EFFECT OF ANION SIZE AND NANO FUMED SILICA ON STRUCTURAL, THERMAL AND ELECTRICAL PROPERTIES OF CHITOSAN POLYMER ELECTROLYTES

SHANTI NAVARATNAM

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2011

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Shanti Navaratnam

(I.C/Passport No: 611012-05-5272)

Registration/Matric No: SHA030009)

Name of Degree: Doctor of Philosophy (PhD)

Title of Project Paper/Research Report/Dissertation/Thesis ('this Work"):

EFFECT OF ANION SIZE AND NANO FUMED SILICA ON STRUCTURAL, THERMAL AND ELECTRICAL PROPERTIES OF CHITOSAN POLYMER ELECTROLYTES

Field of Study: Advanced Material

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature

Date

Name: Designation:

Acknowledgements

This doctoral thesis would not have been possible without the help and support of the many kind people around me, only a few of whom it is possible to give particular mention here.

First and foremost, I would like to express my deep and sincere gratitude to my supervisors **Professor Dr. Abdul Kariem Arof** and **Assoc. Professor Dr. Wan Jeffry Basirun** for their support and assistance throughout the course of this research. The commitment, dedication and resourcefulness are deeply appreciated.

A note of gratitude also goes to Mr. Siva, Mr. Ismail Che Lah, Mr. Mohd Arof and Miss Endang of the Physics department and Ms. Su of the Chemistry department for their help and assistance in the course of my laboratory work.

A special thank goes to my friends Dr. Ramesh, Dr. Kumutha, Dr. Azlin, Dr. Vengadaeswaran, Dr. Nidhy, Dr. Muhd Zu, Dr. Ri Hanum, Dr. Sethu, Dr. Malik, Masturah and Dr. Azmin, for their advice, suggestions, support, help and encouragement in the completion of my thesis. I also would like to take this opportunity to thank my laboratory mates namely Thompson, Li Na, Teo Li Peng, Din, Rames, Meor, Aziz, Nini, Fakhrul, Hamdi, Revathi, Leeana, Leena, Rajammal, Winie, Siti, Wani, Zuraini, Yap and Hun Lee.

Special thanks to Delia Perante for her kindness and cheerful support.

On a special note, I would like to thank University Teknologi MARA and my colleagues for the support and encouragement given that enable me to undertake this work. I am also grateful to University of Malaya, for providing me with an opportunity to pursue my postgraduate studies.

I would also like to thank my family members, mother, Mrs. S. Navaratnam, brothers, Dr. Vivekananda and Ravindran, my husband, Sivarajah, and especially my children Ashwin and Ishani for their love, patience, support and encouragement for me to complete this degree.

Shanti Navaratnam

2011

Abstract

Chitosan has drawn attention as a potential polymer host for polymer electrolytes due to its promising properties. In the present study, an attempt has been made to determine the role of the different anions, namely, CH3COO⁻ and CF3SO3⁻, on the ionic conductivity of chitosan-based polymer electrolyte. The effect of filler on the sample with the highest conducting anion sample was also investigated. Many research studies on polymer electrolytes have shown that the dielectric values at high frequencies and electric modulus at low frequencies are constant. In this study, it has been further investigated to validate such findings. Chitosan-based polymer electrolytes comprising ethylene carbonate and propylene carbonate (1:1) as a plasticizer and a lithium salt LiX (X = CH_3COO^- and $CF_3SO_3^-$) were prepared by solvent cast technique. Conductivity studies showed both systems obeyed Arrhenius behaviour and the ionic conductivity values obtained were $6.18 \times 10^{-7} \text{ S cm}^{-1}$ for the system with acetate anion and 5.01 x 10^{-6} S cm⁻¹ for the system with triflate ion. It could be understood that the type of anion influences the ionic conductivity. Nano size fumed silica was added to the system with triflate ion to enhance the ionic conductivity. The highest room temperature conductivity value 5.41 x 10^{-5} S cm⁻¹ was obtained by the composite electrolyte system with 2 wt. % silica. The improvement in the conductivity has also been supported by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared-spectroscopy (FTIR) studies. From DSC studies it is observed the glass transition temperature Tg decreased from 197°C to 166°C on addition of 2 wt. % silica. Lower Tg means greater polymer segmental motion and this implies faster ion conduction. XRD studies and FTIR showed the sample had lowest degree of crystallinity and highest number of free ions respectively. Dielectric behaviour of the prepared systems showed strong dependence on frequency and temperature. The prepared materials are ionic conductors.

