DEVELOPMENT AND VALIDATION OF CHROMATOGRAPHIC METHODS FOR THE DETERMINATION OF MYCOTOXINS IN FOOD

ALA' Y. A. SIRHAN

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

Specially dedicated to:

My mother, wife, daughters and other family members for all their love, support and continuous prayer for my success in completing this work.

ABSTRACT

The development and validation of analytical techniques to be applied for the determination of naturally occurring mycotoxins has been the focus of this study. The structure of this work is divided into four main parts, from which independent conclusions are drawn. The first part is in the development of a rapid, reliable and confirmatory method to determine the levels of aflatoxins B1, B2, G1, and G2 in barley, wheat, soybeans and corn. This method is based on a single extraction step followed by liquid chromatography coupled with electrospray ionization quadrupole time of flight mass spectrometry (LC-ESI-QTOF-MS/MS). The sensitivity of the ESI interface was significantly enhanced by optimizing the chromatographic conditions and the fragmentor voltage in the interface. By using the mycotoxin database table, the mycotoxins were confirmed by their retention times, the accurate mass measurements of the TOF analyzer and the products ions, thus avoiding false-positive results. The quantification of the analytes was carried out by performing low-energy collision induced tandem mass spectrometry (CID-MS/MS) using the multiple reaction monitoring (MRM) mode. Secondly, the implementation and validation of the optimized LC-ESI-QTOF-MS/MS method and the development of a new method based on Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) technique for the determination of eight(8) type-A and type-B trichothecenes in cereal samples are carried out. The recovery results showed that the developed QuEChERS method was effective in removing unwanted interfering components without any further clean-up procedure. Therefore, the use of dispersive

solid-phase extraction (dSPE) cleanup step was excluded to reduce the time and cost of analysis. The third part is focused on optimizing the sample pretreatment conditions of the developed method and the optimization of the chromatographic conditions of the HPLC-FLD method with postcolumn photochemical derivatization for the quantification of four(4) aflatoxins B1, B2, G1 and G2 in food. The extraction solvent was found to be the most important factor as it significantly affects the extraction efficiency. On the other hand, it was found that the wavelengths setting at 365nm excitation and 440nm emission could be used as the optimum wavelengths for all aflatoxins. The developed QuEChERS-HPLC method was then validated and compared with the standard fluorometric determination method. It was found that the fluorometric determination method showed a poorer precision and a positive bias when compared to the QuEChERS-HPLC method. The QuEChERS-HPLC method was then used for the analysis of the selected aflatoxins in a total of 669 domestic and imported food samples in Jordan. Peanut and peanut butter samples showed the highest incidence of contamination (10 contaminations) followed by pistachio nut samples (6 contaminations) and sesame seed samples (2 contaminations). The final component of this study is the implementation and validation of the optimized QuEChERS-HPLC method for the determination of ochratoxin A in cereal samples. Excellent linearity, high recoveries and acceptable precision with the LOQ values, which are lower than the stipulated Maximum Residue Level (MRL), were achieved indicating the suitability of the proposed methods for the determination of mycotoxins in foods could be implemented for routine analysis.

ABSTRAK

Perkembangan dan pengesahan teknik analisis yang digunakan untuk penentuan mikotoksin semulajadi telah menjadi fokus kajian ini. Struktur kerja ini dibahagikan kepada empat bahagian utama, dari mana kesimpulan yang berdikari telah disediakan. Bahagian pertama melibatkan perkembangan satu kaedah yang pantas, diandalkan dan pengesahan untuk menentukan paras aflatoksin B1, B2, G1, G2 dalam barli, gandum, kacang soya dan jagung.Kaedah ini adalah berasaskan kepada langkah pengekstrakan tunggal diikuti oleh kromatografi cecair yang berserta dengan masa kuadrupol pengionan electrospray penerbangan spektrometri jisim (LC-ESI-QTOF-MS/MS).

