SELF-HEALING POLYMERIC MATERIALS FOR POTENTIAL DENTAL APPLICATION

SONJA THEN

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate:	Sonja Then
Passport No:	686226729
Matric No:	SHC070088
Name of Degree:	PhD
Field of Study:	Chemistry
Title of Thesis ("this work"):	SELF-HEALING POLYMERIC MATERIALS FOR POTENTIAL DENTAL APPLICATION

I do solemnly and sincerely declare that:

- (1) I am sole author/writer of this work;
- (2) This work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes. Any extract from, or reference to, or reproduction of any copyright work has been disclosed expressly and sufficiently and its authorship has been acknowledged in this work;
- (4) I do not have any actual knowledge that this work constitutes infringement of any copyright work;
- (5) I hereby assign all rights in the copyright to this work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this work. Any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any action as may be determined by UM.

Candidate's Signature

Date: 24 October 2011

5. Mey

Subscribed and solemnly declared before,

Witness Signature

Date:

Name: Designation: Prof. Gan Seng Neon Professor, Department of Chemistry, University of Malaya

ABSTRACT

Poly(urea-formaldehyde) (PUF) microcapsules that enclose dicyclopentadiene (DCPD) were successfully prepared by *in situ* polymerization. The effect of diverse process parameters and concentrations of ingredients on the product yield and quality was investigated. After optimizing the procedure high yields of microcapsules were obtained (up to 89%) which appeared in the form of a free-flowing white powder. The morphology of the microcapsules was observed by digital microscopy, optical microscopy (OM), and field emission gun scanning electron microscopy (FESEM). FTIR and ¹H-NMR were employed to analyze the chemical structure and content of the core material. The thermal properties were characterized utilizing DSC and TGA. The microcapsules could be incorporated into another polymeric host material. In the event the host material cracks due to excessive stress or strong impact, the microcapsules would rupture to release the DCPD, which could polymerize to repair the crack, thus autonomously heal the material.

To enhance the properties of the microcapsule shell, the urea was partially replaced with up to 5% melamine. Different microscopic techniques, FTIR spectroscopy and DSC were employed to examine the capsule shell, whereas the core content was confirmed by ¹H-NMR. Capsules in the range of 50-300 µm were then embedded in a light curable dental composite matrix consisting of bisphenol-A-glycidyl dimethacrylate (Bis-GMA) and triethylene-glycol dimethacrylate (TEGDMA). Two different amounts (3 wt% and 6 wt%) of microcapsules were embedded into the dental host material and their performances were evaluated through mechanical tests. OM examination of the light-cured specimens showed a random distribution of the microspheres throughout the host material, whereas FESEM

analysis revealed excellent bonding of the microcapsules to the host material. These characteristics are of utter importance for maintaining the very good mechanical properties of a dental composite with self-healing ability. Flexural strength, microhardness and nanoindentation hardness measurements proved that the addition of the microcapsules did not affect the mechanical properties of the virgin matrix material. The substitution of the urea with small amounts of melamine in the capsule shell has improved the hardness of the microcapsules and made it easier to mix with the viscous host material before light curing.

Finally, the encapsulation of epoxy resins was studied. PUF microcapsules were prepared incorporating the commercially available Epikote 828 (diglycidylether of bisphenol-A, DGEBA) diluted in n-butyl glycidyl ether (BGE). Proton NMR spectroscopy verified the presence of the epoxy core. DSC result has shown the onset of degradation of PUF/epoxy microcapsules was above 170°C. FESEM showed that the PUF/epoxy microcapsules adhered well to the epoxy matrix resin.

In summary, this research work scrutinized the microcapsule based self-healing system for the potential application in dental polymeric materials. The findings that were obtained during the course of this study are significant for the further development of a self-healing restorative composite.

ABSTRAK

Mikrokapsul poli(urea-formaldehid) (PUF) mengandungi yang disiklopentadiena (DCPD) telah berjaya dihasilkan melalui proses pempolimeran in situ. Kepelbagaian kesan parameter proses dan kepekatan reaktan terhadap hasil dan kualiti produk telah disiasat. Setelah pengoptimuman prosedur pempolimeran, mikrokapsul terhasil adalah dalam peratusan yang tinggi (setinggi 80%) dan terjelma dalam bentuk serbuk putih yang "free-flowing". Morfologi mikrokapsul dianalisis menggunakan mikroskop digital, mikroskop optik dan "field emission gun scanning electron microscopy" (FESEM). FTIR dan ¹H-NMR digunakan untuk menganalisis struktur kimia dan kandungan teras mikrokapsul. Analisis terma dijalankan menggunakan DSC dan TGA. Mikrokapsul ini boleh dimasukkan kedalam bahan polimer hos yang lain. Apabila berlaku retakan pada material hos oleh sebab stres atau impak yang kuat, mikrokapsul akan pecah dan DCPD yang terkandung didalamnya akan terlepas keluar dan seterusnya boleh mengalami proses pempolimeran untuk membaiki retakan tersebut. Justeru material tersebut pulih secara automatik.

