THERMODEGRADATION OF MEDIUM-CHAIN-LENGTH POLY(3-HYDROXYALKANOATES), AND ASSESSMENT OF THE BIOPOLYESTERS AND OLIGOESTERS AS PLASTICIZER FOR POLY(VINYL CHLORIDE)

SIN MEI CHAN

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR, MALAYSIA

2012

THERMODEGRADATION OF MEDIUM-CHAIN-LENGTH POLY(3-HYDROXYALKANOATES), AND ASSESSMENT OF THE BIOPOLYESTERS AND OLIGOESTERS AS PLASTICIZER FOR POLY(VINYL CHLORIDE)

SIN MEI CHAN

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR, MALAYSIA

2012

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Sin Mei Chan

(I.C/Passport No: 851102-08-5400)

Registration/Matric No: SHC 080034

Name of Degree: Doctor of Philosophy

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): Thermodegradation of medium-chain-length poly(3-hydroxyalkanoates),and assessment of the biopolyesters and oligoesters as plasticizer for poly(vinyl chloride)

Field of Study:

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date: 18th JULY 2012

Subscribed and solemnly declared before,

Witness's Signature

Date

Name: Designation:

ACKNOWLEDGEMENTS

Firstly, I would like to extend my utmost gratefulness to my main supervisor, Prof. Dr. Irene Tan Kit Ping. Your invaluable guidance, advice, care and concern rendered on me throughout the PhD project will always be remembered. Being such a supportive supervisor, you have provided me the freedom in conducting the research in a challenging environment, and motivated me to think critically when solving a problem.

A special acknowledgement goes to my co-supervisor, Prof. Dr. Gan Seng Neon. Your knowledge, experience and technical expertise have greatly inspired me. I have acquired valuable knowledge from you, especially in the aspect of "Learning is a lifelong process." I am deeply grateful for your effort in reviewing and editing my work.

To Assoc. Prof. Dr. Mohd. Suffian Mohd. Annuar, you are indeed an incredibly supportive co-supervisor. Thank you for spending time and providing me with innovative and practical advice. Each time when we shared idea and discussion, there is always joy and peace of mind in me.

Thank you, my fellow labmates in Biotechnology Laboratory and Biochemistry Laboratory, especially Mr. Wong Jin Yung and Mr. Phua Chee Seong who shared with me the laughter and many "ups and downs" when we are facing with problems in the laboratories. My thanks also extend to Dr. Chong Chun Wei, Miss Goh Yuh Shan, Miss Yew Wen Chian and Miss Aung Shu Wen for the help and co-operation throughout the project. Not to forget are my labmates and seniors in Polymer Research Laboratory, Dr. Lee Siang Yin, Miss Nurshafiza binti Shahabudin, Miss Chan Siang Yee and Mr. Ng Jin Guan for their friendship and companionship spent together in the laboratory over the years.

I am thankful to the technicians of the Institute of Postgraduate Studies (IPS), Mr. Abdul Karim and Mr. Jasmine, and the staffs of Chemistry Department, Miss Ho Wei Ling, Mr. Zulkifli bin Abu Hassan, Miss Nisrin, Miss Suwing and Miss Nor Lela for their assistance in the course of the project.

I am also grateful to University of Malaya for offering me fellowship and research grant to sustain my work and life throughout the candidature.

Last but not least, I am deeply grateful for my beloved parents, Mr. Sin Ka Lam and Mdm. Yang Sook Yaw. Their support, advice and encouragement are the vital "push" that enable me to strive when confront with problems.

ABSTRACT

Medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) are natural polyesters of hydroxyl fatty acids, composed of monomers with 6 to 14 carbon atoms length. These biopolyesters are primarily synthesized by fluorescent pseudomonads under nutrient imbalance, as carbon and energy storage compounds. In this study, mcl-PHA were produced by Pseudomonas putida PGA1 using oleic acid (OA) and saponified palm kernel oil (SPKO) as carbon source in shake flasks and fed-batch fermentations. From thermogravimetric analysis (TGA), the mcl-PHA derived from oleic acid (PHA_{OA}) showed a drastic decomposition at temperature above 183 °C, while mcl-PHA derived from saponified palm kernel oil (PHA_{SPKO}) above 196 °C. Therefore thermal degradation of the PHA_{OA} was carried out at temperatures of 160 °C, 170 °C and 180 °C; whereas thermal degradation for the PHA_{SPKO} was performed at temperatures of 160 °C, 170 °C, 180°C and 190°C, respectively. Changes in the polymer structures and properties before and after thermal treatments were studied by TGA, Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography (GPC), Gas Chromatography (GC), Fourier Transform Infrared (FTIR) Spectroscopy, 400-MHz Proton Nuclear Magnetic Resonance (¹H-NMR) Spectroscopy, and end group analysis.

Acid values obtained from end group analysis showed that mcl-PHA heat-treated at higher temperatures had higher concentration of terminal carboxylic acids and lower number average molecular weight (M_n). Based on GC, FTIR and ¹H-NMR spectroscopic analyses on the thermal degradation products, it is suggested that the thermal degradation mechanism of mcl-PHA involved random α -chain scission *via* hydrolytic ester bond cleavage, producing a mixture of lower molecular weight oligomeric hydroxyacids. Heating above 180°C in the acidic environment would lead to the dehydration of some hydroxyl terminal groups to produce alkenoic acids. These low molecular weight oligoesters possess functional terminals and could be used as natural-based plasticizers in PVC compounds. While the common PVC plasticizers, particularly phthalates, are known to be detrimental to the environment and human health, the mcl-PHA and its oligoesters have the potential to be alternative eco-friendly plasticizers for PVC. On this premise, a series of solution-cast blends of poly(vinyl chloride)-poly(3-hydroxyalkanoates) (PVC-PHA) were prepared to assess whether mcl-PHA and its oligoesters could be acted as compatible plasticizers for PVC. Scanning Electron Microscopy (SEM), FTIR, ¹H-NMR, DSC and Dynamic Mechanical Analysis (DMA) were conducted to study the microstructure, film morphology, miscibility and viscoelastic properties of the PVC-PHA blends.