Kepekaan antara muka ESI telah meningkat dengan ketara melalui yang mengoptimumkan syarat kromatografi dan voltan fragmentor yang dalam antara muka. Dengan menggunakan jadual pangkalan data mikotoksin, mikotoksin boleh disahkan oleh masa tahanan mereka, ukuran jisim yang tepat dari penganalisa TOF dan ion produk, sekaligus mengelakkan keputusan palsu-positif. Kuantifikasi daripada analit diukur dengan melakukan perlanggaran rendah tenaga teraruh sejajar spektrometri jisim (CID-MS/MS) menggunakan pemantauan tindak balas pelbagai mod (MRM). Kedua, pelaksanaan dan pengesahan kaedah LC-ESI-QTOF-MS/MS dioptimumkan dan perkembangan kaedah baru yang berdasarkan Teknik Pantas, Mudah, Murah, Berkesan, Lasak, Dan Selamat (QuEChERS) untuk menentukan lapan(8) jenis A dan jenis B trichothecenes dalam sampel bijirin dijalankan. Keputusan pemulihan menunjukkan bahawa kaedah QuEChERS adalah berkesan dalam menghapuskan komponen gangguan

tanpa prosedur lanjut pembersihan. Oleh itu, penggunaan pengekstrakan serakan fasa pepejal (dSPE) bagi langkah pembersihan tidak termasuk untuk mengurangkan masa dan kos analisis. Bahagian ketiga tertumpu kepada mengoptimakan syarat-syarat prarawatan sampel yang ditentukan dan pengoptimuman syarat-syarat kromatografi dari kaedah HPLC-FLD dengan derivatisasi postkolum foto kimia untuk menghitung sebanyak empat (4) aflatoksin B1, B2, G1 dan G2 di dalam makanan. Pemisahan pelarut didapati menjadi faktor yang paling penting kerana ketara memberi kesan kepada kecekapan pengekstrakan. Sebaliknya, ia telah mendapati bahawa panjang gelombang yang menetapkan pada pengujaan 365nm dan pemancaran 440nm boleh digunakan sebagai panjang gelombang optimum untuk semua aflatoksin. Kaedah QuEChERS-HPLC yang dikembangkan kemudian disahkan dan berbanding dengan kaedah penentuan fluorometrik yang biasa. Ia telah mendapati bahawa kaedah penentuan fluorometrik mempunyai ketepatan yang kurang dan berat sebelah positif berbanding kepada kaedah QuEChERS HPLC. Kaedah QuEChERS- HPLC kemudiannya digunakan untuk analisis aflatoksin terpilih dalam sejumlah 669 sampel makanan domestik dan import di Jordan. Sampel mentega kacang dan kacang menunjukkan insiden kontaminasi tertinggi (10 kontaminasi) diikuti oleh sampel kacang pistachio (6 kontaminasi) dan sampel biji bijan (2 kontaminasi). Komponen kajian terakhir ini adalah pelaksanaan dan pengesahan kaedah QuEChERS-HPLC dioptimumkan bagi penentuan ochratoxin A dalam sampel bijirin. Kelinearan yang cemerlang, kutipan semula yang tinggi dan ketepatan yang boleh diterima dengan nilai LOQ, yang adalah lebih rendah daripada yang ditetapkan untuk Residu Tahap Maksimum (MRL) telah dicapai menunjukkan kesesuaian kaedah yang dicadangkan untuk menentukan mikrotoksin dalam makanan yang boleh dilaksanakan untuk analisis rutin.

ACKNOWLEDGEMENT

All praise is to ALLAH and blessing is upon Prophet Mohammed whose ultimate guidance creates a more meaningful purpose to this work.

First and foremost, my most sincere and profound appreciation to my supervisors Professor Prof. Dr. Tan Guan Huat and Associate Professor Dr. Richard Wong for Keen supervision and advice in assisting me to complete this thesis. Their valuable guidance was essential during the course of my work.

My gratitude also goes out to the Malaysian government for the valuable financial aid provided which greatly contributed towards the successful completion of my thesis. A special word of thanks goes to the University of Malaya for providing the opportunity and facilities to undertake this research work.

My heartfelt thanks also go out to my mother, wife and other family members for their encouragements, supports, patience, tolerance and understanding.