Untuk menambah baik ciri-ciri dinding mikrokapsul, urea tersebut digantikan sebahagiannya dengan 5% melamin. Teknik mikroskopik, spektroskopi FTIR dan DSC yang berbeza pula digunakan untuk mengkaji dinding kapsul tersebut. Kandungan teras mikrokapsul pula disahkan dengan menggunakan H-NMR. Kapsul dalam lingkungan saiz 50-300µm kemudiannya dimasukkan kedalam komposit matriks yang mengandungi bisfenol-A-glisidil dimetakrilat (Bis-GMA) dan trietilena-glikol dimetakrilat (TEGDMA). Dua kandungan mikrokapsul yang berbeza (3% dan 6%) dimasukkan ke dalam material hos pergigian dan prestasinya diuji melalui ujian-ujian mekanikal. Pemeriksaan OM terhadap bahan spesimen "light-cured" menunjukkan

taburan mikrokapsul yang pelbagai diseluruh bahagian dalam bahan hos, manakala FESEM pula menunjukkan perlekatan yang baik diantara mikrokapsul dan bahan hosnya. Ciri-ciri ini merupakan kunci utama bagi mendapatkan ciri atau prestasi kekuatan mekanikal yang baik dalam sesuatu bahan komposit pergigian dengan kebolehan terbaik-pulih (self-healing). Ujian-ujian terhadap kekuatan fleksural, kekerasan mikro dan indentasi-nano membuktikan bahawa penambahan mikrokapsul kedalam bahan hos tidak memberi kesan terhadap ciri-ciri asal bahan matriks. Sebaliknya, penukargantian urea kepada sejumlah kecil melamin dalam dinding kapsul telah mempertingkat kekerasan dinding mikrokapsul dan mempermudahkannya untuk tercampur dengan bahan hos yang likat sebelum di "light-cure".

Akhirnya, kajian dijalankan terhadap pengkapsulan resin epoksi. Mikrokapsul PUF disediakan dengan memasukkan bahan komersial Epikote 828 (bisfenol-A diglisidil eter, DGEBA) yang dicairkan dalam n-butil glisidil eter (BGE). Spektroskopi proton NMR mengesahkan kehadiran teras epoksi. Analisis DSC menunjukkan degradasi onset mikrokapsul PUF/epoksi adalah melebihi 170°C. Analisis FESEM menunjukkan matriks resin terkandung dengan baik didalam mikrokapsul PUF/epoksi.

Konklusinya, kerja penyelidikan ini adalah mengenai sistem terbaik-pulih berasaskan mikrokapsul sebagai potensi aplikasi dalam bahan polimer pergigian. Hasil kajian ini adalah signifikan bagi terus menyelidik dan membangunkan bahan komposit terbaik-pulih bagi tujuan pembaikpulihan.

ACKNOWLEDGEMENTS

This study would not have been possible without the help and assistance of many. First and foremost, I would like to express my sincere gratitude to my supervisor, Professor Dr. Gan Seng Neon for his invaluable time and inspiring guidance throughout the course of this work. I also gratefully acknowledge the time, support and enthusiasm from my co-supervisor, Professor Dr. Noor Hayaty Abu Kasim. It has been a great learning experience and opportunity to work with the two of you.

Special thanks to my friend Hamid Khaledi for his encouragement, advice, cordial discussions and intellectual contributions. Thanks for being there to cheer me up whenever I would get discouraged.

I extend my thanks to all my lovely lab colleagues, especially Shafizah and Siang Yin. It has been a pleasure working with you! Thanks are also due to the staff of the Chemistry Department and the Department of Conservative Dentistry for their cooperation and help. In particular, I would like to recognize Miss Ho and Encik Zol from the polymer teaching lab, Professor Dr. Misni Misran and his research students for their assistance in using the instruments in their laboratory, and Professor Rosiyah Yahya for her fruitful discussions. Many thanks also to Puan Zarina and Dr. Fadhel Alsanabani who always provided help during my work in the 'Makmal Biobahan', Encik Zaini for his joy at fabricating mechanical test moulds according to my specific needs, and the personnel of the Combinatorial Technology and Catalysis Research Center (COMBICAT). I was fortunate to work in a truly interdisciplinary environment which greatly enhanced my research experience. This work was made possible with the research grants provided from the University of Malaya and the project funding from the Ministry of Science, Technology and Innovation (MOSTI, 03-01-03-SF0550). I am truly grateful for their support. Furthermore, I greatly acknowledge the financial aid from the company Nestle (Malaysia) Berhard and my friend Ingo Waessle who supported me in so many ways. Thanks for bringing me to this beautiful country and giving me the unique chance to study here and experience the people and the customs of Malays, Chinese, and Indians.