SEM micrographs of PVC/PHA films showed that plasticization of PVC involved the PHA penetrated in some of the porous structures of PVC, and interfused with PVC polymer segments. Both FTIR and ¹H-NMR spectroscopic analyses suggested the PVC-PHA miscibility was possibly due to the specific interactions between the ester C=O group of PHA with the ^{α}H and local dipoles of chlorines of PVC. TGA study was used to investigate the thermal stability and thermo-dynamic parameters of the plasticized PVC films. Both measurements of DSC and DMA gave consistent results of a single T_g for the blends, indicating that mcl-PHA was highly miscible with PVC. Results from DMA also showed that mcl-PHA and its oligoesters could reduce the T_g of PVC, imparting elasticity to the PVC compounds and therefore decreasing the stiffness of the polymer.

ABSTRAK

Poli(3-hidroksialkanoat) dengan rantai sederhana panjang (mcl-PHA) adalah asid lemak hidroksil poliester semulajadi, terdiri daripada monomer yang mempunyai 6 hingga 14 atom karbon. Biopoliester ini terutamanya disintesis oleh Pseudomonads berpendarfluor di bawah ketidakseimbangan nutrien, sebagai komponen simpanan karbon dan tenaga. Dalam kajian ini, mcl-PHA telah dihasilkan oleh Pseudomonas putida PGA1 menggunakan asid oleik (OA) dan minyak isirung sawit tersaponin (SPKO) sebagai sumber karbon dalam proses penapaian menggunakan kelalang goncang dan kaedah suapan kelompak. Daripada analisis thermogravimetric (TGA), mcl-PHA yang diperolehi daripada asid oleik (PHA_{OA}) menunjukkan dekomposisi drastik pada suhu melebihi 183 °C, sementara mcl-PHA yang diperolehi daripada minyak isirung sawit tersaponin (PHA_{SPKO}) melebihi 196 ℃. Oleh yang demikian, degradasi termal bagi PHA_{OA} dijalankan pada suhu 160 °C, 170 °C dan 180 °C; manakala degradasi termal bagi PHA_{SPKO} dijalankan pada suhu 160 °C, 170 °C, 180 °C dan 190 °C, masing-masing. Perubahan dalam struktur dan sifat-sifat polimer sebelum dan selepas rawatan termal telah dikaji menggunakan TGA, Differential Scanning Calorimetry (DSC), Gel Permeation Chromatography (GPC), Gas Chromatography (GC), Fourier Transform Infrared (FTIR) Spectroscopy, 400-MHz Proton Nuclear Magnetic Resonance (¹H-NMR) Spectroscopy dan analisis end group.

Nilai asid yang diperolehi daripada analisis *end group* menunjukkan mcl-PHA yang dipanas pada suhu yang lebih tinggi mempunyai kepekatan terminal asik karbosilik yang lebih tinggi dan bilangan purata berat molekul (M_n) yang lebih rendah. Daripada analisis GC, FTIR dan ¹H-NMR ke atas produk degradasi termal, ini mencadangkan bahawa mekanisme degradasi termal bagi mcl-PHA melibatkan pemotongan α -rantaian secara rawak melalui potongan terhidrolisis pada ikatan ester, menghasilkan campuran asid hidroksi oligomer yang mempunyai berat molekul yang lebih rendah. Pemanasan melebihi 180 °C dalam persekitaran berasid mungkin menyebabkan dehidrasi bagi sesetengah terminal kumpulan hidroksi dan menghasilkan asid alkenoik. Oligoester yang mengandungi berat molekul yang rendah ini mempunyai terminal yang berfungsi dan dapat digunakan sebagai *plasticizer* semulajadi dalam kompaun PVC. Plasticizer PVC yang umum, terutamanya *phthalates*, diketahui membawa mudarat kepada alam sekitar dan kesihatan manusia, mcl-PHA dan oligoesternya mempunyai potensi sebagai alternatif *plasticizer* yang mesra alam kepada PVC. Pada premis ini, satu siri 'solution-cast' campuran terdiri daripada poli(vinyl kloride)-poli(3-hidroksialkanoat) (PVC-PHA) telah disediakan untuk menilai sama ada mcl-PHA dan oligoesternya boleh bertindak sebagai 'compatible plasticizer' bagi PVC. *Scanning Electron Microscopy* (SEM), FTIR, ¹H-NMR, DSC dan *Dynamic Mechanical Analysis* (DMA) telah dijalankan untuk mengkaji mikrostruktur, morfologi filem, keterlarutcampuran dan sifat-sifat 'viscoelastic' bagi campuran-campuran PVC-PHA.

SEM mikrograf bagi PVC/PHA filem menunjukkan bahawa 'plasticization of PVC' melibatkan penebusan PHA ke dalam struktur berpori PVC, dan menyatu dengan segmen polimer PVC. Analisis spektroskopi FTIR dan ¹H-NMR mencadangkan keterlarutcampuran PVC-PHA mungkin disebabkan oleh interaksi khusus antara kumpulan ester C=O daripada PHA dengan ^aH dan 'local dipoles' antara klorin daripada PVC. Kajian TGA telah digunakan untuk menyelidik kestabilan termal dan parameterparameter termo-dinamik untuk filem *plasticized* PVC. Kedua-dua ukuran daripada DSC dan DMA memberi keputusan konsisten, iaitu nilai T_g yang tunggal bagi campurancampuran ini, menunjukkan bahawa mcl-PHA adalah sangat 'miscible' dengan PVC. Keputusan daripada DMA juga menunjukkan bahawa mcl-PHA dan oligoesternya dapat menurunkan T_g PVC, memberikan keanjalan kepada kompaun PVC, oleh itu mengurangkan keteguhan polimer.

