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ABSTRACT 

 

 

Poly(urea-formaldehyde) (PUF) microcapsules that enclose dicyclopentadiene 

(DCPD) were successfully prepared by in situ polymerization. The effect of diverse 

process parameters and concentrations of ingredients on the product yield and quality 

was investigated. After optimizing the procedure high yields of microcapsules were 

obtained (up to 89%) which appeared in the form of a free-flowing white powder. The 

morphology of the microcapsules was observed by digital microscopy, optical 

microscopy (OM), and field emission gun scanning electron microscopy (FESEM). 

FTIR and 
1
H-NMR were employed to analyze the chemical structure and content of 

the core material. The thermal properties were characterized utilizing DSC and TGA. 

The microcapsules could be incorporated into another polymeric host material. In the 

event the host material cracks due to excessive stress or strong impact, the 

microcapsules would rupture to release the DCPD, which could polymerize to repair 

the crack, thus autonomously heal the material.  

 To enhance the properties of the microcapsule shell, the urea was partially 

replaced with up to 5% melamine. Different microscopic techniques, FTIR 

spectroscopy and DSC were employed to examine the capsule shell, whereas the core 

content was confirmed by 
1
H-NMR. Capsules in the range of 50-300 µm were then 

embedded in a light curable dental composite matrix consisting of bisphenol-A-

glycidyl dimethacrylate (Bis-GMA) and triethylene-glycol dimethacrylate 

(TEGDMA). Two different amounts (3 wt% and 6 wt%) of microcapsules were 

embedded into the dental host material and their performances were evaluated through 

mechanical tests. OM examination of the light-cured specimens showed a random 

distribution of the microspheres throughout the host material, whereas FESEM 
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analysis revealed excellent bonding of the microcapsules to the host material. These 

characteristics are of utter importance for maintaining the very good mechanical 

properties of a dental composite with self-healing ability. Flexural strength, 

microhardness and nanoindentation hardness measurements proved that the addition of 

the microcapsules did not affect the mechanical properties of the virgin matrix 

material. The substitution of the urea with small amounts of melamine in the capsule 

shell has improved the hardness of the microcapsules and made it easier to mix with 

the viscous host material before light curing.  

  Finally, the encapsulation of epoxy resins was studied. PUF microcapsules 

were prepared incorporating the commercially available Epikote 828 (diglycidylether 

of bisphenol-A, DGEBA) diluted in n-butyl glycidyl ether (BGE). Proton NMR 

spectroscopy verified the presence of the epoxy core. DSC result has shown the onset 

of degradation of PUF/epoxy microcapsules was above 170°C.  FESEM showed that 

the PUF/epoxy microcapsules adhered well to the epoxy matrix resin.  

In summary, this research work scrutinized the microcapsule based self-healing 

system for the potential application in dental polymeric materials. The findings that 

were obtained during the course of this study are significant for the further 

development of a self-healing restorative composite. 
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ABSTRAK 

 

 

Mikrokapsul poli(urea-formaldehid) (PUF) yang mengandungi  

disiklopentadiena (DCPD) telah berjaya dihasilkan melalui proses pempolimeran in 

situ. Kepelbagaian kesan parameter proses dan kepekatan reaktan terhadap hasil dan 

kualiti produk telah disiasat. Setelah pengoptimuman prosedur pempolimeran, 

mikrokapsul terhasil adalah dalam peratusan yang tinggi (setinggi 80%) dan terjelma 

dalam bentuk serbuk putih yang “free-flowing”. Morfologi mikrokapsul dianalisis 

menggunakan mikroskop digital, mikroskop optik dan “field emission gun scanning 

electron microscopy” (FESEM). FTIR dan 
1
H-NMR digunakan untuk menganalisis 

struktur kimia dan kandungan teras mikrokapsul. Analisis terma dijalankan 

menggunakan DSC dan TGA. Mikrokapsul ini boleh dimasukkan kedalam bahan 

polimer hos yang lain. Apabila berlaku retakan pada material hos oleh sebab stres atau 

impak yang kuat, mikrokapsul akan pecah dan DCPD yang terkandung didalamnya 

akan terlepas keluar dan seterusnya boleh mengalami proses pempolimeran untuk 

membaiki retakan tersebut. Justeru material tersebut pulih secara automatik. 

Untuk menambah baik ciri-ciri dinding mikrokapsul, urea tersebut digantikan 

sebahagiannya dengan 5% melamin. Teknik mikroskopik, spektroskopi FTIR dan DSC 

yang berbeza pula digunakan untuk mengkaji dinding kapsul tersebut. Kandungan 

teras mikrokapsul pula disahkan dengan menggunakan H-NMR. Kapsul dalam 

lingkungan saiz 50-300µm kemudiannya dimasukkan kedalam  komposit matriks yang 

mengandungi bisfenol-A-glisidil dimetakrilat (Bis-GMA) dan trietilena-glikol 

dimetakrilat (TEGDMA). Dua kandungan mikrokapsul yang berbeza (3% dan 6%) 

dimasukkan ke dalam material hos pergigian dan prestasinya diuji melalui ujian-ujian 

mekanikal. Pemeriksaan OM terhadap bahan spesimen “light-cured” menunjukkan 
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taburan mikrokapsul yang pelbagai diseluruh bahagian dalam bahan hos, manakala 

FESEM pula menunjukkan perlekatan yang baik diantara mikrokapsul dan bahan 

hosnya. Ciri-ciri ini merupakan kunci utama bagi mendapatkan ciri atau prestasi 

kekuatan mekanikal yang baik dalam sesuatu bahan komposit pergigian dengan 

kebolehan terbaik-pulih (self-healing). Ujian-ujian terhadap kekuatan fleksural, 

kekerasan mikro dan indentasi-nano membuktikan bahawa penambahan mikrokapsul 

kedalam bahan hos tidak memberi kesan terhadap ciri-ciri asal bahan matriks. 

Sebaliknya, penukargantian urea kepada sejumlah kecil melamin dalam dinding kapsul 

telah mempertingkat kekerasan dinding mikrokapsul dan mempermudahkannya untuk 

tercampur dengan bahan hos yang likat sebelum di “light-cure”. 

Akhirnya, kajian dijalankan terhadap pengkapsulan resin epoksi. Mikrokapsul 

PUF disediakan dengan memasukkan bahan komersial Epikote 828 (bisfenol-A 

diglisidil eter, DGEBA) yang dicairkan dalam n-butil glisidil eter (BGE). Spektroskopi 

proton NMR mengesahkan kehadiran teras epoksi. Analisis DSC menunjukkan 

degradasi onset  mikrokapsul PUF/epoksi adalah melebihi 170°C. Analisis FESEM 

menunjukkan matriks resin terkandung dengan baik didalam mikrokapsul PUF/epoksi. 

Konklusinya, kerja penyelidikan ini adalah mengenai sistem terbaik-pulih 

berasaskan mikrokapsul sebagai potensi aplikasi dalam bahan polimer pergigian. Hasil 

kajian ini adalah signifikan bagi terus menyelidik dan membangunkan bahan komposit 

terbaik-pulih bagi tujuan pembaikpulihan. 
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