Last but not least, I am thanking all my friends for their support, especially my sister Sabine, my friend Annette and Heidi who I challenged with managing my affairs at home during my absence.

•

TABLE OF CONTENTS

	Page
DECLARATION	ii
ABSTRACT	iii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xvii
LIST OF TABLES	xxvi
LIST OF ABBREVIATIONS	XXX
LIST OF SYMBOLS AND UNITS	xxxii

CHAPTER I: GENERAL INTRODUCTION

1.1	Introd	uction	1
1.2	Aim o	Aim of the Present Investigation	
1.3	Overv	view of the Dissertation	4
1.4	Basic	Considerations for the Development of a Self-Healing Dental	5
	Restor	rative Material	
	1.4.1	General Requirements on the Self-Healing Composite System	5
	1.4.2	Requirements on the Healing Monomer	6
	1.4.3	Requirements on the Specific Catalyst for the Healing	6
		Monomer	
	1.4.4	Requirements on the Microcapsule Shell	7

CHAPTER II: LITERATURE REVIEW

2.1	Denta	1 Composites	8
	2.1.1	Introduction	8
	2.1.2	Acrylate-Based Resin Matrix	11
	2.1.3	Curing System for Acrylic Resin	14
	2.1.4	Low-Shrinkage Epoxy-Based Resin Matrix	15
2.2	Epoxy	y Resins in Industrial Application	18
	2.2.1	Introduction	18
	2.2.2	Reactive Diluents	19
	2.2.3	Curing Agents	19
	2.2.4	Polyaddition Reaction of Epoxide and Amine	20
2.3	Self-H	Iealing Polymeric Materials	22
	2.3.1	Introduction	22
	2.3.2	Microcapsule-Based Self-Healing Concept	24
	2.3.3	The Healing-Compound	25
	2.3.4	Ring-Opening Metathesis Polymerization (ROMP)	25
	2.3.5	ROMP Catalysts	26
2.4	Micro	pencapsulation	28
	2.4.1	Introduction	28
	2.4.2	Encapsulation Techniques	29
	2.4.3	Microencapsulation by in situ Emulsion Polymerization	31
	2.4.4	Urea Formaldehyde Shell Formation by Condensation	32
		Polymerization	
	2.4.5	Urea-Melamine-Formaldehyde (UMF) Resin	34
2.5	Mech	anical Testing of Dental Material	35

2.5.1	Introduction	35
2.5.2	Flexural Strength	36
2.5.3	Modulus of Elasticity	38
2.5.4	Toughness	40
2.5.5	Hardness	40
	2.5.5.1 Vickers Microhardness	42
	2.5.5.2 Nanoindentation Hardness	44

CHAPTER III: MICROENCAPSULATION OF THE HEALING MONOMER IN A POLY(UREA-FORMALDEHYDE) SHELL

3.1	Introd	uction	47
3.2	Mater	ials	47
3.3	3 Method		48
	3.3.1	General Procedure for PUF/DCPD Microcapsule Preparation	48
	3.3.2	Study of Microencapsulation Process Parameters	50
		3.3.2.1 Reaction Time	51
		3.3.2.2 Initial pH	51
		3.3.2.3 Product Treatment with Diverse Solvents	51
		3.3.2.4 Variation of Formaldehyde-Urea Ratio	52
	3.3.3	Microencapsulation of Alternative Core Monomers	53
	3.3.4	Product Analysis	53
		3.3.4.1 Microcapsule Size and Yield Evaluation	53
		3.3.4.2 General Analysis by Digital and Optical Microscopy	54
		3.3.4.3 Examination of Microcapsule Shell by Field Emission	54
		Scanning Electron Microscopy (FESEM)	