CONTENTS

	Page
DECLARATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	v
ABSTRAK	vii
TABLE OF CONTENTS	ix
LIST OF FIGURES	xvii
LIST OF TABLES	xxiii
LIST OF SYMBOLS AND ABBREVIATIONS	XXV

CHAPTER 1: INTRODUCTION

1.1 General Introduction	1
1.2 Biodegradable polymer	1
1.3 Thermodegradation of mcl-PHA	2
1.4 Mcl-PHA and its oligoesters as natural based plasticizer for PVC	3
1.5 Objectives of study	
1.5.1 In the study of thermodegradation of mcl-PHA	5
1.5.2 In the study of assessment of biopolyesters and oligoesters as natural based plasticizer for PVC	5

CHAPTER 2: LITERATURE REVIEW

2.1 Poly(3-hydroxyalkanoates) as biodegradable polymer	6
2.1.1 Chemical structure of PHA	8
2.1.2 Medium-chain-length poly(3-hydroxyalkanoates)	9
2.1.3 Physical properties of mcl-PHA	10
2.1.4 Thermal degradation and stability of mcl-PHA	11
2.1.5 Industrial and medical applications of mcl-PHA	13
2.1.6 Carbon feedstock for PHA production	14
2.1.6.1 Oleic acid as a sole carbon source	14

2.1.6.2 Palm kernel oil as a sole carbon source	15
2.2 Poly(vinyl chloride)	16
2.2.1 Chemical structure	17
2.2.2 PVC morphology	18
2.2.3 Molecular weight	20
2.2.4 Thermal degradation of PVC	23
2.2.5 Chemical and physical properties of PVC	24
2.2.6 General applications	25
2.2.7 Miscibility of PVC	27
2.3 Polymer miscibility	27
2.3.1 Analytical techniques for determining polymer-polymer miscibility	30
2.3.1.1 Glass transition temperature	30
2.3.1.1.1 Calorimetric methods	33
2.3.1.1.2 Mechanical methods	34
2.3.1.2 Microscopy	35
2.3.1.3 Spectroscopy techniques	36
2.4 Plasticizer for PVC	37
2.4.1 Types of plasticizers	37
2.4.1.1 General purpose plasticizers	38
2.4.1.2 Performance plasticizers	38
2.4.1.3 Specialty plasticizers	38
2.4.2 Phthalate-based plasticizer	38
2.4.3 Polymeric plasticizer	40
2.4.4 Functions of plasticizer	41
2.4.5 Performance of plasticizers	41
2.5 Plasticization steps	42
2.5.1 Mechanism of plasticizers action	43
2.5.1.1 Lubricity theory	43
2.5.1.2 Gel theory	44
2.5.1.3 Free volume theory	45

2.5.2 Prerequisites for plasticization	46
2.6 Market for PVC plasticizer	47

CHAPTER 3: MATERIALS AND METHODS

3.1 Thermodegradation of medium-chain-length poly(3-hydroxyalkanoates)	49
3.1.1 Materials	49
3.1.1.1 Renewable fermentation carbon substrates	49
3.1.1.2 Bacterial strain	49
3.1.1.3 Media	50
3.1.1.3.1 Stock culture medium	50
3.1.1.3.2 Rich medium	50
3.1.1.3.3 PHA production medium used in shake flask fermentation	51
3.1.1.3.4 PHA production medium used in fed-batch fermentation	52
3.1.1.4 Chemicals and test reagents	52
3.1.1.4.1 Preparation of 100.0 mM and 1.0 M magnesium sulfate heptahydrate stock solution	52
3.1.1.4.2 Preparation of 0.1 M calcium chloride stock solution	53
3.1.1.4.3 Preparation of 0.85% saline solution	53
3.1.1.4.4 Preparation of 10% antifoam stock solution	53
3.1.1.4.5 Preparation of 1.0 M hydrochloric acid solution	53
3.1.1.4.6 Preparation of 3.0 M potassium hydroxide solution	53
3.1.1.4.7 Preparation of phenolphthalein indicator solution	54
3.1.1.4.8 Preparation of standardized potassium hydroxide solution	54
3.1.1.4.9 Methyl ester standards for gas chromatography analysis	54
3.1.1.5 Shaker incubator set-up	55
3.1.1.6 Bioreactor set-up	56
3.1.2 Methods	57

3.1.2.1 Saponification of palm kernel oil	57
3.1.2.2 Sterilization	58
3.1.2.3 Production of oleic acid derived mcl-PHA through shake flask fermentation	58
3.1.2.4 Production of palm kernel oil derived mcl-PHA through fed-batch fermentation	59
3.1.2.5 Cell harvesting	60
3.1.2.6 Removal of oily remnants from the cells by biomass pretreatment	60
3.1.2.7 PHA extraction and purification	61
3.1.2.8 Thermal degradation of mcl-PHA	62
3.1.3 Characterizations of un-degraded and heat-treated mcl-PHA	63
3.1.3.1 End-group analysis	63
3.1.3.2 Determination of acid number for PHA sample	64
3.1.3.2.1 Blank and sample titration	64
3.1.3.2.2 Theoretical calculation of acid number	65
3.1.3.3 Determination of thermal properties of control and	65
heat-treating mcl-PHA	
3.1.3.3.1 Thermogravimetric Analysis	65
3.1.3.3.2 Differential Scanning Calorimetry	66
3.1.3.3.3 Determination of kinetic parameters for thermal degradation of mcl-PHA	66
3.1.3.4 Gel Permeation Chromatography	67
3.1.3.5 Determination of acidity of degradation products	68
3.1.3.6 Gas Chromatography	69
3.1.3.7 Fourier Transform Infrared Spectroscopy	70
3.1.3.8 Proton Nuclear Magnetic Resonance Spectroscopy	70
3.2 Investigation of the ability of mcl-PHA and its oligoesters as compatible plasticizer for poly(vinyl chloride)	
3.2.1 Materials	71
3.2.1.1 Poly(vinyl chloride)	71
3.2.1.2 Medium-chain-length poly(3-hydroxyalkanoates)	71