ABSTRAK

Kitosan telah menarik perhatian sebagai sebuah polimer penerima yang berpotensi untuk elektrolit polimer disebabkan oleh cirri-cirinya yang meyakinkan. Dalam kajian lalu, usaha telah dilakukan untuk menentukan peranan anion berlainan seperti CH₃COO⁻ dan CF₃SO₃⁻, bagi konduktiviti ionik elektrolit polimer berasaskan kitosan. Kesan pengisi terhadap sampel dengan anion berkonduktiviti tertinggi juga telah dikaji. Banyak kajian tentang elektrolit polimer telah menunjukkan bahawa nilai dielektrik pada frekuensi tinggi dan modulus elektrik pada frekuensi rendah adalah tetap. Dalam kajian ini, penyelidikan lebih lanjut dilakukan untuk mengesahkan penemuan tersebut. Elektrolit polimer berasaskan kitosan mengandungi etilin karbanat dan propilin karbonat (1:1) sebagai bahan pemplastik dan garam litium LiX (X = CH_3COO^- dan $CF_3SO_3^-$) telah disediakan melalui teknik acuan pelarut. Kajian konduktiviti menunjukkan kedua-dua system mengikut kelakuan Arrhenius dan nilai konduktiviti ionik didapati ialah 6.18 x 10⁻⁷ S cm⁻¹ bagi system dengan anion asetat dan 5.01 x 10^{-6} S cm⁻¹ bagi sistem dengan ion triflat. Ia boleh difahami bahawa jenis anion mempengaruhi konduktiviti ionik. Silica berasap bersaiz nano telah ditambah ke dalam sistem dengan ion triflat untuk menambah konduktiviti ionik. Nilai konduktiviti ionik tertinggi pada suhu bilik yang didapati ialah 5.41 x 10⁻⁵ S cm⁻¹ bagi system elektrolit komposit dengan 2 berat % silika. Pembaikan dalam konduktiviti juga disokong oleh kajian differential scanning calorimetry (DSC), X-ray diffraction (XRD) dan Fourier transform infrared-spectroscopy (FTIR). Melalui kajian DSC suhu T_g menurun daripada 197°C ke 166°C dengan penambahan 2 berat % silica. T_g rendah bermakna lebih banyak segmen polimer bergerak dan ini mempercepatkan konduksi ion. Kajian XRD dan FTIR menunjukkan sampel mempunyai darjah pegkristalan yang terendah dan nombor ion bebas yang tertinggi masing-masing. Sifat dielektrik sistem yang disediakan menunjukkan pengantunggan yang kuat terhadap frekuensi dan suhu. Dalam kajian ini, nilai dielektrik dan modulus menurun dengan perlahanlahan pada frekuensi tinggi dan frekuensi rendah masing-masing. Bahan yang disediakan adalah konduktor ionik.

CONTENTS

CONTENTSPAGEACKNOWLEDGEMENTiABSTRACTiiiABSTRAKivTABLE OF CONTENTSviLIST OF FIGURESxiiKIST OF TABLESxxi

CHAPTER ONE

INTRODUCTION TO THE PRESENT WORK

1.1	Introduction	1
1.2	Objectives of the present work	2
1.3	Scope of This Thesis	3

CHAPTER TWO

LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Polymer Electrolytes	6
2.2.1 Dry Solid Polymer Electrolytes	7
2.2.2 Polymer Gels	13
2.2.3 Polymer Composites	17

2.3 Ion Conduction Mechanism	21
2.3.1 Arrhenius	22
2.3.2 Vogel–Tamman–Fulcher (VTF)	23
2.3.3 Williams–Landel–Ferry (WLF)	25
2.3.4 Dielectric Relaxation and Modulus Studies	27
2.3.5 Rice and Roth Model	30
2.4 Chitosan	31
2.5 Properties of Chitosan	33
2.5.1 Solubility	33
2.5.2 Film Forming Ability	33
2.5.3 Glass Transition Temperature	34
2.5.4 Chelation of Metal Ions	34
2.5.5 Structural Studies	34
2.6 Chitosan Based Polymer Electrolytes	35
2.7 Summary	37