		3.3.4.4 Thermal Stability of Microcapsules by	55
		Thermogravimetric Analysis (TGA)	
		3.3.4.5 Verification of Microcapsule Core Content by	55
		Different Analytical Methods	
		a. Fourier Transform Infrared (FTIR) Spectroscopy	56
		b. Differential Scanning Calorimetry (DSC)	57
		c. Nuclear Magnetic Resonance (NMR) Spectroscopy	57
	3.3.5	Shelf-Life Test	57
3.4	Resul	ts and Discussion	58
	3.4.1	Impact of Selected Parameters on Product	58
		3.4.1.1 Reaction Time	58
		3.4.1.2 Initial pH	60
		3.4.1.3 Solvents for Microcapsule Separation	61
		3.4.1.4 Effect of Formaldehyde-Urea Ratio on Microcapsule	64
		Shell Formation	
	3.4.2	Microcapsule Yield and Size Fractions	66
	3.4.3	Microcapsule Analysis by Microscopic Methods	68
		3.4.3.1 Product Characterization by Digital Microscopy	68
		3.4.3.2 Shape and Shell Thickness by Optical Microscopy	68
		(OM)	
		3.4.3.3 Shell Composition and Morphology by FESEM-EDX	69
		3.4.3.4 Membrane Thickness by FESEM	71
	3.4.4	Thermal Stability of Microcapsules by TGA	72
	3.4.5	Verification of Encapsulated DCPD	73

		3.4.5.1 FTIR Spectroscopy of Microcapsules and PUF Shell	
		Material	73
		3.4.5.2 DSC of Microcapsules and PUF Shell Material	78
		3.4.5.3 Proton NMR Spectroscopy of Core Monomer	79
	3.4.6	Encapsulation of Dental Monomers	80
	3.4.7	Shelf-Life of Microcapsules	81
		3.4.7.1 Discolouration and Flowing Behaviour after Storage	82
		3.4.7.2 Chemical Stability of the Core Monomer	83
		3.4.7.3 Physical Stability of the Microcapsule Shell	83
3.5	Summ	nary and Conclusions	85

CHAPTER IV: MELAMINE MODIFICATION OF THE PUF MICROCAPSULE SHELL AND INCORPORATION OF THE MICROCAPSULES IN A DENTAL MATRIX

4.1	Introd	luction	87
4.2	Mater	ials	87
4.3	Metho	od	88
	4.3.1	Preparation of Melamine Modified PUF/DCPD	88
		Microcapsules	
	4.3.2	Characterization of Melamine Modified Microcapsules	89
		4.3.2.1 General Analysis	89
		4.3.2.2 Determination of Shell Composition	89
		4.3.2.3 Examination of Shell Morphology	90
	4.3.3	Incorporation of Microcapsules in Dental Host Material	90
		4.3.3.1 Specimen Preparation	91

		4.3.3.2 Examination of Embedded Microcapsules by	92
		Microscopy	
		4.3.3.3 Mechanical Tests	93
4.4	Resul	ts and Discussion	94
	4.4.1	Microcapsule Analysis	94
		4.4.1.1 Yield, Quality and Shell Morphology	94
		4.4.1.2 Verification of Core Content	94
		4.4.1.3 Shell Composition by FTIR Spectroscopy	95
		4.4.1.4 Differentiation of Shell Composition by	96
		Thermoanalytical Methods	
	4.4.2	Characterization of Microcapsule Embedded Polymeric	98
		Material	
		4.4.2.1 Microcapsule Distribution in the Host Material	98
		4.4.2.2 Inspection of Microcapsule-Matrix Interface by	99
		FESEM	
		4.4.2.3 Flexural Strength	100
		4.4.2.4 Vickers Hardness by Microindentation Measurement	102
		4.4.2.5 Nanoindentation Hardness	102
		4.4.2.6 Young's Modulus	105
4.5	Sumn	nary and Conclusion	107

CHAPTER V: PREPARATION OF PUF MICROCAPSULES

CONTAINING EPOXY RESIN

5.1	Introduction	109
5.2	Materials	110

5.3	Metho	od	110
	5.3.1	Microencapsulation of Epoxy Compounds	110
		5.3.1.1 Two-Step Encapsulation Procedure	111
		5.3.1.2 Single-Step Encapsulation Procedure	113
		5.3.1.3 Product Aftertreatment	115
		5.3.1.4 Encapsulation of Amine Curing Agent	116
	5.3.2	Analysis of PUF/Epoxy Microcapsules	117
		5.3.2.1 Product Yield and Quality	117
		5.3.2.2 Examination of Microcapsules by Microscopic	117
		Methods	
		5.3.2.3 Determination of Microcapsule Core Content by	117
		¹ H-NMR Spectroscopy	
		5.3.2.4 Thermal Analysis of the Microcapsules	118
	5.3.3	Incorporation of PUF/Epoxy Microcapsules in Epoxy Matrix	119
	5.3.4	Examination of Embedded Microcapsules by FESEM	119
5.4	Resul	ts and Discussion	119
	5.4.1	Microcapsule Yield, Size and Shape	120
	5.4.2	FESEM of Microcapsule Shell	122
	5.4.3	Verification of Epoxy Core by ¹ H-NMR Spectroscopy	122
	5.4.4	Characterization of the Microcapsules by DSC	124
	5.4.5	Incorporation of PUF/Epoxy Microcapsules in Epoxy Matrix	125
	5.4.6	Adhesion of PUF Microcapsule Shell to Epoxy Host Resin	126
5.5	Summ	nary and Conclusion	126