3.2.2 Methods	72
3.2.2.1 Heat treating of mcl-PHA at desired degradation temperature	72
3.2.2.2 Characterizations of mcl-PHA and degradation products prior to solution blending	72
3.2.2.2.1 Differential Scanning Calorimetry	72
3.2.2.2 Gel Permeation Chromatography	72
3.2.2.3 Gas Chromatography	72
3.2.2.3 Solution blending of PVC and mcl-PHA	73
3.2.2.3.1 Preparation of PVC/mcl-PHA binary blends	73
3.2.2.3.2 Reaction set-up	73
3.2.2.4 Characterizations of PVC/mcl-PHA binary blends	76
3.2.2.4.1 Fourier Transform Infrared Spectroscopy	77
3.2.2.4.2 Proton Nuclear Magnetic Resonance Spectroscopy	77
3.2.2.4.3 Scanning Electron Microscopy	77
3.2.2.4.4 Thermal analysis of PVC/mcl-PHA binary blends	78
3.2.2.4.4.1 Thermal profile and thermal stability of the blends studied by TGA	78
3.2.2.4.4.2 Thermo-kinetic analysis of PVC/mcl-PHA	78
3.2.2.4.4.3 Thermal behavior of PVC/mcl-PHA studied by DSC	78
3.2.2.4.4.3.1 Theoretical calculation of T_g using Gordon-Taylor equation	79
3.2.2.4.4.3.2 Theoretical calculation of T_g using Fox equation	79
3.2.2.4.5 Dynamic Mechanical Analysis	80
3.2.2.4.5.1 Study of elastic modulus of PVC/mcl-PHA blends	81
3.2.2.4.5.2 Comparison of storage modulus for PVC and PVC/mcl-PHA blends	82

CHAPTER 4: THERMAL DEGRADATION OF MEDIUM-CHAIN-LENGTH

POLY(3-HYDROXYALKANOATES) (MCL-PHA)

4.1	Thermal properties mcl-PHA before and after thermal treatment	84
	4.1.1 Characterization by thermogravimetric analysis (TGA)	84
	4.1.2 Kinetics of thermodegradation of mcl-PHA	87
	4.1.3 Characterization by differential scanning calorimetry (DSC)	93
4.2	Morphological properties of mcl-PHA degradation products	94
4.3	Analysis of the changes in molecular weight and acidity of degradation products	96
	4.3.1 End group analysis	96
	4.3.2 Gel permeation chromatography analysis	99
	4.3.3 Acidity of degradation products: oligomeric hydroxyalkanoic acids	101
4.4	Structural analysis of control and heat-treated mcl-PHA	107
	4.4.1 Monomer composition analysis by gas chromatography (GC)	107
	4.4.2 Fourier transform infrared spectroscopic (FTIR) analysis	111
	4.4.3 Proton nuclear magnetic resonance (¹ H-NMR) spectroscopic analysis	118
4.5	Thermal degradation mechanism of mcl-PHA	127

CHAPTER 5: PHA AS PLASTICIZER FOR POLY(VINYL CHLORIDE)

5.1 Mcl-PHA as natural-based plasticizer for PVC	130
5.1.1 Monomer compositions of the SPKO- and OA- derived polymeric and oligomeric mcl-PHA used in solution blending	130
5.2 Miscibility of PVC and mcl-PHA	134
5.2.1 Solution blending and solvent casting	134
5.2.2 FTIR analysis of PVC-PHA system	134
5.2.3 ¹ H-NMR analysis of PVC-PHA system	147
5.3 Scanning electron microscopy (SEM) of PVC and plasticized PVC films	152
5.3.1 Morphology of PVC and PHA films by SEM	152
5.3.2 Qualitative comparisons of PVC/PHA binary blend morphologies by SEM	154
5.4 Thermal studies of PVC and PVC/PHA binary blends	163

	5.4.1 Study of PVC-PHA interactions by TGA	172
	5.4.2 Thermo-kinetic analysis of PVC/PHA binary blends	175
	5.4.3 Thermal stability of PVC/PHA _{2.5} and PVC/PHA ₅ binary blends	178
5.5	Determination of T_g of PVC/PHA polymer blends by DSC analysis	183
	5.5.1 Correlation of polymer-plasticizer interaction with T_g derived from Gordon-Taylor equation	186
	5.5.2 Correlation of polymer-plasticizer affinity with T_g derived from Fox Equation	189
	5.5.3 Summary of DSC analysis	193
5.6	Dynamic mechanical analysis of PVC/PHA blends	194
	5.6.1 Viscoelastic measurements of PVC, PHA & PVC/PHA binary blend	194
	5.6.2 Stiffness of PVC/PHA blends	198
	5.6.3 Comparison of elastic modulus of PVC and PVC/PHA binary blends	201
	5.6.4 Comparison of storage modulus between binary blends	202
5.7	Summary	205

CHAPTER 6: CONCLUSION

6.1 Conclusion	
6.1.1 Thermal degradation of mcl-PHA	207
6.1.2 Assessment of PHA and its oligoesters as plasticizers for PVC	209
6.2 Future research plan	211
BIBLIOGRAPHY	
APPENDIX A: Determination of kinetic parameters for mcl-PHA during thermal degradation	227
APPENDIX B: DSC thermograms of undegraded and heat-treated mcl-PHA	231
APPENDIX C: Determination of acid number, M_n and concentrations of -COOH end groups for mcl-PHA before and thermal treatments	236
APPENDIX D: Gas permeation chromatograms of undegraded and heat-treated mcl-PHA	248

APPENDIX E: Determinations of pH, acid dissociation constant (K_a), pK_a , degree of dissociation (α) and standard Gibbs free energy change (ΔG °) of PHA degradation products	257
APPENDIX F: Gas chromatograms of undegraded and heat-treated mcl-PHA	266
APPENDIX G: Gas chromatograms of mcl-PHA used in polymer blending	276
APPENDIX H: Gas permeation chromatograms of PVC and mcl-PHA used in polymer blending	280
APPENDIX I: Determination of kinetic parameters for PVC and PVC/PHA polymer blends during thermal degradation	285
APPENDIX J: DSC thermograms of PVC, PHA and PVC/PHA polymer blends	303
APPENDIX K: Determination of T_g for PVC/PHA polymer blends from Gordon-Taylor Equation	310
APPENDIX L: Determination of T_{g} , δT_{g} and ΔT_{g} for PVC/PHA polymer blends from Fox Equation	318
APPENDIX M: Determination of elastic modulus for PVC and PVC/PHA polymer blends	322
APPENDIX N: Publications and presentations	325

