacteria	70

		4.2.1	Antibacterial Activity	71
		4.2.2	Antioxidant Activity	72
			Determination of Phenolic Compounds	74
	4.3	Evalua	tion of Antibacterial and Antioxidant Activities as well as	
		Total I	Phenolic Contents of Centella asiatica after Inoculation	
		with Bo	eneficial Bacteria	78
		4.3.1	Antibacterial Activity	78
			Antioxidant Activity	79
			Determination of Phenolic Compounds	81
	4.4		la asiatica Associated Endophytic Bacteria	85
			Isolation and Identification of <i>Centella asiatica</i>	
			Associated Endophytic Bacteria	85
			Antibacteria Activity Evaluation of the Endophytic	
			Bacteria Isolated from <i>C. asiatica</i>	86
			Antioxidant Activity Evaluation of the Endophytic	
			Bacteria Isolated from <i>C. asiatica</i>	87
	4.5		tion of Bacteria-Free <i>Centella asiatica</i> Callus via Tissue	
			Culture	89
			Callus Induction from Leaf Explant	89
			Bacteria-Free C. asiatica Callus Tissue Production	90
5		USSION		91
	5.1	Evaluat	tion of Antibacterial and Antioxidant Activities as well as	
		Total P	Phenolic Contents of Two Different Subspecies of Centella	
		asiatic		91
			Plant Subspecies	91
			Plant Morphological Parts	91
		5.1.3	Plant Extraction	92
			Antibacterial Activity of <i>C. asiatica</i> Subspecies	93
			Antioxidant Activity of C. asiatica Subspecies	93
			Estimation of Total Phenolic Content	97
	5.2		tion of Antibacterial and Antioxidant Activities as Well as	
		Total I	Phenolic Contents of Centella asiatica after Inoculation	
		with Pa	athogenic Bacteria	98
		5.2.1	Antibacterial Activity of Inoculated Plants	99
		5.2.2	Antioxidant Activity of Inoculated Plants	101
		5.2.3	Total Phenolic Content of Inoculated Plants	102
		5.2.4	Phenolic Compounds Determination Using High	
			Performance Liquid Chromatography	104
	5.3	Evalua	tion of Antibacterial and Antioxidant Activities as Well as	
		Total I	Phenolic Contents of Centella asiatica after Inoculation	
		with Bo	eneficial Bacteria	106
		5.3.1	Antibacterial Activity of Treated Plants	107
		5.3.2	Antioxidant Activity of Treated Plants	108
		533	Total Phenolic Contents of Treated Plants	100

		5.3.4	Phenolic	Compounds	Determination	Using	High	110
	Performance Liquid Chromatography							
	5.4 Endophytic Bacteria Associated with <i>C. asiatica</i>					111		
		5.4.1	Isolation of	f Endophytic B	Bacteria			111
		5.4.2	Identificati	on of Isolated	Endophytica Bac	teria		112
		5.4.3	Antibacter	ial Activity of	Isolated Endophy	tic Bacte	ria	113
		5.4.4	Antioxidar	nt Activity of Is	solated Endophyt	ic Bacter	ia	114
	5.5	Produ	ction of End	ophytes-Free C	Callus			115
		5.5.1	Callus Indu	action				117
		5.5.2	Callus Mu	ılti-Subculture	Method to Obta	in Bacte	ri-Free	
			C. asiatica	Callus and Scr	reening			119
6	CON	CLUSI	ON					121
A]	PPEND	DICES						125
	Apper	ndix A -	- Material ar	nd Method				125
	Apper	ndix B -	- HPLC Chro	omatograms				126
	Apper	ndix C -	- 16S rRNA	Gene Sequence	es			134
	Appe	ndix D -	- ANOVA T	ables				140
Bl	LBIO	GRAPH	IY					150