CHAPTER VI: CONCLUSIONS AND FUTURE WORK

REFERENCES		136
6.3	Suggestions for Future Work	132
6.2	Participation in Conferences and Exhibitions	130
6.1	Conclusions	128

APPENDIX A: Raw Data of FESEM – EDX Analysis	151
APPENDIX B: Thermograms of Shelf-Life Test	155
APPENDIX C: Raw Data of Mechanical Measurements	156
APPENDIX D: Publications	167

LIST OF FIGURES

Page

Figure 2-1	Spiro ortho carbonates: (a) general structural formula and (b)	10
	example of a spiro ortho carbonate as possible compound of	
	a dental composite	

- Figure 2-2 Structural formula of two diepoxide monomers that could be 10 part of an epoxy-based dental matrix resin: (a) BADGE and (b) ECHM-ECHC
- Figure 2-3 Examples of different types of 2-vinylcyclopropane 10 monomers that might be interesting for the application in a novel dental composite matrix: (a) asymmetric substituted,
 (b) spirocyclic, and (c) difunctional vinylcyclopropane
- Figure 2-4Chemical structures of common dental monomers: (a) Bis-13GMA, (b) TEGDMA, and (c) UDMA
- Figure 2-5Silorane monomer17
- Figure 2-6Structure of the common epoxy resin DGEBA18
- Figure 2-7 Structural formula of BGE which is commonly used in 19 industry as a reactive diluent monomer to reduce the viscosity of epoxy resins
- Figure 2-8
 Illustration of the polyaddition reaction of an epoxy-amine
 20

 system
 20
- Figure 2-9
 Diepoxy molecules and diiamine molecules can react and tie
 21

 together to form a heavily crosslinked polymer network

xvii

- **Figure 2-10** Illustration of a self-healing approach: (a) microcapsules filled with a healing monomer and a selective catalyst embedded in a dental host material; (b) an approaching crack ruptures microcapsules, releasing the healing monomer into the crack plane; (c) contact of the healing monomer with the catalyst, triggering polymerization and mending the crack
- Figure 2-11
 ROMP of DCPD creating a crosslinked polymer network of
 26

 poly(dicyclopentadiene) (pDCPD)
 26
- Figure 2-12ROMP catalysts: (a) Grubbs 1st generation, (b) Grubbs 2nd27generation, (c) Hoveyda-Grubbs 1st generation, and (d)Hoveyda-Grubbs 2nd generation
- Figure 2-13 Droplets of the core material built by vigorous agitation; the 31 shell materials move to the interface and react to form the shell around the microsphere (retrieved from http://www.swri.org/ 3pubs/BROCHURE/D01/mne.htm, 09-09-2010)
- Figure 2-14
 Formation of mono-, di-, and trimethylolurea by the addition
 32

 of formaldehyde to urea in the first stage of the UF resin
 formation
- Figure 2-15 Illustration of the addition of formaldehyde to melamine to 34 form methylol derivatives, e.g. trimethylol melamine and hexamethylol melamine
- Figure 2-16(a) Simplified representation of the melamine polymer and35(b) possible network structure

xviii

25

- Figure 2-17
 Illustration of (a) a three-point-bending test set-up and (b)
 37

 the flexural strength data obtained from the measurement in a stress-strain diagram
- Figure 2-18
 Calculation of the modulus of elasticity from the slope of the
 39

 linear part of the stress-strain graph
- Figure 2-19
 Fracture toughness measured as the total area under a plot of
 40

 tensile stress versus tensile strain
- Figure 2-20 Images of a microhardness measurement showing (a) the 43 Vickers indenter placed above a test specimen and (b) a micrograph of an indentation imprint on a dental polymeric material produced by a Vickers indenter
- Figure 2-21 (a) Illustration of the measurement principle of a dynamic 45 UMH tester and (b) indentation impression produced during nanoindentation hardness testing of a dental polymeric material using a Berkovich indenter
- Figure 2-22 Diagram of a load-unload curve obtained from a 46 nanoindentation measurement showing important parameters for the calculation of the test results
- Figure 3-1Setup for the preparation of PUF/DCPD microcapsules by in49situ oil-in-water emulsion polymerization
- Figure 3-2 (a) Reaction slurry after the synthesis of PUF/DCPD 50 microcapsules which was rinsed, filtered, and dried to obtain
 (b) the product in the form of a free-flowing white powder