LIST OF FIGURES

		Page
Fig. 2.1	Electron microscopy of <i>Pseudomonas aeruginosa</i> harbouring PHA Granules	7
Fig. 2.2	Chemical structure of PHA	8
Fig. 2.3	Medium-chain-length PHA with different types of monomers	10
Fig. 2.4	General structure of PVC monomer	17
Fig. 2.5	(a) Formation of intramolecular hydrogen bonding within polymer and	18
	(b) Formation of intermolecular hydrogen bonding between polymers	
Fig. 2.6	Model of PVC grain	19
Fig. 2.7	Two-stage degradation occurred during thermal decomposition of PVC. Stage 1: Hydrogen chloride elimination of PVC and Stage 2: Polyene chain decomposition followed by intramolecular cyclization of conjugated sequences and benzene formation	24
Fig. 2.8	Regional growth of PVC consumption from year 1990 and projected up to year 2025	26
Fig. 2.9	Hydrogen bonding between the hydrogen acceptor of carbonyl group and hydrogen donator of C-Cl-H group	29
Fig. 2.10	Generalized behavior of T_g relationships for miscible polymer blends	32
Fig. 2.11	T_g , as exhibited as the onset or midpoint of the steep change in energy in the DSC endothermic curve	33
Fig. 2.12	Generalized behavior of the dynamic mechanical properties of a two- phase blend. Solid line: pure component A; Hyphenated line: mixture; Dashed line: pure component B	34
Fig. 2.13	Generalized behavior of the dynamic mechanical properties of a miscible blend. Solid line: pure component A; Hyphenated line: mixture; Dashed line: pure component B	35
Fig. 2.14	SEM photograph of a PVC film	36
Fig. 2.15	SEM photograph of a plasticized PVC film	36
Fig. 2.16	World consumption of plasticizers in year 2008	47
Fig. 3.1	Pseudomonas putida PGA1 grown on a nutrient agar plate	50
Fig. 3.2	Orbital shaker incubator used in the shake flasks fermentation	55
Fig. 3.3	Setup of 5-L bioreactor for fed batch fermentation system	57

Fig. 3.4	Morphology of mcl-PHA derived from two different substrates: (a) mcl-PHA derived from SPKO and (b) mcl-PHA derived from oleic acid	62
Fig. 3.5	The set-up of thermodegradation process	63
Fig. 3.6	Experiment set-up of (a) solution blending and (b) solvent casting	76
Fig. 3.7	Storage modulus values change with the temperature and transitions in polymers can be seen as changes in the E' curve	83
Fig. 4.1	TGA thermogram of mcl-PHA derived from oleic acid	84
Fig. 4.2	TGA thermogram of mcl-PHA derived from SPKO	85
Fig. 4.3	Relative thermal stability of control and heat-treated mcl-PHA derived from oleic acid, as indicated by different TG curves at 10°C min ⁻¹	86
Fig. 4.4	Relative thermal stability of control and heat-treated PHA derived from SPKO as indicated by different TG curves at 10°C min ⁻¹	87
Fig. 4.5	(a) TGA and (b) DTG curves of oleic acid derived mcl-PHA at multiple heating rates	88
Fig. 4.6	Kissinger plot for determining the activation energy of thermal degradation, E_d , of the PHA produced from (a) oleic acid and (b) palm kernel oil	90
Fig. 4.7	TGA curves of SPKO derived mcl-PHA measured at different heating rate	91
Fig. 4.8	DTG curves of SPKO derived mcl-PHA measured at different heating rate	91
Fig. 4.9	Resonance structure of carboxyl group	102
Fig. 4.10	Electron withdrawal by Z, an electronegative substituent	102
Fig. 4.11	Inductive effect of R, alkyl group	103
Fig. 4.12	Relative monomer compositions of control and partially degraded PHA derived from oleic acid	109
Fig. 4.13	Relative monomer compositions of control and partially degraded PHA derived from SPKO	110
Fig. 4.14	Infrared spectrum of mcl-PHA derived from oleic acid	112
Fig. 4.15	FTIR spectra of oleic acid derived mcl-PHA: (a) Control PHA, (b) PHA heat treated at 160°C, (c) PHA heat treated at 170°C and (d) PHA heat treated at 180°C. Two distinct –C=C– peaks were	114

	observed in the 180°C-treated PHA, corresponding to the unsaturated terminal group	
Fig. 4.16	Infrared spectrum of mcl-PHA derived from SPKO	115
Fig. 4.17	FTIR spectra of SPKO derived mcl-PHA. (a) Control PHA, (b) PHA heat treated at 160°C, (c) PHA heat treated at 170°C, (d) PHA heat treated at 180°C and (e) PHA heat treated at 190°C. The arrow indicates a distinct $-C=C-$ peak, corresponding to the unsaturated terminal group in 190 °C-treated PHA	117
Fig. 4.18	400–MHz ¹ H-NMR spectrum of oleic acid derived mcl-PHA. The protons in the mcl-PHA structure were denoted by the corresponding letters in the spectrum	119
Fig. 4.19	¹ H–NMR spectra of oleic acid derived mcl-PHA: (a) control, (b) heat-treated at 160°C, (c) heat-treated at 170°C and (d) heat-treated at180°C. The ratio of proton <i>a</i> (methine group) to proton <i>e</i> (methyl group) has decreased, as hydrolysis of ester linkages would producing more hydroxyl acids with the –OH end group at 3.7 ppm	121
Fig. 4.20	Expanded ¹ H-NMR spectrum of oleic acid derived PHA heat treated at 180°C, where the olefinic protons m and n were appeared at 5.8 and 6.9 ppm	122
Fig. 4.21	¹ H-NMR spectra of the thermolyzed mcl-PHA samples derived from oleic acid: (a) heat treated at 160°C, (b heat treated at 170°C and (c) heat treated at 180°C. A lower level of -CH*-OH group than –CH*-COOH group was observed in the 180°C-treated PHA	123
Fig. 4.22	The 400–MHz ¹ H-NMR spectrum of mcl-PHA derived from SPKO. The protons in the mcl-PHA structure were denoted by the corresponding letters in the spectrum	124
Fig. 4.23	¹ H–NMR spectra of mcl-PHA derived from SPKO: (a) Control PHA, (b) PHA heat treated at 160°C, (c) PHA heat treated at 170°C, (d) PHA heat treated at 180°C and (e) PHA heat treated at 190°C	125
Fig. 4.24	400-MHz ¹ H-NMR spectrum of mcl-PHA derived from SPKO: (a) the decomposed product obtained at 190 $^{\circ}$ C and (b) expanded region between 5.0 to 7.0 ppm	126
Fig. 4.25	A plausible chain cleavage mechanism in mcl-PHA during thermal degradation process. Stage I: Hydrolysis at the ester bond; Stage II: Dehydration of hydroxyl end group in the acidic environment	128
Fig. 4.26	A typical β -chain cleavage mechanism during PHB thermal decomposition. A 6-membered ring ester transition state (I) is involved followed by synchronous breakage of the β -C-O and α -C-H bonds	129
Fig. 5.1	Molecular structure of monomer units of PHA _{SPKO} (SPKO-derived	131