CHAPTER THREE

EXPERIMENTAL METHODS	
3.1 Introduction	38
3.2 Electrolyte Preparation	38
3.3 Impedance Spectroscopy	39
3.4 Fourier Transform Infrared Spectroscopy (FTIR)	44
3.5 X-ray Diffraction (XRD)	47
3.6 Thermal Studies	49
3.6.1 Differential Scanning Calorimetry (DSC)	49
3.6.2 Thermogravimetric Analysis (TGA)	53
3.7 Summary	54
CHAPTER FOUR	
RESULTS	
ELECTRICAL STUDIES	55
4.1 Introduction	55
4.2 Impedance Studies of Chitosan-LiCH ₃ COO-EC/PC	55

4.2.1 DC Conductivity Studies	55
4.2.2 Dielectric Relaxation Studies	62
4.2.3 Dielectric Modulus Studies	67
4.2.4 Dielectric Loss Tangent Behaviour	69
4.3 Impedance Studies of Chitosan-LiCF ₃ SO ₃ -EC/PC	73
4.3.1 Dc Conductivity Studies	73
4.3.2 Dielectric Relaxation Studies	77
4.3.3 Dielectric Modulus Studies	79
4.3.4 Dielectric Loss Tangent Behaviour	82
4.4 Impedance studies of chitosan-LiCF ₃ SO ₃ -EC/PC-SiO ₂	90
4.4.1 Dc Conductivity Studies	90
4.4.2 Dielectric Relaxation Studies	97
4.4.3 Dielectric Modulus Studies	100
4.4.4 Dielectric Loss Tangent Behaviour	103
4.5 Rice and Roth Model	106
4.6 Transference Number	108
4.7 Summary	110

CHAPTER FIVE

RESULTS

FOURIER TRANSFORM INFRARED STUDIES (FTIR)	111
5.1 Introduction	111
5.2 The Infrared Spectra of Chitosan and Chitosan Acetate (CA)	111
5.3 The Infrared Spectra of Chitosan Acetate (CA)-LiCF ₃ SO ₃	114
5.4 The Infrared Spectra of EC and PC with LiCF ₃ SO ₃	121
5.5 The Infrared Spectra of EC- PC Systems	130
5.6 The Infrared Spectra of Chitosan-EC/PC Systems	131
5.7 The Infrared Spectra for CA-LiCF ₃ SO-EC/PC	132
5.8 The Infrared Spectra of CA-LiCF ₃ SO ₃ -EC/PC-x%SiO ₂ Systems	133
5.9 Summary	138

CHAPTER SIX

RESULTS	139
XRD STUDIES	139
6.1 Introduction	139

6.2	X-Ray Diffraction of Chitosan-LiCF ₃ SO ₃ and	139
	Chitosan-LiCH ₃ COO	
6.3	X-Ray Diffraction of Chitosan-LiCF ₃ SO ₃ -EC/PC	143
6.4	X-Ray Diffraction of Chitosan-LiCF ₃ SO ₃ -EC/PC-SiO ₂	144
6.5	Summary	147
CHAP	TER SEVEN	
RESU	LTS	148
THER	MAL STUDIES	148
7.1	Introduction	148
7.2	Differential Scanning Calorimetry (DSC)	148
7.3	Thermogravimetric Analysis (TGA)	152
7.4	Summary	157