xix

- Figure 3-3 Influence of the reaction time on the PUF/DCPD 59 microcapsule formation displayed in images obtained from digital microscopy. Reaction time: (a) 1 hour, (b) 2 hours, (c) 3 hours, and (d) 4 hours
- Figure 3-4 Digital micrographs of PUF/DCPD microcapsules prepared 61 at different initial pH-values: (a) pH 3.1, (b) pH 3.3, (c) pH 3.5, and (d) 3.7
- Figure 3-5
 Micrographs of PUF/DCPD microcapsules demonstrating
 62

 the effect of different solvents on the product
- Figure 3-6Micrographs of PUF/DCPD microcapsules illustrating the63impact of the exposure to selected solvents for 2 hours
- **Figure 3-7** Optical micrographs of PUF/DCPD microcapsules produced 65 with varying formaldehyde-urea molar ratio in the capsule shell: (a) 1.1, (b) 1.5, (c) 1.9 and (d) 2.3
- Figure 3-8 Digital microscopy images showing PUF/DCPD 66 microcapsules obtained from two different formaldehyde-urea molar ratios: (a) 1.5 and (b) 2.3
- **Figure 3-9** Images obtained from the miniature digital microscope 68 showing spherical PUF/DCPD microcapsules at the two possible magnifications: (a) 5 x and (b) 200 x
- Figure 3-10 Optical micrographs of (a) spherical PUF/DCPD 69 microcapsule displaying the inner shell membrane as a dark clear line surrounded by an uneven outer layer, and (b) the thickness measurement of the two shell layers

ΧХ

- Figure 3-11 FESEM images of PUF/DCPD microcapsules illustrating (a) 70 the uneven porous outer shell layer and (b) the surface of the smooth continuous inner shell wall on which precipitations of PUF nanobeads are adhered
- Figure 3-12
 FESEM micrographs of ruptured PUF microcapsule shell
 71

 showing (a) the rough porous outer shell layer and (b) the smooth continuous inner shell
 71
- Figure 3-13TGA diagram of PUF/DCPD microcapsules72
- Figure 3-14 FTIR spectra of (a) the extracted PUF capsule shell material, 75
 (b) PUF/DCPD microcapsules in the size range of 300-500 microns, and (c) PUF/DCPD microcapsules of 150-300 microns diameters, in comparison with the spectrum of the neat DCPD
- Figure 3-15FTIR-ATR spectra of (a) extracted PUF shell material, (b)77PUF/DCPD microcapsules and (c) pure DCPD
- Figure 3-16 DSC plots of PUF/DCPD microcapsules and extracted PUF 78 microcapsule shell material
- Figure 3-17
 Proton NMR spectrum in acetone of the extracted core
 79

 monomer of the PUF/DCPD microcapsules
 79
- Figure 3-18 (a) Digital micrograph showing PUF/TEGDMA 81 microcapsules and (b) optical micrograph illustrating PUF microcapsules that contain a 1:1 Bis-GMA/TEGDMA mixture
- Figure 3-19 DSC curves of PUF/DCPD microcapsules after different 84 storage times

xxi

- Figure 4-1
 FTIR-ATR spectra of extracted neat PUF capsule shell
 95

 matter in comparison with the extracted melamine modified
 PUF shell material
- Figure 4-2 DSC plots of extracted PUF microcapsule shell matter: (a) 96 neat PUF material and (b) the shell material in which 5% of the urea were replaced with melamine
- Figure 4-3
 TGA curves of extracted PUF microcapsule shell material in
 97

 comparison with the melamine modified shell material
 97
- Figure 4-4Optical micrographs of (a) 3 wt% and (b) 6 wt% PUF/DCPD99microcapsules embedded in a dental host material
- Figure 4-5 FESEM images of (a) melamine modified PUF/DCPD 100 microcapsule embedded in a dental host material, and (b) the interface of the microcapsule shell and the dental matrix material
- Figure 4-6 Flexural Strength of dental polymeric materials containing 101 PUF/DCPD microcapsules which comprise different melamine amounts in their shell. The dental materials incorporated (a) 3 wt% and (b) 6 wt% microcapsules
- Figure 4-7 Vickers hardness of dental polymeric materials containing 103
 (a) 3 wt% PUF/DCPD microcapsules and (b) 6 wt% micro-capsules with different melamine amounts in the PUF shell
- Figure 4-8 Nanoindentation hardness of dental polymeric materials 104 containing (a) 3 wt% PUF/DCPD microcapsules and
 (b) 6 wt% PUF/DCPD microcapsules with different melamine amounts in the capsule shell