CONTENTS

List of Figures xiii

List of Tables xvi

List of Abbreviations xvii

1. INTRODUCTION

- **1.1.** Definitions of mycotoxins 1
- **1.2.** Diversity and impact of mycotoxins 4

1.3. Current situation of mycotoxins 6

- **1.4.** Mycotoxins selected for this study 7
 - 1.4.1. Aflatoxins 7 Physical and chemical properties of the aflatoxins 8
 - 1.4.2. Ochratoxin 11*Physical and chemical properties of the ochratoxins* 12
 - 1.4.3. Trichothecenes13Physical and chemical properties of the trichothecenes15

1.5. Scope and Objective of Study 18

2. REVIEW OF ANALYTICAL METHODS FOR MYCOTOXINS ANALYSIS IN FOOD

2.1. Introduction 20

2.2. Sampling strategy 21

2.3. Sample Preparation 22

- 2.3.1. Liquid-liquid extraction (LLE) 22
- 2.3.2. Solid-phase extraction (SPE) 24
- 2.3.3. Immunoaffinity Columns (IAC) 26

- 2.3.4. Supercritical Fluid Extraction (SFE) 28
- 2.3.5. Accelerated Solvent Extraction (ASE) 31
- 2.3.6. Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS) 34

2.4. Qualitative Analysis of Mycotoxins 37

- 2.4.1. Enzyme Linked Immuno-Sorbent Assay (ELISA) 37
- 2.4.2. Fluorescent Polarization Immunoassay (FPIA) 43

2.5. Quantitative Analysis of Mycotoxins 45

- 2.5.1. Gas Chromatography (GC) 45
- 2.5.2. Liquid Chromatography (LC) 48
- 2.5.3. Thin Layer Chromatography (TLC) 51

3. DETERMINATION OF AFLATOXINS IN CEREALS USING LIQUID CHROMATOGRAPHY COUPLED WITH ELECTROSPRAY IONIZATION QUADRUPOLE TIME OF FLIGHT MASS SPECTROMETRY (LC-ESI-QTOF-MS/MS)

3.1. Introduction and scope of the work 54

3.2. Experimental 55

- 3.2.1. Reagents and materials 55
- 3.2.2. Sample preparation 56
- 3.2.3. Analytical procedure 56
- 3.2.4. Instrumental conditions 57
- 3.2.5. Food samples 57

3.3. Results and discussion 58

- 3.3.1. Optimization of the liquid chromatography (LC) conditions 58
- 3.3.1.1. Effects of mobile phase composition 58
- 3.3.1.2. Effects of mobile phase flow rate 61
- 3.3.2. Optimization of the ESI parameters 62
- 3.3.2.1. Effects of capillary voltage 62
- 3.3.2.2. Effects of fragmentor voltage 63
- 3.3.2.3. Effects of drying gas 65

3.3.2.4. Effects of sheath gas 67

3.3.2.5. Effects of nebulizer pressure and nozzle voltage 69

- 3.3.3. Accurate mass measurements 71
- 3.3.4. Selection of product ions 73
- 3.3.5. Aflatoxin database table 78
- 3.3.6. Sample pretreatment optimization 79
- 3.3.7. Method validation 82
- 3.3.8. Sample analysis 86
- 3.4. Conclusion 86

4. SIMULTANEOUS DETECTION OF TYPE A AND TYPE B TRICHOTHECENES IN CEREALS BY LIQUID CHROMATOGRAPHY COUPLED WITH ELECTROSPRAY IONIZATION QUADRUPOLE TIME OF FLIGHT MASS SPECTROMETRY (LC-ESI-QTOF-MS/MS)

4.1. Introduction and scope of the work 88

4.2. Experimental 90

- 4.2.1. Reagents and materials 90
- 4.2.2. Sample preparation 90
- 4.2.3. Analytical procedure 91
- 4.2.4. Instrumental conditions 91
- 4.2.5. Food samples 92

4.3. Results and discussion 93

- 4.3.1. QuEChERS method development 93
- 4.3.2. Optimization of the Liquid chromatography (LC) conditions 96
- 4.3.3. Optimization of the ESI parameters 103
- 4.3.4. Accurate mass measurements 105
- 4.3.5. Selection of product ions 106
- 4.3.6. Trichothecene database table 114
- 4.3.7. Method validation 116
- 4.3.8. Sample analysis 120