CHAPTER EIGHT

DISCUSSION	158

CHAPTER NINE

CONCLUSIONS AND SUGGESTIONS FOR FURTHER 167 WORK

REFERENCES

170

LIST OF FIGURES

FIGURE		PAGE
2.1	Cartoon of ion motion in a polymer host.	9
2.2	Lithium imide salts used in the formation of amorphous electrolytes.	10
2.3	Schematic mode of preparation procedure of semi-IPN polymer alloy electrolyte.	12
2.4	Contrast between (a) a polymer electrolyte containing a salt LiX and (b) a polyelectrolyte in which the anion is attached to the polymer backbone via chemical bonds.	12
2.5	Gelled SPE models.	14
2.6	The interfacial resistance between the composite polymer electrolytes and the Li metal electrode at different silica content as a function of storage time.	20
2.7	Schematic diagram of lithium-composite electrolytes (a) larger size particles, and (b) smaller size particles.	21
2.8	Temperature dependence of ionic conductivity for samples PC 5 and PC7.	22
2.9	Representation of a cationic displacement in a glass below the vitreous transition temperature. (a) The local perfect structure and interstitial pair formation. (b) Interstitial pair migration.	23
2.10	The temperature dependence of the conductivity for PMMA–LiClO ₄ –DMP polymer electrolyte with various weight ratios of CeO ₂ : (a), 0; (b), 5; (c), 10; and (d) 15.	24
2.11	Cationic migration by a free volume mechanism. (a) the local displacement of two solvated cations define two similar cells in which the grey colour represents the free volume; (b) local free volume transfer allowing a displacement to an available neighbouring solvating site; (c) after a cationic displacement and free volume redistribution.	25
2.12	Arrhenius plots of ionic conductivity for $PEGx-B_2O_3 + LiN(CF_3SO_2)_2$ (Li:EO = 1:24): (O) PEG150, (\blacktriangle) PEG200, (\Box) PEG400, (\blacklozenge) PEG600.	26
2.13	WLF plots for the ionic conductivity of the polymer electrolytes $PEGx-B_2O_3$ (x = 150, 200, 400, 600) + $LiN(CF_3SO_2)_2$ (Li:EO = 1:24).	27

2.14	Variation of the real part of the dielectric constant (ϵ') as a function of frequency for the PMMA–LiCF ₃ SO ₃ -based electrolyte in the ratio of a 70:30, b 75:25 and c 95:5.	28
2.15	Variation of the imaginary part of the dielectric constant (ϵ'') as a function of frequency for the PMMA–LiCF ₃ SO ₃ -based electrolyte in the ratio of a 60:40, b 70:30 and c 75:25.	28
2.16	Variation of the real part of the of the modulus (M')as a function of frequency for the PMMA–LiCF ₃ SO ₃ -based electrolyte in the ratio of a 90:10, b 85:15 and c 80:20.	29
2.17	Variation of the imaginary part of the of the modulus (M")as a function of frequency for the PMMA–LiCF ₃ SO ₃ -based electrolyte in the ratio of a 95:5, b 90:10 and c 85:1.	29
2.18	Structures of chitin, chitosan and cellulose	31
2.19	FTIR spectrum for chitosan	35
3.1	Schematic diagram of electrolyte preparation	39
3.2	A Typical Cole-Cole / Nyquist plot	41
3.3	A typical Bode plot	41
3.4	Impedance diagram of: (a) PVdF (80)–PVC (20)–8% of LiBF ₄	42
	and (b) PVdF (80)–PVC (20)–8% of LiClO ₄ at 304 K	
3.5	Experimental setup for dielectric spectroscopy studies	44
3.6	Some stretching and bending vibrations of polyatomic	45
	molecules	
3.7	(i) FTIR spectra for (a) pure PVdF-HFP; (b) pure LITf; (c)	45
	pure EC	
	(ii) FTIR spectra (ii) (a) PE-15 and (b) PE-30	
3.8	FTIR Thermoscientific Nicolet iS10 at University of Malaya	46
3.9	XRD patterns for: (a) pure PVC (b) pure $LiAsF_6$	47
3.10	XRD patterns of pure PVAc, LiClO4 and PVAc-LiClO4	48
	polymer electrolytes of various compositions	
3.11	Siemens D-5000 X-Ray Diffractometer at University of Malaya	49