xxii

- Figure 4-9 Young's Modulus obtained from nanoindentation hardness 106 measurements of dental polymeric materials containing
 (a) 3 wt% PUF/DCPD microcapsules and (b) 6 wt%
 PUF/DCPD microcapsules with different melamine amounts in the microcapsule shell
- Figure 5-1 Comparison of two microencapsulation procedures utilizing 112
 (a) the acid-catalysed *in situ* condensation polymerization of urea with formaldehyde to form the microcapsule wall in a single-step procedure and (b) the two-step encapsulation procedure
- Figure 5-2 (a) Digital micrograph of PUF/epoxy microcapsules and (b) 121 optical micrograph of the same capsules revealing their irregular shape
- Figure 5-3 FESEM images illustrating (a) PUF/epoxy microcapsules 122 and (b) the capsule surface on which individual spherical nanoparticles are attached
- Figure 5-4 ¹H-NMR spectrum of the extracted ground PUF/epoxy 123 microcapsules showing the characteristic peaks of the encapsulated epoxy resins DGEBA and BGE
- Figure 5-5 DSC curves representing the heat flow of PUF/epoxy 124 microcapsules in comparison with the extracted PUF shell matter

- Figure 5-6 FESEM images of (a) PUF microcapsule containing Epikote 126
 828/BGE embedded in an epoxy-based matrix material and
 (b) the interface of the microcapsule shell and the epoxy host material
- Figure A1
 Area of FESEM-EDX measurement on smooth microcapsule
 151

 shell surface
 151
- Figure A2
 FESEM-EDX spectra obtained from elemental analysis of 152

 the smooth microcapsule shell surface
- Figure A3 Area of FESEM-EDX measurement on outer microcapsule 153 shell layer
- Figure A4
 FESEM-EDX spectra obtained from elemental analysis of 154

 the outer microcapsule shell layer
- Figure B1TGA traces of PUF/DCPD microcapsules after ageing155

LIST OF TABLES

		Page
Table 2-1	Stages during the chain reaction process of a free radical	12
	addition polymerization	
Table 2-2	Comparison of relevant properties of selected acrylic dental	14
	monomers	
Table 2-3	Volume shrinkage upon polymerization of selected acrylate-	16
	based direct restorative composite materials	
Table 2-4	Examples of three different types of epoxy curing agents and	20
	their properties	
Table 2-5	Different important microencapsulation techniques	30
Table 2-6	Examples of possible particle sizes that can be produced by	30
	certain specific encapsulation techniques	
Table 2-7	Common methods for the determination of indentation	42
	hardness	
Table 3-1	Varying urea and formaldehyde amounts for the preparation	52
	of PUF/DCPD microcapsules	
Table 3-2	Total yield and yield according to different size fractions of	67
	PUF/DCPD microcapsules	
Table 3-3	Composition of the smooth inner membrane and the rough	70
	porous outer layer of the microcapsule shell obtained from	
	FESEM-EDX analysis	

- **Table 4-1**Urea and melamine parts used for the preparation of the88melamine modified PUF/DCPD microcapsule test series
- **Table 5-1**Variations of parameters and ingredients during the course112of the encapsulation trials of epoxy resin in a PUF shellfollowing the two-step microencapsulation method
- **Table 5-2**Epoxy resin mixtures for the encapsulation in a PUF shell114following the single-step microencapsulation method
- **Table 5-3**Description and properties of different types of fumed silica116available under the trade name 'Aerosil' (Evonik-Degussa)
- Table 5-4Proportions of selected curing agents to be used with Epikote119828 as recommended by the supplier
- **Table A1**Standard Measurement FESEM-EDX152
- Table A2Composition of smooth microcapsule shell; elemental152analysis by FESEM-EDX
- **Table A3**Composition of outer microcapsule shell layer; elemental154analysis by FESEM-EDX
- **Table C1**Flexural strength of dental resin material incorporating 3%156microcapsules with different melamine amounts in the
capsule shell; reference: without capsules
- **Table C2**Flexural strength of dental resin material incorporating 6%157microcapsules with different melamine amounts in the
capsule shell; reference: without capsules

