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ABSTRACT  

 

In this work, the physical properties i.e. density, viscosity and CO2 solubility 

studies were conducted on the aqueous systems of N-methyldiethanolamine 

(MDEA) and guanidinium trifluoromethanesulfonate [gua][OTf].  The studies were 

carried out at various concentration of MDEA (1 – 4 M) and [gua][OTf] (0.1 – 2 M). 

The temperature and pressure were also varied depending on the study involved.  

 

The studies on densities and viscosities of binary ([gua][OTf] - H2O) and 

ternary ([gua][OTf] - MDEA - H2O) systems were carried out at a wide temperature 

range from 293 to 363 K and at atmospheric pressure. The results show that the 

density and viscosity were strongly affected by the presence of water. Correlations 

for both viscosity and density for binary and ternary systems were ± 3.5 % in 

temperature ranges from 293 and 363 K except 2M2G and 1M3G have shown 

deviation up to 9.587 %. Also, binary systems of [gua][OTf] – H2O i.e. 0M0.1G, 

0M0.3G, 0M0.5G, 0M0.7G, 0M0.9, 0M1G and 0M4G showed higher deviation in 

viscosities which is up to 8.442 %.  

 

As for solubility studies, this work was focused in determining the ability of 

aqueous binary ([gua][OTf] – H2O) and ternary (MDEA – [gua][OTf] – H2O) 

systems in capturing CO2 at high pressures. The experiments were conducted at CO2 

partial pressures from 500 to 3000 kPa and temperatures at 303, 323 and 333 K. It 

has been found that the effect of partial pressures was most pronounced for 1 M 

aqueous [gua][OTf] (0M1G) which showed a competitive performance in capturing 

CO2, up to 1.63 mol CO2/ total mol system at 323.2 K and 3000 kPa, as compared to 
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other pure ionic liquids such as [emim][C2N3], [emim][MDEGSO4] and 

[emim][OTf] with 0.8132, 0.9587 and 1.0753 mol CO2/ total mol system, 

respectively, which were also recorded in the same environments. The solubility to 

pressure data also supported that 0M1G is involved mainly in physical absorption 

and the effect of partial pressure was more significant at lower alkanolamine 

concentration. Correlations of solubility as a function of pressure and temperature 

have been determined with difference of ± 0.957 %. 

 

 The solubility was also measured at lower partial pressure of CO2 at 10, 50 

and 100 kPa and temperature 303.2 K. This experiment was predominantly on 

chemical absorption and it showed that the addition of 1 M [gua][OTf] induced 14 

% of CO2 solubility at 303.2 K and 100 kPa of the CO2 partial pressure as compared 

to 1 M [bmim][BF4], in 4 M MDEA. Also, the solubility of CO2 in 4 M [gua][OTf] 

gave 27.5 % higher CO2 loading compared to 1 M [gua][OTf]. Compared to 4 M 

MDEA, the CO2 loading of blended system 4M1G was found to be slightly lower 

i.e. 0.6498 mol CO2/ total mol system at 100 kPa. The presence of [gua][OTf] could 

not make up the loss of the CO2 absorption capacity of MDEA due to the reducing 

amount of water with increasing amount of [gua][OTf] as physical absorption of 

CO2 will only play a significant role at high operating pressure. The R2 values from 

plot of PCO2 versus (αCO2
2/ 1 - αCO2) range from 0.94232 to 0.96272 for partial 

pressure between 0 - 100 kPa. These R2 values were finely fitted.  
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  ABSTRAK 

 

Kajian mengenai ciri-ciri fizikal seperti ketumpatan, kelikatan and kelarutan 

CO2 bagi sistem N-methyldiethanolamine (MDEA) (1 – 4 M) dan guanidinium 

trifluorometanasulfonat [gua][OTf] (0.1 – 2 M) telah dilakukan. Suhu dan tekanan 

dipelbagaikan bergantung kepada kajian yang terlibat. 

 

Kajian mengenai ketumpatan dan kelikatan sistem binari ([gua][OTf] - H2O) 

dan ternari ([gua][OTf] - MDEA - H2O) dijalankan pada tekanan atmosfera dan suhu 

bermula 293 ke 363 K. Keputusan eksperimen menunjukkan ketumpatan dan 

kelikatan dipengaruhi oleh kuantiti air dalam sistem. Peratus perbezaan antara 

kelikatan dan ketumpatan yang didapati dari eksperimen dan pengiraan bagi sistem 

binari dan ternari adalah ± 3.5 % pada suhu antara 293 dan 363 K kecuali 2M2G dan 

1M3G yang menunjukkan 9.587 %. Dalam pada itu, sistem binari [gua][OTf] – H2O 

i.e. 0M0.1G, 0M0.3G, 0M0.5G, 0M0.7G, 0M0.9, 0M1G dan 0M4G menunjukkan 

perbezaan kelikatan yang lebih besar sehingga 8.442 %.  

