EFFECT OF SELECTED BACTERIA ON THE ANTIBACTERIAL AND ANTIOXIDANT ACTIVITIES OF CENTELLA ASIATICA

ARASH RAFAT

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF BIOLOGICAL SCIENCES
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
In the name of God, the most compassionate the merciful

Specially dedicated to:

My kind parents
Nader and Masoumeh
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Arash Rafat (I.C/Passport No: R12477817)

Registration/Matric No: SHC080055

Name of Degree: Doctor of Philosophy (PhD)

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): Effect of selected bacteria on the antibacterial and antioxidant activities of *Centella asiatica*

Field of Study: Microbial Biotechnology

I do solemnly and sincerely declare that:

1. I am the sole author/writer of this Work;
2. This Work is original;
3. Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
4. I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
5. I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
6. I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name:

Designation:
The role of selected naturally distributed bacteria on the antibacterial and antioxidant activities and production of phenolic compounds in one of the most important Asian medicinal plants namely *Centella asiatica* was investigated based on the effects of beneficial and pathogenic bacteria on the metabolic pathways of plants as reported in literature. Firstly, antibacterial and antioxidant properties and production of phenolic compounds of two subspecies of *C. asiatica* which are commonly used in Malaysia (University of Malaya Herbarium Voucher Specimens: KLU047364 and KLU047552) were evaluated and the most potent of them was chosen for the rest of the study. Different antioxidant assays were used to investigate the antioxidant activities of different samples while a disc diffusion method was applied to measure the antibacterial activity of these samples. Total phenolic contents of different parts of *C. asiatica* were also evaluated using Folin-Ciocalteu method. The selected *C. asiatica* subspecies was then treated with selected pathogenic and beneficial bacteria. Antibacterial and antioxidant activities and production of phenolic compounds in different parts of the plant inoculated with the pathogenic bacteria (*Enterobacter sp.*) were studied at early and late stages of infection. The antibacterial and antioxidant capacities as well as production of phenolic compounds were also investigated in different parts of the selected subspecies of *C. aisiatica* after treatment with the beneficial bacteria (*Pseudomonas sp.*). Production of phenolic compounds in the treated plants was also analyzed using high performance liquid chromatography (HPLC) and then compared to the non-treated plants (controls). Based on the importance of endophytic bacteria and their interactions with the host plant, some endophytic bacteria
associated with *C. asiatica* were also isolated and identified using 16S rDNA sequencing method. Antibacterial and antioxidant potential of the cell-free supernatant of these endophytic bacterial cultures were also evaluated. A multiple callus-subculturing method was used to produce endophytic bacteria-free calli after optimization of an *in vitro* callus induction protocol for *C. asiatica*. The results confirmed the promising antibacterial and antioxidant activities of both examined subspecies of *C. asiatica*. However, the subspecies KLU047364 showed better antibacterial and antioxidant activities compared to KLU047552 and thus selected for the rest of the study. *C. asiatica* in early response to *Enterobacter sp.* infection increased the production of phenolic compounds. Both antibacterial and antioxidant activities of the plant were also enhanced in early stage of infection while the production of phenolic compounds and antioxidant activity of plant was reduced in late stage of infection. Antibacterial and antioxidant activities as well as total phenolics production of *C. asiatica* were increased after treatment with the beneficial *Pseudomonas sp.* bacteria. HPLC results showed irregular changes in amount of phenolic compounds produced in *C. asiatica* after treatment with the bacteria. All isolated endophytic bacteria could inhibit the growth of *Pseudomonas aeruginosa* except *Bacillus gibsonii*. The isolated endophytic bacteria also showed fair antioxidant potentials. The best result for callus production from leaf explant of *C. asiatica* was obtained from the combination of 6-benzylaminopurine at concentration of 3mg/ml and 1-naphthaleneacetic acid at a concentration of 3mg/ml. The multiple callus-subculturing method resulted in 75% endophytes-free callus.
ABSTRAK

ACKNOWLEDGEMENTS

All praises to the Almighty God for affording me the strength and determination to complete this study.

It is my pleasure to express my sincere gratitude and appreciation to my supervisor Associate Professor Dr. Koshy Philip from the Department of Microbiology, Faculty of Science, not only for his guidance and valuable advice but for his constant encouragement and the freedom that he provided to work and think throughout my research.

I am thankful to Prof. Dr. Sekaran Muniandy as my co-supervisor from the Department of Molecular Medicine, Faculty of Medicine for his valuable suggestions and useful discussions during my research.

I am also grateful to Assoc. Prof. Dr. Kamaruzaman Bin Sijam from the Department of Plant Pathology and Mohammad Bagher Javadi from the Department of Agriculture Technology, University Putra Malaysia for kindly providing the Enterobacter sp. and Pseudomonas sp. bacteria respectively.