4.4. Conclusion 121

5. QuEChERS-HPLC METHOD FOR AFLATOXIN DETECTION OF DOMESTIC AND IMPORTED FOOD IN JORDAN

5.1. Introduction and scope of the work 122

5.2. Experimental 124

- 5.2.1. Reagents and materials 124
- 5.2.2. QuEChERS-HPLC method 124
- 5.2.2.1. Sample preparation 124
- 5.2.2.2. HPLC analysis 125
- 5.2.3. Fluorometric Determination 126
- 5.2.3.1. Sample preparation 126
- 5.2.3.2. Measurement 126
- 5.2.4. Food samples 127

5.3. Results and discussion 127

- 5.3.1. QuEChERS -HPLC method 127
- 5.3.1.1. Optimization of HPLC conditions 127
- 5.3.1.2. Sample pretreatment optimization 133
 - 5.3.1.2.1. Determination of the optimum duration and method of extraction 133
 - 5.3.1.2.2. Determination of the appropriate type and amount of drying agent 135
 - 5.3.1.2.3. Effect of Dilution on Sample Extraction 138
 - 5.3.1.2.4. Optimization of the Extraction solvent 139
- 5.3.1.3. Method validation 144
- 5.3.2. Fluorometric method 149
- 5.3.3. Sample analysis 150
- 5.4. Conclusion 154

6. QUECHERS EXTRACTION AND HPLC-FLD DETERMINATION OF OCHRATOXIN A IN CEREALS AND CEREAL PRODUCTS

6.1. Introduction and scope of the work 155

6.2. Experimental 156

- 6.2.1. Reagents and materials 156
- 6.2.2. Sample preparation 157
- 6.2.3. HPLC analysis 158
- 6.2.4. Food samples 158

6.3. Results and discussion 159

- 6.3.1. Optimization of analytical conditions 159
- 6.3.2. Sample pretreatment optimization 162
- 6.3.3. Method validation 166
- 6.3.4. Sample analysis 169

6.4. Conclusion 169

REFERNCES 170

7. LIST OF PUBLICATIONS AND PRESENTATIONS 181

8. LIST OF INTERNATIONAL CONFERENCES 182

LIST OF FIGURES

Figure 1.1	Chemical structures of aflatoxin B1, B2, G1, G2, M1 and M2	10
Figure 1.2	Chemical structures of ochratoxin A, B and C	12
Figure 1.3	Chemical structures of NIV, DON and FUS X	17
Figure 1.4	Chemical structures of 3-ADON, 15-ADON, DAS, HT-2 and T-2	18
Figure 3.1	Effects of mobile phase composition on the chromatographic peak areas of	59
-	aflatoxins B1 and G1	
Figure 3.2	Effects of percentage of the organic solvent in the mobile phase on the	60
_	chromatographic peak areas of aflatoxins B1 and G1	
Figure 3.3	LC–QTOF Chromatogram of aflatoxin standard solutions containing	61
-	100 μ g/L of aflatoxin B1 and G1 and 30 μ g/L of aflatoxin B2 and G2	
Figure 3.4	Effects of mobile phase flow rate on the chromatographic peak areas of	62
	aflatoxins B1 and G1	
Figure 3.5	Effects of the capillary voltage on the chromatographic peak areas for both	63
	aflatoxins B1 and G1	
Figure 3.6	Effects of the fragmentor voltage on the chromatographic peak areas for	64
	both aflatoxins B1 and G1	
Figure 3.7	Effects of the flow of the drying gas on the chromatographic peak areas for	65
	both aflatoxins B1 and G1	
Figure 3.8	Effects of the drying gas temperature on the chromatographic peak areas	66
	for both aflatoxins B1 and G1	
Figure 3.9	Effects of the sheath gas temperature on the chromatographic peak areas	67
	for both aflatoxins B1 and G1	
Figure 3.10	Effects of the sheath gas flow on the chromatographic peak areas for both	68
	aflatoxins B1 and G1	
Figure 3.11	Effects of the nebulizer pressure on the chromatographic peak areas for	69
	both aflatoxins B1 and G1	
Figure 3.12	Effects of the nozzle voltage on the chromatographic peak areas for both	70
	aflatoxins B1 and G1	
Figure 3.13	Full scan ESI (+) production mass spectra of aflatoxin B1	71
Figure 3.14	Full scan ESI (+) production mass spectra of aflatoxin B2	71
Figure 3.15	Full scan ESI (+) production mass spectra of aflatoxin G1	72
Figure 3.16	Full scan ESI (+) production mass spectra of aflatoxin G2	72
Figure 3.17	The mass spectra and the proposed fragmentation scheme of aflatoxin B1	74
Figure 3.18	The mass spectra and the proposed fragmentation scheme of aflatoxin B2	75
Figure 3.19	The mass spectra and the proposed fragmentation scheme of aflatoxin G1	76
Figure 3.20	The mass spectra and the proposed fragmentation scheme of aflatoxin G2	77
Figure 3.21	Comparison of the percentage of recoveries of aflatoxin B1 and G1 spiked	80
	at 10 μ g/kg and aflatoxin B2 and G2 at 3 μ g/kg of wheat samples after	
	dilution with different proportions of mobile phase	
Figure 3.22	Comparison of the chromatograms of aflatoxin B1 and G1 spiked at 10	82
	$\mu g/kg$ and aflatoxin B2 and G2 at 3 $\mu g/kg$ of wheat samples after dilution	
	with different proportions of mobile phase	

