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ABSTRACT 

 

The development and validation of analytical techniques to be applied for the 

determination of naturally occurring mycotoxins has been the focus of this study. The 

structure of this work is divided into four main parts, from which independent 

conclusions are drawn. The first part is in the development of a rapid, reliable and 

confirmatory method to determine the levels of aflatoxins B1, B2, G1, and G2 in barley, 

wheat, soybeans and corn. This method is based on a single extraction step followed by 

liquid chromatography coupled with electrospray ionization quadrupole time of flight 

mass spectrometry (LC-ESI-QTOF-MS/MS). The sensitivity of the ESI interface was 

significantly enhanced by optimizing the chromatographic conditions and the fragmentor 

voltage in the interface. By using the mycotoxin database table, the mycotoxins were 

confirmed by their retention times, the accurate mass measurements of the TOF analyzer 

and the products ions, thus avoiding false-positive results. The quantification of the 

analytes was carried out by performing low-energy collision induced tandem mass 

spectrometry (CID-MS/MS) using the multiple reaction monitoring (MRM) mode. 

Secondly, the implementation and validation of the optimized LC-ESI-QTOF-MS/MS 

method and the development of a new method based on Quick, Easy, Cheap, Effective, 

Rugged, and Safe (QuEChERS) technique for the determination of eight(8) type-A and 

type-B trichothecenes in cereal samples are carried out. The recovery results showed that 

the developed QuEChERS method was effective in removing unwanted interfering 

components without any further clean-up procedure. Therefore, the use of dispersive 
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solid-phase extraction (dSPE) cleanup step was excluded to reduce the time and cost of 

analysis. The third part is focused on optimizing the sample pretreatment conditions of 

the developed method and the optimization of the chromatographic conditions of the 

HPLC-FLD method with postcolumn photochemical derivatization for the quantification 

of four(4) aflatoxins B1, B2, G1 and G2 in food. The extraction solvent was found to be 

the most important factor as it significantly affects the extraction efficiency. On the other 

hand, it was found that the wavelengths setting at 365nm excitation and 440nm emission 

could be used as the optimum wavelengths for all aflatoxins. The developed QuEChERS-

HPLC method was then validated and compared with the standard fluorometric 

determination method. It was found that the fluorometric determination method showed a 

poorer precision and a positive bias when compared to the QuEChERS-HPLC method. 

The QuEChERS-HPLC method was then used for the analysis of the selected aflatoxins 

in a total of 669 domestic and imported food samples in Jordan.  Peanut and peanut butter 

samples showed the highest incidence of contamination (10 contaminations) followed by 

pistachio nut samples (6 contaminations) and sesame seed samples (2 contaminations). 

The final component of this study is the implementation and validation of the optimized 

QuEChERS-HPLC method for the determination of ochratoxin A in cereal samples. 

Excellent linearity, high recoveries and acceptable precision with the LOQ values, which 

are lower than the stipulated Maximum Residue Level (MRL), were achieved indicating 

the suitability of the proposed methods for the determination of mycotoxins in foods 

could be implemented for routine analysis.  
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ABSTRAK 

 

Perkembangan dan pengesahan teknik analisis yang digunakan untuk penentuan 

mikotoksin semulajadi telah menjadi fokus kajian ini. Struktur kerja ini dibahagikan 

kepada empat bahagian utama, dari mana kesimpulan yang berdikari telah disediakan. 

Bahagian pertama melibatkan perkembangan satu kaedah yang pantas, diandalkan dan 

pengesahan untuk menentukan paras aflatoksin B1, B2, G1, G2 dalam barli, gandum, 

kacang soya dan jagung.Kaedah ini adalah berasaskan kepada langkah pengekstrakan 

tunggal diikuti oleh kromatografi cecair yang berserta dengan masa kuadrupol pengionan 

electrospray penerbangan spektrometri jisim (LC-ESI-QTOF-MS/MS). 

Kepekaan antara muka ESI telah meningkat dengan ketara melalui yang 

mengoptimumkan syarat kromatografi dan voltan fragmentor yang dalam antara muka. 