I would like to thank University of Malaya for the use of laboratory facilities and for providing research grant PS151/2009A.

It's my pleasure to offer my thanks to all my laboratory mates, colleagues and friends especially Wuen Yew Teoh, Jeffery Saravana Kumar, Abdul-Muhsin M. Shami, Arash
Khorasani, Chee Poi Leng, Reza Ebrahimi, Behrooz Banisalam, Rajib Imdadul Haq, and Fazilia Mohd Hatta for maintaining a pleasant research atmosphere and making my stay in Malaysia an enjoyable one.

Last but not least, it is difficult to word my gratitude towards my family members for their encouragement and support during this period. I am grateful to my parents and my brother for supporting me in every possible ways.
TABLE OF CONTENTS

ORIGINAL LITERARY WORK DECLARATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vi
LIST OF FIGURES xiii
LIST OF TABLES xv
LIST OF SYMBOLS AND ABBREVIATIONS xvii
LIST OF APPENDICES xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE REVIEW 5

2.1 Bioactive Compounds Generated by Bioactivities in Plants 5
 2.1.1 Antibacterial Activity 6
 2.1.2 Antioxidant Activity 7
 2.1.3 Phenolic Compounds 11

2.2 Biotechnological Techniques to Enhance the Bioactive Compounds Production in Plants 15
 2.2.1 Cell and Tissue Culture 16
 2.2.2 Genetic Transformation 17
 2.2.3 Physical Treatment 19
 2.2.4 Chemical Treatment 19
 2.2.5 Microbial Treatment 21

2.3 Plant-Bacteria Interactions 22
 2.3.1 Plant Beneficial Bacteria 23
 2.3.2 Plant Pathogenic Bacteria 27
 2.3.3 Endophytic Bacteria Associated with Plants 32

2.4 Centella asiatica 42
 2.4.1 Botanical Information 42
 2.4.2 C. asiatica in Malaysia 43
 2.4.3 Nutrient and Chemical Constituents 43
 2.4.4 Bioactive Compounds and Medicinal Value 44
 2.4.5 Phenolic Contents of C. asiatica 46

3 METHODOLOGY 47

3.1 Evaluation of Antibacterial and Antioxidant Activities as well as Total Phenolic Contents of Two Different Subspecies of Centella asiatica 47
 3.1.1 Plant Material 47
 3.1.2 Sample Preparation and Extraction 48
 3.1.3 Antibacterial Activity Assay 49
3.1.4 Antioxidant Activity Evaluation Assays
3.1.5 Total Phenolic Content Determination
3.2 Evaluation of Antibacterial and Antioxidant Activities and Total Phenolic Contents of *Centella asiatica* after Inoculation with Pathogenic Bacteria
3.2.1 Preparation of Bacterial Suspension
3.2.2 Inoculation Method and Growth Condition
3.2.3 Sample Preparation and Extraction
3.2.4 Evaluation of Antibacterial Activity of Plants Inoculated with Pathogenic Bacteria
3.2.5 Evaluation of Antioxidant Activity of Plants Inoculated with Pathogenic Bacteria
3.2.6 Determination of Phenolic Compounds
3.3 Evaluation of Antibacterial and Antioxidant Activities and Total Phenolic Contents of *Centella asiatica* after Inoculation with Beneficial Bacteria
3.3.1 Bacterial Suspension Preparation
3.3.2 Inoculation Method and Growth Condition
3.3.3 Sample Preparation and Extraction
3.3.4 Evaluation of Antibacterial Activity of Plants Inoculated with Beneficial Bacteria
3.3.5 Evaluation of Antioxidant Activity of Plants Inoculated with Beneficial Bacteria
3.3.6 Determination of Phenolic Compounds
3.4 *C. asiatica* Associated Endophytic Bacteria
3.4.1 Isolation of Bacteria
3.4.2 Identification of Isolated Bacteria
3.4.3 Evaluation of Antibacterial and Antioxidant Activities of Isolated Endophytic Bacteria
3.5 Production of Bacteria-Free *C. asiatica* Callus
3.5.1 Optimization of *C. asiatica* Callus Induction Protocol Using BAP and NAA Growth Regulators
3.5.2 Callus Multi-Subculture Method to Obtain Bacteria-Free *C. asiatica* Callus
3.6 Statistical Analysis