- **Table C3**Vickers hardness test results of neat dental resin material158
- Table C4
 Vickers hardness test results of dental resin material
 158

 incorporating 6% PUF/DCPD microcapsules
- **Table C5**Vickers hardness test results of dental resin material159incorporating 6% microcapsules with 0.5% of the urea partin the capsule shell replaced by melamine
- Table C6Vickers hardness test results of dental resin material159incorporating 6% microcapsules with 1% of the urea part in
the capsule shell replaced by melamine
- Table C7Vickers hardness test results of dental resin material159incorporating 6% microcapsules with 2% of the urea part in
the capsule shell replaced by melamine
- **Table C8**Vickers hardness test results of dental resin material160incorporating 6% microcapsules with 3% of the urea part in
the capsule shell replaced by melamine
- **Table C9**Vickers hardness test results of dental resin material160incorporating 6% microcapsules with 4% of the urea part in
the capsule shell replaced by melamine
- **Table C10**Vickers hardness test results of dental resin material160incorporating 6% microcapsules with 5% of the urea part in
the capsule shell replaced by melamine
- Table C11
 Vickers hardness test results of dental resin material
 161

 incorporating
 3%
 PUF/DCPD
 microcapsules
 (reference,

 without melamine modification)

- **Table C12**Vickers hardness test results of dental resin material161incorporating 3% microcapsules with 1% of the urea partin the capsule shell replaced by melamine
- **Table C13**Vickers hardness test results of dental resin material161incorporating 3% microcapsules with 3% of the urea partin the capsule shell replaced by melamine
- **Table C14**Vickers hardness test results of dental resin material162incorporating 3% microcapsules with 5% of the urea partin the capsule shell replaced by melamine
- **Table C15**Nanoindentation hardness of dental resin material164incorporating 3% microcapsules with part of the urea in
the capsule shell being replaced by melamine
- **Table C16**Indentation modulus of dental resin material incorporating1643% microcapsules with part of the urea in the capsule shell
being replaced by melamine164
- **Table C17**Nanoindentation hardness of dental resin material165incorporating 6% microcapsules in which part of the ureain the capsule shell was replaced by melamine
- **Table C18**Indentation modulus of dental resin material incorporating1666% microcapsules in which part of the urea in the capsuleshell was replaced by melamine

LIST OF ABBREVIATIONS

ADA	American Dental Association
ANSI	American National Standards Institute
ATR	Attenuated total reflectance
BADGE	Bisphenol A diglycidylether
BET	Specific surface area (Brunauer Emmett Teller)
BGE	Butyl glycidyl ether / 1-Butoxy-2,3-epoxypropane
Bis-GMA	Bisphenylglycidyl-dimethacrylate / 2,2-Bis-[4-92-hydroxy-3-
	methacryloyloxypropoxyphenyl]propane
BP	Benzoyl peroxide
CQ	Camphorquinone
DCPD	Dicyclopentadiene / 3a,4,7,7a-tetrahydro-4,7-methano-1H-
	indene
DETA	Diethylene triamine
DGEBA	Diglycidylether of bisphenol A / 2-[[4-[2-[4-(oxiran-2-
	ylmethoxy)phenyl] propan-2-yl]phenoxy]methyl] oxirane
DSC	Differential scanning calorimetry
ECHM-ECHC	3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexane
	carboxylate
EDMAB	Ethyl-p-dimethylaminobenzoate
EDX	Energy-dispersive X-ray
EMA	Ethylene maleic anhydride
FESEM	Field emission gun scanning electron microscopy

FTIR	Fourier transform infrared
HV	Vickers Hardness
ISO	International Standard Organization
KBr	Potassium bromide
MF	Melamine-formaldehyde
MMA	Methyl methacrylate
MUF	Melamine-urea-formaldehyde
MW	Molecular weight
NMR	Nuclear magnetic resonance
ОМ	Optical microscopy
OOP	Out of plane
PU, PUR	Polyurethane
PUF	Poly(urea-formaldehyde)
ROMP	Ring-opening metathesis polymerization
ROP	Ring-opening polymerization
SDBS	Sodium dodecylbenzene sulphonate
SEM	Scanning electron microscopy
SI	International System of Units
TEA	Triethanolamine
TEGDMA	Tri(ethyleneglycol)dimethacrylate
UDMA	Urethane-dimethacrylat / 1,6-bis-(methacryloyloxy-2-
	ethoxycarbonylamino)-2,4,4-trimethylhexane
UF	Urea-formaldehyde
UMF	Urea-melamine-formaldehyde
UMH	Ultra micro hardness

LIST OF SYMBOLS AND UNITS

ΔH	Enthalpy of transition
ΔH_m	Enthalpy of melting
gf	Gramm force
kp	Kilopond
phr	Parts per hundred parts
R	Alkyl group
R·	Free radical
Tg	Glass transition temperature
T _m	Melting temperature