xiii

Figure 4.1	Full scan ESI (-) production mass spectra and the structures of NIV	97		
Figure 4.2	Full scan ESI (-) production mass spectra and the structures of DON			
Figure 4.3	Full scan ESI (-) production mass spectra and the structures of FUS X			
Figure 4.4	Full scan ESI (-) production mass spectra and the structures of 3-ADON			
	and 15-ADON			
Figure 4.5	Full scan ESI (+) production mass spectra and the structures of DAS	99		
Figure 4.6	Full scan ESI (+) production mass spectra and the structures of HT-2	100		
Figure 4.7	Full scan ESI (+) production mass spectra and the structures of T-2			
Figure 4.8	Extract ion chromatogram (EIC) (LC/QTOF-MS/MS) of separation of a	102		
-	trichothecenes mixture solution containing 600 µg/kg for each toxin.			
	Vertical line illustrates change of ionization polarities from negative to			
	positive (10 min)			
Figure 4.9	Effects of the fragmentor voltage on the peak area% of type -B	104		
	trichothecenes			
Figure 4.10	Effects of the fragmentor voltage on the peak area% of type-A	105		
-	trichothecenes			
Figure 4.11	The mass spectra and the proposed fragmentation scheme of NIV	107		
Figure 4.12	The mass spectra and the proposed fragmentation scheme of DON	108		
Figure 4.13	The mass spectra and the proposed fragmentation scheme of FUS X	109		
Figure 4.14	The mass spectra and the proposed fragmentation scheme of 3-ADON	110		
Figure 4.15	The mass spectra and the proposed fragmentation scheme of DAS	111		
Figure 4.16	The mass spectra and the proposed fragmentation scheme of HT-2	112		
Figure 4.17	The mass spectra and the proposed fragmentation scheme of T-2	113		
Figure 5.1	HPLC chromatogram of aflatoxin standard solutions containing 100 µg/L	128		
	of aflatoxin B1 and G1 and 30 µg/L of aflatoxin B2 and G2			
Figure 5.2	Representative HPLC chromatogram of a naturally contaminated pistachio	131		
	nut sample			
Figure 5.3	Effect of excitation and emission wavelength (nm) on the chromatographic	132		
	peak areas of aflatoxins B1, B2, G2 and G1			
Figure 5.4	Effects of duration and method of extraction on the recovery of aflatoxin	134		
	B1, B2, G2 and G1			
Figure 5.5	Comparison between drying agent type as well as comparison between a	136		
	cooled falcon tube and non-cooled falcon tube effect on the recovery of			
	aflatoxin B1, B2, G2 and G1			
Figure 5.6	Effects of addition of various amounts of anhydrous MgSO4 on the	137		
	recovery of aflatoxin B1, B2, G2 and G1			
Figure 5.7	Effects of dilution of the sample extract on the recovery of aflatoxin B1,	139		
	B2, G2 and G1			
Figure 5.8	An overlay contour plot (mixture profiler) of aflatoxins recovery with 21	141		
	experimental points (the black dot point). The non-colored area as shown			
	indicates the desirability of aflatoxins recovery (85-105%).			
Figure 5.9	The profiler in "Maximum Desirability in Profiler for Mixture Analysis,"	142		
	displays optimal settings of 0.36 for water, 0.21 for methanol and 0.43 for			
	acetonitrile, which give an estimated recovery between 91% and 101% of			
	peanut samples spiked at 10.0 μ g/L of aflatoxin B1 and G1 and 3.0 μ g/L of			
	aflatoxin B2 and G2			
Figure 5.10	The profiler in "Maximum Desirability in Profiler for Mixture Analysis,"	143		
		xiv		