4 RESULTS
4.1 Evaluation of Antibacterial and Antioxidant Activities as well as Total Phenolic Contents of Two Different Subspecies of *Centella asiatica*
4.1.1 Antibacterial Activity
4.1.2 Antioxidant Activity
4.1.3 Determination of Total Phenolic Content
4.2 Evaluation of Antibacterial and Antioxidant Activities as Well as Total Phenolic Contents After Inoculation with Pathogenic Bacteria
4.2.1 Antibacterial Activity 71
4.2.2 Antioxidant Activity 72
4.2.3 Determination of Phenolic Compounds 74

4.3 Evaluation of Antibacterial and Antioxidant Activities as well as Total Phenolic Contents of *Centella asiatica* after Inoculation with Beneficial Bacteria 78
4.3.1 Antibacterial Activity 78
4.3.2 Antioxidant Activity 79
4.3.3 Determination of Phenolic Compounds 81

4.4 *Centella asiatica* Associated Endophytic Bacteria 85
4.4.1 Isolation and Identification of *Centella asiatica* Associated Endophytic Bacteria 85
4.4.2 Antibacterial Activity Evaluation of the Endophytic Bacteria Isolated from *C. asiatica* 86
4.4.3 Antioxidant Activity Evaluation of the Endophytic Bacteria Isolated from *C. asiatica* 87

4.5 Production of Bacteria-Free *Centella asiatica* Callus via Tissue Culture 89
4.5.1 Callus Induction from Leaf Explant 89
4.5.2 Bacteria-Free *C. asiatica* Callus Tissue Production 90

5 DISCUSSION 91
5.1 Evaluation of Antibacterial and Antioxidant Activities as well as Total Phenolic Contents of Two Different Subspecies of *Centella asiatica* 91
5.1.1 Plant Subspecies 91
5.1.2 Plant Morphological Parts 91
5.1.3 Plant Extraction 92
5.1.4 Antibacterial Activity of *C. asiatica* Subspecies 93
5.1.5 Antioxidant Activity of *C. asiatica* Subspecies 93
5.1.6 Estimation of Total Phenolic Content 97

5.2 Evaluation of Antibacterial and Antioxidant Activities as Well as Total Phenolic Contents of *Centella asiatica* after Inoculation with Pathogenic Bacteria 98
5.2.1 Antibacterial Activity of Inoculated Plants 99
5.2.2 Antioxidant Activity of Inoculated Plants 101
5.2.3 Total Phenolic Content of Inoculated Plants 102
5.2.4 Phenolic Compounds Determination Using High Performance Liquid Chromatography 104

5.3 Evaluation of Antibacterial and Antioxidant Activities as Well as Total Phenolic Contents of *Centella asiatica* after Inoculation with Beneficial Bacteria 106
5.3.1 Antibacterial Activity of Treated Plants 107
5.3.2 Antioxidant Activity of Treated Plants 108
5.3.3 Total Phenolic Contents of Treated Plants 109
5.3.4 Phenolic Compounds Determination Using High Performance Liquid Chromatography

5.4 Endophytic Bacteria Associated with C. asiatica

5.4.1 Isolation of Endophytic Bacteria

5.4.2 Identification of Isolated Endophytic Bacteria

5.4.3 Antibacterial Activity of Isolated Endophytic Bacteria

5.4.4 Antioxidant Activity of Isolated Endophytic Bacteria

5.5 Production of Endophytes-Free Callus

5.5.1 Callus Induction

5.5.2 Callus Multi-Subculture Method to Obtain Bacteri-Free C. asiatica Callus and Screening

6 CONCLUSION

APPENDICES

Appendix A – Material and Method

Appendix B – HPLC Chromatograms

Appendix C – 16S rRNA Gene Sequences

Appendix D – ANOVA Tables

BIBLIOGRAPHY
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Centella asiatica (pegaga). a- Subspecies A (University of Malaya Herbarium Voucher Specimen: KLU047364). b- Subspecies B (University of Malaya Herbarium Voucher Specimen: KLU047552).</td>
</tr>
<tr>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Inoculation procedure was carried out inside a class II laminar air flow cabinet and the treated plants were kept under quarantine condition using the wet plastic bags.</td>
</tr>
<tr>
<td>54</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Hemolysis of rabbit erythrocytes is expressed as percentage values. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.</td>
</tr>
<tr>
<td>67</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>DPPH assay of samples. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.</td>
</tr>
<tr>
<td>68</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>SOD activities of the examined samples are presented as inhibition rates. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.</td>
</tr>
<tr>
<td>69</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Centella asiatica inoculation with Enterobacter sp. as the pathogenic bacteria. a- Non-inoculated C. asiatica as the control plant; b- C. asiatica three days after inoculation with the pathogenic bacteria; c- C. asiatica seven days after inoculation with the pathogenic bacteria.</td>
</tr>
<tr>
<td>71</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>DPPH assay of C. asiatica inoculated with the pathogenic bacteria. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.</td>
</tr>
<tr>
<td>73</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>SOD activities of C. asiatica inoculated with the pathogenic bacteria are presented as inhibition rate. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.</td>
</tr>
<tr>
<td>74</td>
<td></td>
</tr>
</tbody>
</table>
4.7. DPPH assay of *C. asiatica* treated with the beneficial bacteria. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.