LIST OF FIGURES

Figure		Page
3.1	Centella asiatica (pegaga). a- Subspecies A (University of Malaya Herbarium Voucher Specimen: KLU047364). b-Subspecies B (University of Malaya Herbarium Voucher Specimen: KLU047552).	48
3.2	Inoculation procedure was carried out inside a class II laminar air flow cabinet and the treated plants were kept under quarantine condition using the wet plastic bags.	54
4.1	Hemolysis of rabbit erythrocytes is expressed as percentage values. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	67
4.2	DPPH assay of samples. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	68
4.3	SOD activities of the examined samples are presented as inhibition rates. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	69
4.4	Centella asiatica inoculation with Enterobacter sp. as the pathogenic bacteria. a- Non-inoculated C. asiatica as the control plant; b- C. asiatica three days after inoculation with the pathogenic bacteria; c- C. asiatica seven days after inoculation with the pathogenic bacteria.	71
4.5	DPPH assay of <i>C. asiatica</i> inoculated with the pathogenic bacteria. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	73
4.6	SOD activities of C . asiatica inoculated with the pathogenic bacteria are presented as inhibition rate. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	74

4.7.	DPPH assay of C . asiatica treated with the beneficial bacteria. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	80
4.8	SOD activities of C . asiatica treated with the beneficial bacteria are presented as inhibition rate. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	81
4.9	Hemolysis of rabbit erythrocytes is expressed as percentage values for C . asiatica associated endophytic bacteria samples. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	87
4.10	DPPH assay of endophytic bacteria associated with C . asiatica. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	88
4.11	SOD activities of the endophytic bacteria associated with C . asiatica are presented as inhibition rate. Means followed by the same letter (s) are not significantly different based on Duncan's multiple range test at $p = 0.05$.	89

LIST OF TABLES

Table		Page
2.1	Nutrient table of 100 g edible portion of Centella asiatica	44
3.1	Gradient elution condition	57
3.2	The combination of different concentrations of BAP and NAA for induction of callus from leaf explants of <i>C. asiatica</i>	63
4.1	Antibacterial activity of extracts and controls against bacterial species tested by disc diffusion assay.	66
4.2	Total phenolic content of samples presented as gallic acid equivalent.	70
4.3	Antibacterial activity of extracts of <i>C. asiatica</i> inoculated with pathogenic bacteria and controls against bacterial species tested by disc diffusion assay.	72
4.4	Total phenolic content of <i>C. asiatica</i> inoculated with pathogenic bacteria and the control plants presented as gallic acid equivalent.	75
4.5	Retention times for standard phenolic compounds.	76
4.6	Number of detected phenolic compounds and the amount of the detected phenolic compounds based on standard phenolic compounds in different parts of <i>C. asiatica</i> inoculated with the pathogenic bacteria and non-inoculated <i>C. asiatica</i> (Control).	77
4.7	Antibacterial activity of <i>C. asiatica</i> treated with beneficial bacteria and controls against bacterial species tested by disc diffusion assay.	79
4.8	Total phenolic content of <i>C. asiatica</i> treated with the beneficial bacteria and the control plants presented as gallic acid equivalent.	82

4.9	Number of detected phenolic compounds and the amount of the detected phenolic compounds based on standard phenolic compounds in different parts of <i>C. asiatica</i> treated with the beneficial bacteria and non-treated <i>C. asiatica</i> (Control).	84
4.10	Isolated Centella asiatica endophytic bacteria.	85
4.11	Antibacterial activity of a suspension of endophytic bacteria against the bacterial species tested by disc diffusion assay.	86
4.12	Callus formation and average of callus fresh matter after 6 weeks of culture on MS medium with different NAA and BAP concentrations.	90

LIST OF SYMBOLS AND ABBREVIATIONS

ANOVA analysis of variance

BAP 6-benzylaminopurine

BHT Tert-butylated hydroxytoluene

bp base pairs

cfu colony forming unit

CRD completely randomized design

cv. cultivar

ddH₂O distilled deionized water

DNA deoxy ribonucleic acid

DNMRT Duncan New Multiple Range Test

DPPH 2,2 –diphenyl-1-picrylhydrazil

EDTA ethylene diamine tetra acetic acid

et al. et alia

IAA indole-3-acetic acid

mg milligram

μmol m⁻² s⁻¹ micromole per meter square per second

MS Murashige and Skoog

NAA a-naphthaleneacetic acid

OD optical density

PCR polymerase chain reaction

pH $-\log [H^+]$

RNA ribonucleic acid

rpm revolutions per minute

SOD superoxide dismutase

sp. species

subsp. subspecies

UV ultraviolet (light)

LIST OF APPENDICES

Appendix	Page
A – Material and Method	125
B – HPLC Chromatograms	126
C – 16S rRNA Gene Sequences	134
D – ANOVA Tables	140