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Abstract 

Chitosan has drawn attention as a potential polymer host for polymer electrolytes due 

to its promising properties. In the present study, an attempt has been made to 

determine the role of the different anions, namely, CH3COO
−
 and CF3SO3

−
, on the 

ionic conductivity of chitosan-based polymer electrolyte. The effect of filler on the 

sample with the highest conducting anion sample was also investigated. Many 

research studies on polymer electrolytes have shown that the dielectric values at high 

frequencies and electric modulus at low frequencies are constant. In this study, it has 

been further investigated to validate such findings. Chitosan-based polymer 

electrolytes comprising ethylene carbonate and propylene carbonate (1:1) as a 

plasticizer and a lithium salt LiX (X = CH3COO
−
 and CF3SO3

−
) were prepared by 

solvent cast technique. Conductivity studies showed both systems obeyed Arrhenius 

behaviour and the ionic conductivity values obtained were 6.18 x 10
-7

 S cm
-1

 for the 

system with acetate anion and 5.01 x 10
-6

 S cm
-1 

for the system with triflate ion. It 

could be understood that the type of anion influences the ionic conductivity. Nano size 

fumed silica was added to the system with triflate ion to enhance the ionic 

conductivity. The highest room temperature conductivity value 5.41 x 10
-5

 S cm
-1 

was 

obtained by the composite electrolyte system with 2 wt. % silica. The improvement in 

the conductivity has also been supported by differential scanning calorimetry (DSC), 

X-ray diffraction (XRD) and Fourier transform infrared-spectroscopy (FTIR) studies. 

From DSC studies it is observed the glass transition temperature Tg decreased from 

197
o
C to 166

o
C on addition of 2 wt. % silica. Lower Tg means greater polymer 

segmental motion and this implies faster ion conduction. XRD studies and FTIR 

showed the sample had lowest degree of crystallinity and highest number of free ions 

respectively. Dielectric behaviour of the prepared systems showed strong dependence 

on frequency and temperature. The prepared materials are ionic conductors. 
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ABSTRAK 

 

Kitosan telah menarik perhatian sebagai sebuah polimer penerima yang berpotensi 

untuk elektrolit polimer disebabkan oleh cirri-cirinya yang meyakinkan. Dalam kajian 

lalu, usaha telah dilakukan untuk menentukan peranan anion berlainan seperti 

CH3COO
−
 dan CF3SO3

−
, bagi konduktiviti ionik elektrolit polimer berasaskan kitosan. 

Kesan pengisi terhadap sampel dengan anion berkonduktiviti tertinggi  juga telah 

dikaji. Banyak kajian tentang elektrolit polimer telah menunjukkan bahawa nilai 

dielektrik pada frekuensi tinggi dan modulus elektrik pada frekuensi rendah adalah 

tetap. Dalam kajian ini, penyelidikan lebih lanjut dilakukan untuk mengesahkan 

penemuan tersebut. Elektrolit polimer berasaskan kitosan mengandungi etilin karbanat 

dan propilin karbonat (1:1) sebagai bahan pemplastik dan garam litium LiX (X = 

CH3COO
−
 dan CF3SO3

−
) telah disediakan melalui teknik acuan pelarut. Kajian 

konduktiviti menunjukkan kedua-dua system mengikut kelakuan Arrhenius dan nilai 

konduktiviti ionik didapati ialah 6.18 x 10
-7

 S cm
-1

 bagi system dengan anion asetat 

dan 5.01 x 10
-6

 S cm
-1 

bagi sistem dengan ion triflat. Ia boleh difahami bahawa jenis 

anion mempengaruhi konduktiviti ionik. Silica berasap bersaiz nano telah ditambah ke 

dalam sistem dengan ion triflat untuk menambah konduktiviti ionik. Nilai konduktiviti 

ionik tertinggi pada suhu bilik yang didapati ialah 5.41 x 10
-5

 S cm
-1 

bagi system 

elektrolit komposit dengan 2 berat % silika. Pembaikan dalam konduktiviti juga 

disokong oleh kajian differential scanning calorimetry (DSC), X-ray diffraction 

(XRD) dan Fourier transform infrared-spectroscopy (FTIR). Melalui kajian DSC suhu 

Tg menurun daripada 197
o
C ke 166

o
C dengan penambahan 2 berat % silica. Tg rendah 

bermakna lebih banyak segmen polimer bergerak dan ini mempercepatkan konduksi 

ion. Kajian XRD dan FTIR menunjukkan sampel mempunyai darjah pegkristalan 

yang terendah dan nombor ion bebas yang tertinggi masing-masing. Sifat dielektrik 
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sistem yang disediakan menunjukkan pengantunggan yang kuat terhadap frekuensi 

dan suhu. Dalam kajian ini, nilai dielektrik dan modulus menurun dengan perlahan-

lahan pada frekuensi tinggi dan frekuensi rendah masing-masing. Bahan yang 

disediakan adalah konduktor ionik. 
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