displays optimal settings of 0.60 for methanol and 0.40 for acetonitrile, which give an estimated recovery between 86% and 104% of peanut samples spiked at 10.0 μ g/L of aflatoxin B1 and G1 and 3.0 μ g/L of aflatoxin B2 and G2

- Figure 5.11HPLC chromatogram of aflatoxin standard solutions containing 3.125145µg/L of aflatoxin B1 and G1 and 0.938 µg/L of aflatoxin B2 and G2
- Figure 5.12Comparison between TLC-Fluorometer method and QuEChERS- HPLC153method on incidence of contamination for various sample categories
- **Figure 6.1** Representative HPLC chromatogram of blank wheat sample spiked at 10 $\frac{160}{\mu g/kg}$ of OTA
- Figure 6.2Effect of excitation and emission wavelength (nm) on the chromatographic161peak area of OTA
- **Figure6.3** An overlay contour plot (mixture profiler) of OTA recovery with 9 **163** experimental points (the black dot point). The non-colored area as shown indicates the desirability of OTA recovery (85-105%).
- **Figure6.4** The profiler in "Maximum Desirability in Profiler for Mixture Analysis," **164** displays optimal settings (rounded) of 0.43 for water, 0.57 for acetonitrile, and 0.0 for acetic acid, which give an estimated recovery of 1 (100%) of blank wheat samples spiked at 10.0 μg/L of OTA.
- Figure 6.5 The profiler in "Maximum Desirability in Profiler for Mixture Analysis," 165 displays optimal settings (rounded) of 0.20 for water, 0.70 for acetonitrile, and 0.10 for acetic acid, which give an estimated recovery of 1 (100%) of blank wheat samples spiked at 10.0 μg/L of OTA.

LIST OF TABLES

Table 1.1	Classification of mycotoxin producing fungi	3	
Table 1.2	Some common mycotoxins with their possible health effects and		
	affected commodities		
Table 1.3	Chemical and physical properties of aflatoxins	9	
Table 1.4	Chemical and physical properties of OTA	13	
Table 1.5	Chemical and physical properties of trichothecenes	16	
Table 3.1	Accurate mass information of the measured aflatoxins	73	
Table 3.2	Aflatoxin database table	79	
Table 3.3	Linearity range, Equation, r ² value and RSD of aflatoxins	83	
Table 3.4	Mean of recoveries and RSDs of aflatoxins spiked into blank barley, wheat,	84	
	soybean and corn samples at different spiking levels $(n = 3)$		
Table 3.5	The intra-day precision and inter-day precision of aflatoxins expressed as RSD	85	
Table 3.6	LOD and LOQ of aflatoxins	85	
Table 3.7	Occurrence of aflatoxins in cereals and cereal products samples in the month of December 2010	86	
Table 4.1	Assessment of different extraction solvents in wheat (1.0 g) samples spiked at 500 μ g/kg level (n = 5)		
Table 4.2	Accurate mass information of the measured trichothecenes	106	
Table 4.3	Trichothecene database table	115	
Table 4.4	Linear regression equation, r^2 value, LOD and LOQ of trichothecenes	116	
Table 4.5	Mean of recoveries and RSDs (n=5) of trichothecenes spiked into blank wheat, wheat product, rice, rice product and corn samples at two spiking levels	118	
Table 4.6	Intra- and inter-day precision of trichothecenes	119	
Table 4.7	Occurrence of trichothecenes in cereals and cereal products samples in the month of December 2009	120	
Table 5.1	Retention time, area %, tailing factor, resolution and theoretical plate number / column length (HETP) of aflatoxins	130	
Table 5.2	Linearity range, Equation, and r ² value of aflatoxins	144	
Table 5.3	Mean of recoveries and RSDs (n=5) of aflatoxins spiked into clean wheat, corn, rice, pistachio nut, peanut, almond and sesame seed samples at three spiking levels using QuEChERS-HPLC method	146	
Table 5.4	LOD and LOQ of aflatoxins	148	
Table 5.5	The intra-day precision and inter-day precision of aflatoxins expressed as RSD values	148	
Table 5.6	Mean of recoveries and RSD values (n=5) of total aflatoxins spiked into clean wheat, corn, rice, pistachio, peanut, almond and sesame samples at two spiking levels using fluorometric method	149	
Table 5.7	Occurrence of aflatoxins in commercial Jordanian foods from January, 2009	152	
	x	vi	