3.12	Scheme of the DSC Apparatus	50
3.13	Schematic DSC thermogram of a semi-crystalline polymer: T_g = glass transition temperature; T_c = crystallization temperature; T_m = melting temperature; T_d = decomposition temperature	51
3.14	Determining T _g	52
3.15	Experimental setup to measure DSC	52
3.16	Schematic of a typical thermogravimetric analysis instrument	53
3.17	TGA analysis of Ch-g-PANI and Chitosan	54
4.1	Complex impedance plot of CLA system at 25°C	56
4.2	Complex impedance plot of CLA system at 30 ^o C	56
4.3	Complex impedance plot of CLA system at 40° C	57
4.4	Complex impedance plot of CLA system at 50°C	57
4.5	Complex impedance plot of CLA system at 60°C	58
4.6	Complex impedance plot of CLA system at 70°C	58
4.7	Temperature dependence of conductivity plot for CLA system	60
4.8	Frequency dependence of dielectric constant, ϵ_r for CLA	64
	system	
4.9	Frequency dependence of dielectric loss, ϵ_i for CLA system	64
4.10	Dielectric constant, ε_r at high frequency for CLA system	65
4.11	Dielectric loss, ε_i at high frequency for CLA system	65
4.12	Temperature dependence of dielectric constant, ϵ_r at various frequencies for CLA system	66
4.13	Frequency dependence of real part of electrical modulus, M_r at various temperatures for CLA system	67
4.14	Frequency dependence of imaginary part of electrical modulus, M_i at various temperatures for CLA system	68
4.15	Real part of electrical modulus, M_r at low frequencies for CLA system	68
4.16	Imaginary of electrical modulus, M _i at low frequencies for CLA system	69

4.17	Variation of loss tangent with frequency for CLA system	69
4.18	Variation of $\ln \tau$ with inverse temperature for CLA system	71
4.19	Variation of P with temperature for CLA system	72
4.20	Normalised plot of loss tangent for CLA system at selected temperatures	72
4.21	Complex impedance plot of CLT system at 25°C	74
4.22	Complex impedance plot of CLT system at 30°C	74
4.23	Complex impedance plot of CLT system at 40°C	75
4.24	Complex impedance plot of CLT system at 50°C	75
4.25	Complex impedance plot of CLT system at 60°C	76
4.26	Complex impedance plot of CLT system at 70°C	76
4.27	Complex impedance plot of CLT system at 80°C	77
4.28	Temperature dependence of conductivity plot for CLT system	77
4.29	Frequency dependence of dielectric constant, ϵ_r for CLT system	80
4.30	Frequency dependence of dielectric loss, ϵ_i for for CLT system	80
4.31	Dielectric constant, ε_r at high frequency for CLT system	81
4.32	Dielectric loss, ε_i at high frequency for CLT system	81
4.33	Temperature dependence of dielectric constant, ϵ_r at various frequencies for CLT system	83
4.34	Frequency dependence of real part of electrical modulus, M_r at various temperatures for CLT system	84
4.35	Frequency dependence of real part of electrical modulus, M_i at various temperatures for CLT system	85
4.36	Real part of electrical modulus, M_r at low frequencies for CLT system	85
4.37	Imaginary part of electrical modulus, M_i at low frequencies for CLT system	86
4.38	Variation of loss tangent with frequency for CLT system	87

4.39	Variations of ln τ with temperatures for CLT system	88
4.40	Variation of P with temperature for CLT system	88
4.41	Normalised plot of loss tangent for CLT system at selected temperatures	89
4.42	Complex impedance plot of CLTS1 at 25°C	91
4.43	Complex impedance plot of CLTS2 at 25°C	91
4.44	Complex impedance plot of CLTS3 at 25°C	92
4.45	Complex impedance plot of CLTS4 at 25°C	92
4.46	Complex impedance plot of CLTS5 at 25°C	93
4.47	Conductivity of chitosan- 40wt.%LiCF ₃ SO ₃ -30wt.%EC/PC: x SiO ₂ system at room temperature	94
4.48	Temperature dependence of conductivity plot for chitosan- 40 wt.% LiCF ₃ SO ₃ -30 wt.% EC/PC: $x \operatorname{SiO}_2$ system	96
4.49	Activation energies for chitosan-40wt.%LiCF ₃ SO ₃ - 30wt.%EC/PC: x SiO ₂ system	97
4.50	Frequency dependence of dielectric constant, $\boldsymbol{\epsilon}_r$ for CLTS4 system	98
4.51	Frequency dependence of dielectric loss, ε_i for CLTS4 system	98
4.52	Dielectric constant, ε_r at high frequency for CLTS4 system	99
4.53	Dielectric loss, ε_i at high frequency for CLTS4 system	99
4.54	Temperature dependence of dielectric constant, ϵ_r at various frequencies for CLTS4 system	100
4.55	Frequency dependence of real part of electrical modulus, M_r at various temperatures for CLTS4 system	101
4.56	Frequency dependence of real part of electrical modulus, M_i at various temperatures for CLTS4 system	101
4.57	Real part of electrical modulus, M_r at low frequencies for CLTS4 system	102
4.58	Imaginary part of electrical modulus, M_r at low frequencies for CLTS4 system	102