PHA); x: 1, 3, 5, 7 and 9

Fig. 5.2	Molecular structure of monomer units of PHA _{OA} (OA-derived PHA); x: 1, 3, 5, 7 and 9	131
Fig. 5.3	FTIR absorption spectra of PVC, polymeric PHA _{SPKO} and the polymer blends: PVC/PHA _{SPKO-2.5} and PVC/PHA _{SPKO-5}	136
Fig. 54	FTIR absorption spectra of PVC, oligomeric PHA_{SPKO} (degPHA _{SPKO}) and the polymer blends: $PVC/degPHA_{SPKO-2.5}$ and $PVC/degPHA_{SPKO-5}$	136
Fig. 5.5	FTIR absorption spectra of PVC, polymeric PHA_{OA} and the polymer blends: $PVC/PHA_{OA-2.5}$ and PVC/PHA_{OA-5}	137
Fig. 5.6	FTIR absorption spectra of PVC, oligomeric PHA_{OA} (deg PHA_{OA}) and the polymer blends: $PVC/degPHA_{OA-2.5}$ and $PVC/degPHA_{OA-5}$	137
Fig. 5.7	FTIR absorption of PVC, PHA _{SPKO} and PVC/PHA _{SPKO} polymer blends in the region 1650 to 1800 cm^{-1}	139
Fig. 5.8	FTIR absorption spectra of PVC, degPHA _{SPKO} and PVC/degPHA _{SPKO} polymer blends in the region 1650 to 1800 cm ⁻¹	140
Fig. 5.9	FTIR absorption spectra of PVC, PHA _{OA} and PVC/PHA _{OA} polymer blends in the region 1650 to 1800 cm ⁻¹	141
Fig. 5.10	FTIR absorption spectra of PVC, degPHA _{OA} and PVC/degPHA _{OA} polymer blends in the region 1650 to 1800 cm^{-1}	142
Fig. 5.11	FTIR absorption spectra of PVC, PHA _{SPKO} and PVC/PHA _{SPKO} polymer blends in the region 1135 to 1350 cm ⁻¹	143
Fig. 5.12	FTIR absorption spectra of PVC, degPHA _{SPKO} and PVC/degPHA _{SPKO} polymer blends in the region 1135 to 1350 cm ⁻¹	144
Fig. 5.13	FTIR absorption spectra of PVC, PHA _{OA} and PVC/PHA _{OA} polymer blends in the region 1135 to 1350 cm^{-1}	145
Fig. 5.14	FTIR absorption spectra of PVC, degPHA _{OA} and PVC/degPHA _{OA} polymer blends in the region 1135 to 1350 cm^{-1}	146
Fig. 5.15	Structural formula of (a) PVC and (b) mcl-PHA monomer units	147
Fig. 5.16	¹ H-NMR spectrum of PVC. Chemical shift from 1.9 to 2.3 ppm was assigned to H_{β} of $-CH_{2}$ -; chemical shift from 4.3 to 4.6 ppm was assigned to H_{α} of $-CHCl$ -	148
Fig. 5.17	¹ H-NMR spectrum of PHA _{OA} . The protons in the PHA _{OA} structure were denoted by the corresponding letters in the spectrum	149
Fig. 5.18	¹ H-NMR spectra of (a) PVC, (b) PHA _{OA} and (c) PVC/PHA _{OA-5}	150

polymer blends

Fig. 5.19	SEM micrograph showing surface morphology of PVC. Voids and cavities were present in the PVC film (500 x magnification)	153
Fig. 5.20	SEM micrograph showing surface morphology of PHA _{SPKO} film (500 x magnification)	153
Fig. 5.21	SEM micrograph showing surface morphology of PVC/PHA _{SPKO-2.5} film:(a)200 x; (b)500 x magnification	155
Fig. 5.22	SEM micrograph showing surface morphology of PVC/PHA _{SPKO-5} film: (a)200 x; (b)500 x magnification	156
Fig. 5.23	SEM micrograph showing surface morphology of PVC/degPHA _{SPKO-2.5} film: (a)200 x; (b)500 x magnification	157
Fig. 5.24	SEM micrograph showing surface morphology of PVC/degPHA _{SPKO-5} film: (a)200 x; (b)500 x magnification	158
Fig. 5.25	SEM micrograph showing surface morphology of PVC/PHA _{OA-2.5} film: (a)200 x; (b)500 x magnification	159
Fig. 5.26	SEM micrograph showing surface morphology of PVC/PHA _{OA-5} film: (a)200 x; (b)500 x magnification	160
Fig. 5.27	SEM micrograph showing surface morphology of PVC/degPHA _{OA-2.5} film: (a)200 x; (b)500 x magnification	161
Fig. 5.28	SEM micrograph showing surface morphology of PVC/degPHA _{OA-5} film: (a)200 x; (b)500 x magnification	162
Fig. 5.29	TGA thermogram of PVC	164
Fig. 5.30	TGA thermogram of PVC/PHA _{SPKO-2.5}	165
Fig. 5.31	TGA thermogram of PVC/PHA _{SPKO-5}	166
Fig. 5.32	TGA thermogram of PVC/degPHA _{SPKO-2.5}	167
Fig. 5.33	TGA thermogram of PVC/degPHA _{SPKO-5}	168
Fig. 5.34	TGA thermogram of PVC/PHA _{OA-2.5}	169
Fig. 5.35	TGA thermogram of PVC/PHA _{OA-5}	170
Fig. 5.36	TGA thermogram of PVC/degPHA _{OA-2.5}	171
Fig. 5.37	TGA thermogram of PVC/degPHA _{OA-5}	172
Fig. 5.38	DTG thermograms of PVC/ PHA _{SPKO} and PVC/PHA _{SPKO-5} binary blends. Black dots: PVC/PHA _{SPKO-5} ; Blue dots: PVC/PHA _{SPKO-2.5}	179

