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ABSTRACT 

Medium-chain-length poly(3-hydroxyalkanoates) (mcl-PHA) are natural 

polyesters of hydroxyl fatty acids, composed of monomers with  6 to 14 carbon atoms 

length. These biopolyesters are primarily synthesized by fluorescent pseudomonads 

under nutrient imbalance, as carbon and energy storage compounds. In this study, mcl-

PHA were produced by Pseudomonas putida PGA1 using oleic acid (OA) and saponified 

palm kernel oil (SPKO) as carbon source in shake flasks and fed-batch fermentations. 

From thermogravimetric analysis (TGA), the mcl-PHA derived from oleic acid (PHAOA) 

showed a drastic decomposition at temperature above 183ºC, while mcl-PHA derived 

from saponified palm kernel oil (PHASPKO) above 196ºC.  Therefore thermal degradation 

of the PHAOA was carried out at temperatures of 160°C, 170°C and 180°C; whereas 

thermal degradation for the PHASPKO was performed at temperatures of 160°C, 170°C, 

180˚C and 190°C, respectively. Changes in the polymer structures and properties before 

and after thermal treatments were studied by TGA, Differential Scanning Calorimetry 

(DSC), Gel Permeation Chromatography (GPC), Gas Chromatography (GC), Fourier 

Transform Infrared (FTIR) Spectroscopy, 400-MHz Proton Nuclear Magnetic Resonance 

(
1
H-NMR) Spectroscopy, and end group analysis.  

Acid values obtained from end group analysis showed that mcl-PHA heat-treated 

at higher temperatures had higher concentration of terminal carboxylic acids and lower 

number average molecular weight (Mn). Based on GC, FTIR and 
1
H-NMR spectroscopic 

analyses on the thermal degradation products, it is suggested that the thermal degradation 

mechanism of mcl-PHA involved random α-chain scission via hydrolytic ester bond 

cleavage, producing a mixture of lower molecular weight oligomeric hydroxyacids. 

Heating above 180˚C in the acidic environment would lead to the dehydration of some 

hydroxyl terminal groups to produce alkenoic acids. These low molecular weight 

oligoesters possess functional terminals and could be used as natural-based plasticizers in 
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PVC compounds. While the common PVC plasticizers, particularly phthalates, are 

known to be detrimental to the environment and human health, the mcl-PHA and its 

oligoesters have the potential to be alternative eco-friendly plasticizers for PVC. On this 

premise, a series of solution-cast blends of poly(vinyl chloride)-poly(3-

hydroxyalkanoates) (PVC-PHA) were prepared to assess whether mcl-PHA and its 

oligoesters could be acted as compatible plasticizers for PVC. Scanning Electron 

Microscopy (SEM), FTIR, 
1
H-NMR, DSC and Dynamic Mechanical Analysis (DMA) 

were conducted to study the microstructure, film morphology, miscibility and 

viscoelastic properties of the PVC-PHA blends. 

SEM micrographs of PVC/PHA films showed that plasticization of PVC involved 

the PHA penetrated in some of the porous structures of PVC, and interfused with PVC 

polymer segments. Both FTIR and 
1
H-NMR spectroscopic analyses suggested the PVC-

PHA miscibility was possibly due to the specific interactions between the ester C=O 

group of PHA with the 
α
H and local dipoles of chlorines of PVC. TGA study was used to 

investigate the thermal stability and thermo-dynamic parameters of the plasticized PVC 

films. Both measurements of DSC and DMA gave consistent results of a single Tg for the 

blends, indicating that mcl-PHA was highly miscible with PVC. Results from DMA also 

showed that mcl-PHA and its oligoesters could reduce the Tg of PVC, imparting 

elasticity to the PVC compounds and therefore decreasing the stiffness of the polymer.  
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ABSTRAK 

Poli(3-hidroksialkanoat) dengan rantai sederhana panjang (mcl-PHA) adalah asid 

lemak hidroksil poliester semulajadi, terdiri daripada monomer yang mempunyai 6 

hingga 14 atom karbon. Biopoliester ini terutamanya disintesis oleh Pseudomonads 

berpendarfluor di bawah ketidakseimbangan nutrien, sebagai komponen simpanan 

karbon dan tenaga. Dalam kajian ini, mcl-PHA telah dihasilkan oleh Pseudomonas 

putida PGA1 menggunakan asid oleik (OA) dan minyak isirung sawit tersaponin (SPKO) 

sebagai sumber karbon dalam proses penapaian menggunakan kelalang goncang dan 

kaedah suapan kelompak. Daripada analisis thermogravimetric (TGA), mcl-PHA yang 

diperolehi daripada asid oleik (PHAOA) menunjukkan dekomposisi drastik pada suhu 

melebihi 183°C, sementara mcl-PHA yang diperolehi daripada minyak isirung sawit 

tersaponin (PHASPKO) melebihi 196°C. Oleh yang demikian, degradasi termal bagi 

PHAOA dijalankan pada suhu 160°C, 170°C dan 180°C; manakala degradasi termal bagi 