	to November, 2011	
Table 6.1	Mean of recoveries and RSD values (n=5), LOD and LOQ of OTA	167
Table 6.2	The intra-day precision and inter-day precision of OTA expressed as RSD values	168
Table 6.3	Occurrence of OTA in cereals and cereal products samples in the month of December 2010	168

LIST OF ABBREVIATIONS

15-ADON	15-Acetyldeoxynivalenol
3-ADON	3-Acetyldeoxynivalenol
ADON	Acetyldeoxynivalenol
ANOVA	Analysis of Variance
AOAC	Journal of Association of Official Analytical Chemists
C18 silica	Octadecylsilane
CE	Capillary Electrophoresis
CEN	European Committee of Standardization
DAD	Diode Array Detector
DAS	Diacetoxyscirpenol
DON	Deoxynivalenol
dSPE	Dispersive Solid Phase Extraction
ELISA	Enzyme-Linked Immunosorbent Assay
EDI	Electrodeionization
ESI	Electrospray Ionization Source
EU	European Union
FAO	Food and Agriculture Organization
FLD	Fluorescence Detector
FUS X	Fusarenon-X
GC	Gas Chromatography
GC x GC-TOF-	Two-Dimensional Gas Chromatography-Time-Of-Flight Mass
MS	Spectrometry
GC-MS	Gas Chromatography Coupled with Mass Spectrometry
HETP	Theoretical Plate Number / Column Length
HFB	Heptafluorobutyl
HFBA	Heptafluorobutyric Anhydride
HPLC	High Performance Liquid Chromatography
HPLC-DAD	High Performance Liquid Chromatography Coupled with
	Diode Array Detector
HPLC-FLD	High Performance Liquid Chromatography Coupled with
	Fluorescence Detector
HT-2	HT-2 Toxin
IAC	Immunoaffinity Column
IARC	International Agency for Research on Cancer
JECFA	Joint FAO / WHO Expert Committee on Food Additives
JISM	Jordan Institution for Standards & Metrology
LC-ESI-MS	Liquid Chromatography coupled with Electrospray Ionization-
	Mass Spectrometry
LC-ESI-QTOF-	Liquid Chromatography coupled with Electrospray Ionization
MS/MS	Quadrupole Time Of Flight Mass Spectrometry
LC-MSMS	Liquid Chromatography Coupled with Tandem Mass
	Spectrometry

LLE	Liquid-Liquid Extraction
LOD	Limit of Detection
LOQ	Limit of Quantification
LSE	Liquid-Solid Extraction
NIV	Nivalenol
NPLC	Normal-Phase Liquid Chromatography
PFP	Pentfluoropropyl
PFPA	Pentafluoropropionic Anhydride
Rf	Retention Factor
PHRED	Photochemical Reactor for Enhanced Detection
PSA	Primary and Secondary Amine
RPLC	Reversed-Phase Liquid Chromatography
RSD	Relative Standard Deviation
S/N	Signal-to-Noise Ratio
SFE	Supercritical Fluid Extraction
SIM	Selected Ion Monitoring
SPE	Solid-Phase Extraction
T-2	T-2 Toxin
TFA	Trifluoroacyl
TFAA	Trifluoroacetic Acid Anhydride
TLC	Thin Layer Chromatography
TMS	Trimethylsilyl
UVD	Ultraviolet-Visible Detection
UV-Vis	Ultraviolet-Visible