4.59	Variation of loss tangent with frequency for CLTS4 system	103
4.60	Variations of ln τ with temperatures for CLTS4 system	104
4.61	Variation of P with temperature for CLTS4 system	105
4.62	Normalised plot of loss tangent for CLTS4 system at selected temperatures	105
4.63	Transport parameter of number of ion for CLTS system at various temperatures	107
4.64	Transport parameter of mobility for CLTS system at various temperatures	108
4.65	Normalised polarization current as a function of time for CLT system	109
5.1	FTIR spectrum of pure chitosan	112
5.2	FTIR spectrum of chitosan acetate	112
5.3	Structure of lithium triflate salt	115
5.4	Symmetric and asymmetric SO ₃ stretching modes of LiCF ₃ SO ₃	115
5.5	Redistribution of charge at SO ₃ end	116
5.6	FTIR spectrum of lithium triflate in the region 750 to 1350 cm^{-1}	116
5.7	Infrared spectrum of chitosan acetate- lithium triflate in the region 700 to 1000 cm^{-1}	118
5.8	Infrared spectra of (a) lithium triflate (b) chitosan acetate and (c) chitosan acetate -lithium triflate in the region between 1000 to 1300 cm^{-1}	119
5.9	Infrared spectrum of (a) chitosan acetate and (b) chitosan acetate -lithium triflate in the region between region between $1300 \text{ to } 1800 \text{ cm}^{-1}$	120
5.10	Dative covalent bonding between the lithium cations and nitrogen atoms in chitosan	120
5.11	Structure of ethylene carbonate	122
5.12	Structure of propylene carbonate	122
5.13	FTIR spectrum of pure EC in 650-1900 cm ⁻¹ region	125
5.14	Dipole-dipole coupling between two EC molecules	126

5.15	FTIR spectrum of pure PC in 650-1900 cm ⁻¹ region	127
5.16	FTIR spectra of pure EC and EC-LiCF ₃ SO ₃ in 700-910 cm^{-1} region	128
5.17	FTIR spectra of pure EC and EC-LiCF ₃ SO ₃ in 1560-1950 cm ⁻¹ region	128
5.18	FTIR spectra of pure PC and PC-LiCF ₃ SO ₃ in $650-980$ cm ⁻¹ region	127
5.19	FTIR spectra of pure PC and PC-LiCF ₃ SO ₃ in 1620-1990cm ⁻¹ region	129
5.20	FTIR spectra of pure EC, PC and EC-PC in 650-1900cm ⁻¹	130
	region	
5.21	FTIR spectra of CA, CA-EC, CA- PC and CA-EC-PC in 650-1650 cm ⁻¹ region	131
5.22	(i) The FTIR spectra of (a) of CA-LiTf and (b) CA-LiTf - EC/PC in the region of $\delta(CF_3)$ (ii) The FTIR spectra of (a) of CA-LiTf and (b) CA-LiTf -EC/PC in the $v_s(SO_3)$ region	133
5.23	FTIR spectrum of fumed silica in the region of $650-1850 \text{ cm}^{-1}$	134
5.24	Structure of silica	134
5.25	FTIR spectra of (a) CA-LiCF ₃ SO ₃ -EC/PC (CA') (b) CA'-0.5% SiO ₂ (c) CA'-1.0% SiO ₂ (d) CA'-1.5% SiO ₂ (d) CA'-2.0% SiO ₂ and (f) CA'-2.5% SiO ₂ in the region of 900-1450 cm ⁻¹	135
5.26	Possible interaction between Li ion and fumed silica	135
5.27	Deconvoluted profile of triflate band associated with SO_3 stretching mode for CLTS4 system	136
5.28	Free ions, ion pairs and ion aggregates as a function of filler concentration	137
6.1	XRD spectrum of chitosan film	140
6.2	XRD spectrum of pure lithium acetate	140
6.3	XRD spectrum of pure lithium triflate	141
6.4	XRD spectra of chitosan-LiCH ₃ COO and chitosan-LiCF ₃ SO ₃	141
6.5	XRD spectra of chitosan-LiCF ₃ SO ₃ -EC/PC	143