PHASPKO dijalankan pada suhu 160°C, 170°C, 180°C dan 190°C, masing-masing. 

Perubahan dalam struktur dan sifat-sifat polimer sebelum dan selepas rawatan termal 

telah dikaji menggunakan TGA, Differential Scanning Calorimetry (DSC), Gel 

Permeation Chromatography (GPC), Gas Chromatography (GC), Fourier Transform 

Infrared (FTIR) Spectroscopy, 400-MHz Proton Nuclear Magnetic Resonance (
1
H-NMR) 

Spectroscopy dan analisis end group.  

Nilai asid yang diperolehi daripada analisis end group menunjukkan mcl-PHA 

yang dipanas pada suhu yang lebih tinggi mempunyai kepekatan terminal asik karbosilik 

yang lebih tinggi dan bilangan purata berat molekul (Mn) yang lebih rendah. Daripada  

analisis GC, FTIR dan 
1
H-NMR ke atas produk degradasi termal, ini mencadangkan 

bahawa mekanisme degradasi termal bagi mcl-PHA melibatkan pemotongan α-rantaian 

secara rawak melalui potongan terhidrolisis pada ikatan ester, menghasilkan campuran 

asid hidroksi oligomer yang mempunyai berat molekul yang lebih rendah.  Pemanasan 
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melebihi 180°C dalam persekitaran berasid mungkin menyebabkan dehidrasi bagi 

sesetengah terminal kumpulan hidroksi dan menghasilkan asid alkenoik. Oligoester yang 

mengandungi berat molekul yang rendah ini mempunyai terminal yang berfungsi dan 

dapat digunakan sebagai plasticizer semulajadi dalam kompaun PVC. Plasticizer PVC 

yang umum, terutamanya phthalates, diketahui membawa mudarat kepada alam sekitar 

dan kesihatan manusia, mcl-PHA dan oligoesternya mempunyai potensi sebagai 

alternatif plasticizer yang mesra alam kepada PVC. Pada premis ini, satu siri ‘solution-

cast’ campuran terdiri daripada poli(vinyl kloride)-poli(3-hidroksialkanoat) (PVC-PHA) 

telah disediakan untuk menilai sama ada mcl-PHA dan oligoesternya boleh bertindak 

sebagai ‘compatible plasticizer’ bagi PVC. Scanning Electron Microscopy (SEM), FTIR, 

1
H-NMR, DSC dan Dynamic Mechanical Analysis (DMA) telah dijalankan untuk 

mengkaji mikrostruktur, morfologi filem, keterlarutcampuran dan sifat-sifat ‘viscoelastic’ 

bagi campuran-campuran PVC-PHA.  

SEM mikrograf bagi PVC/PHA filem menunjukkan bahawa ‘plasticization of 

PVC’ melibatkan penebusan PHA ke dalam struktur berpori PVC, dan menyatu dengan 

segmen polimer PVC. Analisis spektroskopi FTIR dan 
1
H-NMR mencadangkan 

keterlarutcampuran PVC-PHA mungkin disebabkan oleh interaksi khusus antara 

kumpulan ester C=O daripada PHA dengan 
α
H dan ‘local dipoles’ antara klorin daripada 

PVC. Kajian TGA telah digunakan untuk menyelidik kestabilan termal dan parameter-

parameter termo-dinamik untuk filem plasticized PVC. Kedua-dua ukuran daripada DSC 

dan DMA memberi keputusan konsisten, iaitu nilai Tg yang tunggal bagi campuran-

campuran ini, menunjukkan bahawa mcl-PHA adalah sangat ‘miscible’ dengan PVC. 

Keputusan daripada DMA juga menunjukkan bahawa mcl-PHA dan oligoesternya dapat 

menurunkan Tg PVC, memberikan keanjalan kepada kompaun PVC, oleh itu 

mengurangkan keteguhan polimer. 
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