Fig. 5.39	DTG thermograms of PVC/degSPKO _{2.5} and PVC/degSPKO ₅ binary blends. Black dots: PVC/degPHA _{SPKO-5} ; Blue dots: PVC/degPHA _{SPKO-2.5}	180
Fig. 5.40	DTG thermograms of PVC/PHA _{OA-2.5} and PVC/PHA _{OA-5} binary blends. Black dots: PVC/PHA _{OA-5} ; Blue dots: PVC/PHA _{OA-2.5}	181
Fig. 5.41	DTG thermograms of PVC/degPHA _{OA-2.5} and PVC/degPHA _{OA-5} binary blends. Black dots: PVC/degPHA _{OA-5} ; Blue dots: PVC/degPHA _{OA-2.5}	182
Fig. 5.42	Simplified model of factors affecting the T_g of polymer-plasticizer blends	190
Fig. 5.43	T_g values obtained from the peak of loss modulus vs. temperature curves of (a) PVC, (b) PVC/PHA _{SPKO-2.5} ; and (c) PVC/PHA _{SPKO-5}	196
Fig. 5.44	T_g values obtained from the peak of loss modulus vs. temperature curves of (a) PVC, (b) PVC/degPHA _{SPKO-2.5} ; and (c) PVC/degPHA _{SPKO-5}	196
Fig. 5.45	T_g values obtained from the peak of loss modulus vs. temperature curves of (a) PVC, (b) PVC/PHA _{OA-2.5} ; and (c) PVC/PHA _{OA-5}	197
Fig. 5.46	T_g values obtained from the peak of loss modulus vs. temperature curves of (a) PVC, (b) PVC/degPHA _{OA-2.5} ; and (c) PVC/degPHA _{OA-5}	197
Fig. 5.47	Temperature variation of film's stiffness for (a) PVC, (b) PVC/PHA _{SPKO-2.5} ; and (c) PVC/PHA _{SPKO-5}	199
Fig. 5.48	Temperature variation of film's stiffness for (a) PVC, (b) PVC/degPHA _{SPKO-2.5} ; and (c) PVC/degPHA _{SPKO-5}	199
Fig. 5.49	Temperature variation of film's stiffness for (a) PVC, (b) PVC/PHA _{OA-2.5} ; and (c) PVC/PHA _{OA-5}	200
Fig. 5.50	Temperature variation of film's stiffness for (a) PVC, (b) PVC/degPHA _{OA-2.5} and (c) PVC/degPHA _{OA-5}	200
Fig. 5.51	Temperature variation of storage modulus for (a) PVC; (b) PVC/PHA _{SPKO-2.5} , and (c) PVC/PHA _{SPKO-5}	203
Fig. 5.52	Temperature variation of storage modulus for (a) PVC; (b) PVC/degPHA _{SPKO-2.5} , and (c) PVC/degPHA _{SPKO-5}	204
Fig. 5.53	Temperature variation of storage modulus for (a) PVC; (b) PVC/PHA _{OA-2.5} , and (c) PVC/PHA _{OA-5}	204
Fig. 5.54	Temperature variation of storage modulus for (a) PVC; (b) PVC/degPHA _{OA-2.5} , and (c) PVC/degPHA _{OA-5}	205

LIST OF TABLES

Page

Table 2.1	Fatty acid compositions in palm kernel oil	16
Table 2.2	Nomenclature for the morphology of suspension PVC grain	20
Table 2.3	Relationship between the viscosity index, K-value and general uses for different types of PVC	22
Table 2.4	Classification of hydrogen bonding for various functional groups	30
Table 3.1	Designations and compositions of PVC/PHA binary blends	74
Table 3.2	Average molecular weight and molecular weight distribution for the components in PVC/PHA samples. M_n , number-average molecular weight; M_w , weight-average molecular weight; <i>PDI</i> , polydispersity index, defined by M_w/M_n	75
Table 4.1	Data of thermo-kinetic parameters for thermal degradation of oleic acid derived mcl-PHA	89
Table 4.2	Data of thermo-kinetic parameters for thermal degradation of SPKO derived mcl-PHA	92
Table 4.3	Thermal properties of mcl-PHA derived from oleic acid and SPKO before and after thermal treatments	93
Table 4.4	End group analysis of oleic acid derived mcl-PHA before and after thermal treatments	97
Table 4.5	End group analysis of SPKO derived mcl-PHA before and after thermal treatments	98
Table 4.6	Average molecular weight and molecular weight distributions of control and heat-treated mcl-PHA derived from oleic acid and SPKO	100
Table 4.7	Effective concentration of carboxyl end groups, acid dissociation constant (K_a), pK_a , pH, degree of dissociation (α) and standard Gibbs free energy change (ΔG ⁹ for 160 °C, 170 °C and 180 °C degradation products derived from oleic acid	105
Table 4.8	Effective concentration of carboxyl end groups, acid dissociation constant (K_a), pK_a , pH, degree of dissociation (α) and standard Gibbs free energy change (ΔG) for 160 °C, 170 °C, 180 °C and 190 °C-treated SPKO derived mcl-PHA degradation products	107
Table 4.9	FTIR correlations of various functional groups in control and heat- treated mcl-PHA derived from oleic acid	113