4.8 SOD activities of *C. asiatica* treated with the beneficial bacteria are presented as inhibition rate. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.

4.9 Hemolysis of rabbit erythrocytes is expressed as percentage values for *C. asiatica* associated endophytic bacteria samples. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.

4.10 DPPH assay of endophytic bacteria associated with *C. asiatica*. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.

4.11 SOD activities of the endophytic bacteria associated with *C. asiatica* are presented as inhibition rate. Means followed by the same letter (s) are not significantly different based on Duncan’s multiple range test at $p = 0.05$.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Nutrient table of 100 g edible portion of Centella asiatica</td>
<td>44</td>
</tr>
<tr>
<td>3.1 Gradient elution condition</td>
<td>57</td>
</tr>
<tr>
<td>3.2 The combination of different concentrations of BAP and NAA for induction of callus from leaf explants of C. asiatica</td>
<td>63</td>
</tr>
<tr>
<td>4.1 Antibacterial activity of extracts and controls against bacterial species tested by disc diffusion assay.</td>
<td>66</td>
</tr>
<tr>
<td>4.2 Total phenolic content of samples presented as gallic acid equivalent.</td>
<td>70</td>
</tr>
<tr>
<td>4.3 Antibacterial activity of extracts of C. asiatica inoculated with pathogenic bacteria and controls against bacterial species tested by disc diffusion assay.</td>
<td>72</td>
</tr>
<tr>
<td>4.4 Total phenolic content of C. asiatica inoculated with pathogenic bacteria and the control plants presented as gallic acid equivalent.</td>
<td>75</td>
</tr>
<tr>
<td>4.5 Retention times for standard phenolic compounds.</td>
<td>76</td>
</tr>
<tr>
<td>4.6 Number of detected phenolic compounds and the amount of the detected phenolic compounds based on standard phenolic compounds in different parts of C. asiatica inoculated with the pathogenic bacteria and non-inoculated C. asiatica (Control).</td>
<td>77</td>
</tr>
<tr>
<td>4.7 Antibacterial activity of C. asiatica treated with beneficial bacteria and controls against bacterial species tested by disc diffusion assay.</td>
<td>79</td>
</tr>
<tr>
<td>4.8 Total phenolic content of C. asiatica treated with the beneficial bacteria and the control plants presented as gallic acid equivalent.</td>
<td>82</td>
</tr>
</tbody>
</table>
4.9 Number of detected phenolic compounds and the amount of the detected phenolic compounds based on standard phenolic compounds in different parts of *C. asiatica* treated with the beneficial bacteria and non-treated *C. asiatica* (Control).

4.10 Isolated *Centella asiatica* endophytic bacteria.

4.11 Antibacterial activity of a suspension of endophytic bacteria against the bacterial species tested by disc diffusion assay.

4.12 Callus formation and average of callus fresh matter after 6 weeks of culture on MS medium with different NAA and BAP concentrations.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BAP</td>
<td>6-benzylaminopurine</td>
</tr>
<tr>
<td>BHT</td>
<td>Tert-butylated hydroxytoluene</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming unit</td>
</tr>
<tr>
<td>CRD</td>
<td>completely randomized design</td>
</tr>
<tr>
<td>cv.</td>
<td>cultivar</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>distilled deionized water</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxy ribonucleic acid</td>
</tr>
<tr>
<td>DNMRT</td>
<td>Duncan New Multiple Range Test</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2 –diphenyl-1-picrylhydrazil</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>et al.</td>
<td>et alia</td>
</tr>
<tr>
<td>IAA</td>
<td>indole-3-acetic acid</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>µmol m² s⁻¹</td>
<td>micromole per meter square per second</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog</td>
</tr>
<tr>
<td>NAA</td>
<td>a-naphthaleneacetic acid</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>pH</td>
<td>-log [H⁺]</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SOD</td>
<td>superoxide dismutase</td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
</tr>
<tr>
<td>subsp.</td>
<td>subspecies</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet (light)</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – Material and Method</td>
<td>125</td>
</tr>
<tr>
<td>B – HPLC Chromatograms</td>
<td>126</td>
</tr>
<tr>
<td>C – 16S rRNA Gene Sequences</td>
<td>134</td>
</tr>
<tr>
<td>D – ANOVA Tables</td>
<td>140</td>
</tr>
</tbody>
</table>