Dengan menggunakan jadual pangkalan data mikotoksin, mikotoksin boleh disahkan oleh 

masa tahanan mereka, ukuran jisim yang tepat dari penganalisa TOF dan ion produk, 

sekaligus mengelakkan keputusan palsu-positif. Kuantifikasi daripada analit diukur 

dengan melakukan perlanggaran rendah tenaga teraruh sejajar spektrometri jisim (CID-

MS/MS) menggunakan pemantauan tindak balas pelbagai mod (MRM). Kedua, 

pelaksanaan dan pengesahan kaedah LC-ESI-QTOF-MS/MS dioptimumkan dan 

perkembangan kaedah baru yang berdasarkan Teknik Pantas, Mudah, Murah, Berkesan, 

Lasak, Dan Selamat (QuEChERS) untuk menentukan lapan(8) jenis A dan jenis B 

trichothecenes dalam sampel bijirin dijalankan. Keputusan pemulihan menunjukkan 

bahawa kaedah QuEChERS adalah berkesan dalam menghapuskan komponen gangguan 
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tanpa prosedur lanjut pembersihan. Oleh itu, penggunaan pengekstrakan serakan fasa 

pepejal (dSPE) bagi langkah pembersihan tidak termasuk untuk mengurangkan masa dan 

kos analisis. Bahagian ketiga tertumpu kepada mengoptimakan syarat-syarat prarawatan 

sampel yang ditentukan dan pengoptimuman syarat-syarat kromatografi dari kaedah 

HPLC-FLD dengan derivatisasi postkolum foto kimia untuk menghitung sebanyak empat 

(4) aflatoksin B1, B2, G1 dan G2 di dalam makanan. Pemisahan pelarut didapati menjadi 

faktor yang paling penting kerana ketara memberi kesan kepada kecekapan 

pengekstrakan. Sebaliknya, ia telah mendapati bahawa panjang gelombang yang 

menetapkan pada pengujaan 365nm dan pemancaran 440nm boleh digunakan sebagai 

panjang gelombang optimum untuk semua aflatoksin. Kaedah QuEChERS-HPLC yang 

dikembangkan kemudian disahkan dan berbanding dengan kaedah penentuan 

fluorometrik yang biasa. Ia telah mendapati bahawa kaedah penentuan fluorometrik 

mempunyai ketepatan yang kurang dan berat sebelah positif berbanding kepada kaedah 

QuEChERS HPLC. Kaedah QuEChERS- HPLC kemudiannya digunakan untuk analisis 

aflatoksin terpilih dalam sejumlah 669 sampel makanan domestik dan import di Jordan. 

Sampel mentega kacang dan kacang menunjukkan insiden kontaminasi tertinggi (10 

kontaminasi) diikuti oleh sampel kacang pistachio (6 kontaminasi) dan sampel biji bijan 

(2 kontaminasi). Komponen kajian terakhir ini adalah pelaksanaan dan pengesahan 

kaedah QuEChERS-HPLC dioptimumkan bagi penentuan ochratoxin A dalam sampel 

bijirin. Kelinearan yang cemerlang, kutipan semula yang tinggi dan ketepatan yang boleh 

diterima dengan nilai LOQ, yang adalah lebih rendah daripada yang ditetapkan untuk 

Residu Tahap Maksimum (MRL) telah dicapai menunjukkan kesesuaian kaedah yang 

dicadangkan untuk menentukan mikrotoksin dalam makanan yang boleh dilaksanakan 

untuk analisis rutin. 
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Liquid Chromatography coupled with Electrospray Ionization 
Quadrupole Time Of Flight Mass Spectrometry 

LC-MSMS  Liquid Chromatography Coupled with Tandem Mass 
Spectrometry 
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LLE Liquid-Liquid Extraction 
LOD Limit of Detection 
LOQ Limit of Quantification 
LSE Liquid-Solid Extraction 
NIV Nivalenol 
NPLC Normal-Phase Liquid Chromatography  
PFP Pentfluoropropyl  
PFPA Pentafluoropropionic Anhydride  
Rf Retention Factor  
PHRED Photochemical Reactor for Enhanced Detection 
PSA Primary and Secondary Amine 
RPLC Reversed-Phase Liquid Chromatography  
RSD Relative Standard Deviation 
S/N Signal-to-Noise Ratio 
SFE Supercritical Fluid Extraction  
SIM Selected Ion Monitoring 
SPE Solid-Phase Extraction 
T-2  T-2 Toxin 
TFA Trifluoroacyl  
TFAA Trifluoroacetic Acid Anhydride  
TLC Thin Layer Chromatography 
TMS Trimethylsilyl  
UVD Ultraviolet-Visible Detection 
UV-Vis Ultraviolet-Visible  
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 