Table 4.10	FTIR correlations of various functional groups in control and heat-treated mcl-PHA derived from SPKO	116
Table 5.1	Monomer compositions of the non-degraded and heat-treated SPKO- and OA- derived PHA determined by GC analysis	133
Table 5.2	Vibrational modes and wave numbers exhibited by PVC	135
Table 5.3	Relative intensity ratio between absorbance value for C=O stretching in PHA and CH bending in PVC	138
Table 5.4	Relative intensity ratio between ^{α} H (α -methine proton) to ^{β} H (β -methylene proton) in polymer blends	151
Table 5.5	Mass loss of PVC blend and blend components at different stage of degradation at 10 $^{\circ}$ C min ⁻¹ heating rate	173
Table 5.6	Thermogravimetric data of PVC blends and blend components at 10 $^{\circ}$ C min ⁻¹ heating rate	174
Table 5.7	Thermo-kinetic parameters of PVC blends and blend components at first stage of decomposition	176
Table 5.8	Kinetic parameters of PVC blends and blend components at second stage of decomposition	177
Table 5.9	Glass transition temperatures of the polymer constituents in $ {\rm C} $ and $ {\rm K} $	183
Table 5.10	Glass transition temperatures of PVC/PHA polymer blends in $ {\rm C} $ and $ {\rm K} $	184
Table 5.11	T_g of PVC/PHA binary blends determined from DSC analysis and Gordon-Taylor Equation <i>via</i> data substitution and simultaneous equation solution approaches	187
Table 5.12	$T_{g \text{ exp}}$, $T_{g \text{ calc}}$, δT_{g} and ΔT_{g} of PVC/PHA binary blends determined from DSC analysis and Fox Equation	191
Table 5.13	T_g of PVC/PHA binary blends measured from loss modulus peak maxima in DMA	195
Table 5.14	Elastic modulus values for PVC/PHA binary blends	202

LIST OF SYMBOLS AND ABBREVIATIONS

AN	Acid number
ASTM	American Society for Testing and Materials
BBP	Benzyl butyl phthalate
CDCl ₃	Deuterated chloroform
DBP	Dibutyl phthalate
DEHP	Di-2-ethyl hexyl phthalate
DIDP	Diisodecyl phthalate
DIHP	Diisoheptyl phthalate
DINP	Diisononyl phthalate
DMA	Dynamic Mechanical Analyzer
DOP	Dioctyl phthalate
DSC	Differential Scanning Calorimetry
DTG	Derivative Thermogravimetry
E	Elastic modulus
E'	Storage modulus
<i>E</i> "	Loss modulus
E_d	Degradation activation energy
FTIR	Fourier Transform Infrared
ΔG $^{\circ}$	Standard Gibbs free energy change
GC	Gas chromatography
GPC	Gel permeation chromatography
ΔH_m	Enthalpy of fusion
3HB	3-hydroxybutyric acid
3HD	3-hydroxydecanoic acid
3HDD	3-hydroxydodecanoic acid
3HH _x	3-hydroxyhexanoic acid
3HH _x D	3-hydroxyhexadecanoic acid
ЗНО	3-hydroxyoctanoic acid

3HTD	3-hydroxytetradecanoic acid
K_a	Acid dissociation constant
M_n	Number average molecular weight
M_w	Weight average molecular weight
mcl-PHA	Medium-chain-length poly(3-hydroxyalkanoates)
MSDS	Material Safety Data Sheet
NMR	Nuclear Magnetic Resonance
PDI	Polydispersity index
РНА	Poly(3-hydroxyalkanoates)
PHA _{OA}	Poly(3-hydroxyalkanoates) derived from oleic acid
PHA _{SPKO}	Poly(3-hydroxyalkanoates) derived from saponified palm kernel oil
РНВ	Poly(3-hydrobutyrate)
PHBV	Poly(3-hydrobutyrate-co-valerate)
phr	Parts per hundred parts resin
РКО	Palm kernel oil
pO ₂	Partial pressure of oxygen
PORIM	Palm Oil Research Institute of Malaysia
ppm	parts per million
P. putida	Pseudomonas putida
PS	Polystyrene
PVC	Poly(vinyl chloride)
PVC/degPHA _{OA}	Polymer blend consisted of poly(vinyl chloride) and oligomeric poly(3-hydroxyalkanoates) derived from oleic acid
PVC/degPHA _{SPKO}	Polymer blend consisted of poly(vinyl chloride) and oligomeric poly(3-hydroxyalkanoates) derived from saponified palm kernel oil
PVC/degPHA _{OA-2.5}	Polymer blend consisted of poly(vinyl chloride) and 2.5 phr oligomeric poly(3-hydroxyalkanoates) derived from oleic acid
PVC/degPHA _{OA-5}	Polymer blend consisted of poly(vinyl chloride) and 5 phr oligomeric poly(3-hydroxyalkanoates) derived from oleic acid
PVC/degPHA _{SPKO-2.5}	Polymer blend consisted of poly(vinyl chloride) and 2.5 phr oligomeric poly(3-hydroxyalkanoates) derived from saponified palm kernel oil

PVC/degPHA_{SPKO-5} Polymer blend consisted of poly(vinyl chloride) and 5 phr oligomeric poly(3-hydroxyalkanoates) derived from saponified palm kernel oil PVC/PHA Polymer blend consisted of poly(vinyl chloride) and poly(3hydroxyalkanoates) Polymer blend consisted of poly(vinyl chloride) and polymeric PVC/PHA_{OA} poly(3-hydroxyalkanoates) derived from oleic acid Polymer blend consisted of poly(vinyl chloride) and polymeric PVC/PHA_{SPKO} poly(3-hydroxyalkanoates) derived from saponified palm kernel oil PVC/PHA_{OA-2.5} Polymer blend consisted of poly(vinyl chloride) and 2.5 phr polymeric poly(3-hydroxyalkanoates) derived from oleic acid Polymer blend consisted of poly(vinyl chloride) and 5 phr PVC/PHA04-5 polymeric poly(3-hydroxyalkanoates) derived from oleic acid PVC/PHA_{SPKO-2.5} Polymer blend consisted of poly(vinyl chloride) and 2.5 phr polymeric poly(3-hydroxyalkanoates) derived from saponified palm kernel oil Polymer blend consisted of poly(vinyl chloride) and 5 phr PVC/PHA_{SPKO-5} polymeric poly(3-hydroxyalkanoates) derived from saponified palm kernel oil rpm Revolutions per minute rRNA **Ribosomal RNA** RT Retention time ΔS Entropy of activation scl-PHA Short-chain-length poly(3-hydroxyalkanoates) **SEM** Scanning Electron Microscopy **SPKO** Saponified palm kernel oil Glass transition temperature T_{g} T_m Melting temperature T_{onset} Temperature at onset degradation Temperature at fastest degradation T_p $tan \delta$ Loss angle tangent TG Thermogravimetry TGA Thermogravimetric Analysis