_

6.6	XRD spectrum of pure silica	145
6.7	XRD spectra of chitosan-LiCF ₃ SO ₃ -EC/PC (a) 0.5% silica (b) 1.0% silica (c) 0 1.5 % silica (d) 2.0% silica and (e) 2.5% silica	146
6.8	Fitted curves for CLT4	146
6.9	Degree of crystallinity for films with various concentration of silica	147
7.1	DSC traces for chitosan acetate film	149
7.2	DSC traces for salted chitosan acetate (chitosan-LiCH $_3$ COO) film	150
7.3	DSC traces for salted chitosan acetate (chitosan-LiCF $_3$ SO $_3$) film	150
7.4	DSC traces for salted and plasticized chitosan acetate (chitosan-LiCH ₃ COO-EC/PC) film	151
7.5	DSC traces for salted and plasticized chitosan acetate (chitosan-LiCF ₃ SO ₃ -EC/PC) film	151
7.6	DSC traces for salted and plasticized chitosan acetate with 2% filler (chitosan-LiCF ₃ SO ₃ -EC/PC-2% SiO ₂) film	152
7.7	TGA curve for chitosan acetate film	153
7.8	TGA curve for salted chitosan acetate (chitosan-LiCH $_3$ COO) film	154
7.9	DSC traces for salted chitosan acetate (chitosan-LiCF $_3$ SO $_3$) film	154
7.10	TGA curve for salted and plasticized chitosan acetate (chitosan-LiCH ₃ COO-EC/PC) film	155
7.11	TGA curve for salted and plasticized chitosan acetate (chitosan-LiCF ₃ SO ₃ -EC/PC) film	156
7.12	TGA curve for salted and plasticized chitosan acetate with 2% filler (chitosan-LiCF ₃ SO ₃ -EC/PC-2% SiO ₂) film	156
8.1	Schematic diagram of lithium ion pathways at high temperature	161

LIST OF TABLES

TABLE		PAGE
2.1	Conductivities of some dry solid polymer electrolyte systems	8
2.2	Physical properties of some organic solvents commonly used in rechargeable lithium batteries	15
2.3	Conductivities of some gel polymer electrolyte systems	16
2.4	Conductivities of some composite polymer electrolyte systems	18
2.5	Principal applications for chitosan	32
2.6	FTIR spectral assignments of chitosan	35
3.1	Compositions of the prepared films	39
3.2	Relationship between the four basic immittance functions	42
4.1	Conductivity for CLA system at various temperatures	61
4.2	Temperature versus relaxation time for CLA system	70
4.3	Conductivity versus temperature for CLT system	78
4.4	The dielectric constant and the dielectric loss at different temperatures at $f = 50$ Hz for for CLT system and CLA system	82
4.5	Temperature versus relaxation time for CLT system	87
4.6	Average conductivity value of chitosan- $40wt.\%LiCF_3SO_3$ - 30wt.%EC/PC: $x SiO_2$ complexes at room temperature	93
4.7	Temperature versus relaxation time for CLTS4 system	104
4.8	Cationic transference numbers	109
5.1	Vibrational modes and wavenumbers exhibited by chitosan	113
5.2	Vibrational modes with corresponding wavenumbers for lithium triflate	117
5.3	Comparison of vibrational modes with corresponding wavenumbers for chitosan-lithium triflate	121
5.4	Vibrational modes and wavenumbers exhibited by EC	123

5.5	Vibrational modes and wavenumbers exhibited by PC	124
6.1	Degree of crystallinity of chitosan-LiCH ₃ COO and chitosan-LiCF ₃ SO ₃ films	143
6.2	Degree of crystallinity for chitosan-LiCF ₃ SO ₃ -EC/PC film	143