 

Manakala, bagi kelarutan CO2, kajian ini memberi fokus kepada penentuan 

kebolehan sistem akuas binari ([gua][OTf] – H2O) dan ternari (MDEA – [gua][OTf] 

– H2O) dalam menjerap CO2 pada tekanan tinggi. Eksperimen dijalankan pada 

tekanan separa CO2 bermula dari 500 ke 3000 kPa dan suhu pada 303, 323 dan 333 

K. Kajian mendapati kesan tekanan separa paling ketara pada 1 M akuas [gua][OTf] 

(0M1G) yang mana turut menunjukkan kelarutan CO2 sebanyak 1.63 mol CO2/ 

jumlah mol sistem pada 323.2 K dan 3000 kPa, berbanding cecair ionik yang lain 

seperti [emim][C2N3], [emim][MDEGSO4] dan [emim][OTf] dengan 0.8132, 0.9587  
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and 1.0753 mol CO2/ jumlah mol sistem yang mana turut dicatat pada keadaan yang 

sama. Kesan ketara terhadap kelarutan CO2 oleh 0M1G pada perubahan tekanan 

separa turut membuktikan sistem tersebut melibatkan penjerapan fizikal secara 

kesuluruhan dan turut memberi kesan ketara kepada alkanolamina yang 

berkepekatan lebih rendah. Hubungkait antara kelarutan, tekanan dan suhu telah 

ditentukan dengan ketepatan ± 0.957 %. 

 
 Kelarutan juga diukur pada tekanan separa CO2 yang lebih rendah iaitu 10, 50 

dan 100 kPa dan suhu 303.2 K. Eksperimen ini melibatkan penjerapan kimia dan 

keputusan menunjukkan penambahan 1 M [gua][OTf] menaikkan kelarutan CO2 

sebanyak 14 % pada 303.2 K dan 100 kPa berbanding 1 M [bmim][BF4] terhadap 4 

M MDEA. Di samping itu, kelarutan CO2 terhadap 4 M [gua][OTf] meningkat 27.5 

% berbanding 1 M [gua][OTf]. Kelarutan 4M1G pula adalah lebih rendah 

berbanding 4M0G iaitu sebanyak 0.6498 mol CO2/ jumlah mol sistem pada 100 kPa. 

Kehadiran [gua][OTf] mengurangkan kelarutan ternari sistem berikutan 

pengurangan kuantiti air dengan penambahan jumlah [gua][OTf] yang mana 

penjerapan fizikal hanya berkesan pada operasi bertekanan tinggi. Nilai R2 dari plot 

PCO2 versus (αCO2
2/ 1 - αCO2) adalah antara 0.94232 ke 0.96272 bagi tekanan separa 0 

- 100 kPa. Nilai R2 telah ditentukan dengan tepat. 
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NOMENCLATURE 
 
AGR Acid gas removal process  

PFD Process flow diagram  

GHG Greenhouse gas  

ESRL 

NOAA 

Earth systems research laboratory  

National oceanic and atmospheric administration 

CCS Carbon capture and storage  

MDEA N-methyldiethanolamine  

MEA Monoethanolamine 

DEA Diethanolamine 

DETA 

PZ 

Diethylenetriamine 

Piperazine 

AMP 2-amino-2-methyl-1-propanol 

DIPA Diisopropanolamine 

DGA Diglycolamine  

AEEA Diamine 2-[(2-aminoethyl) amino]-ethanol  

H2O Water 

CO2 Carbon dioxide 

SO2 Sulphur dioxide 

O2 Oxygen 

H2S Hydrogen sulphite 

NaHCO3 Sodium bicarbonate 

ILs  Ionic liquids 

TSILs Task-specific ionic liquids 

RTILs Room temperature ionic liquids 

CO2BOLs CO2-binding organic liquids  

COS Carbonyl sulfide 

[gua][OTf] Guanidinium trifluoromethanesulfonate  

[bmim][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate  

[bmim][OTf] 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

[bmim][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[bmim][NTf2] 1-butyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

XX 
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[emim][C2N3] 1-ethyl-3-methylimidazolium dicyanamide 

[emim][NTf2] 1-ethyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

[emim][EtSO4] 1-ethyl-3-methylimidazolium ethyl sulfate  

[emim][OTf]  1-ethyl-3-methylimidazolium trifluoromethanesulfonate  

[emim][MDEGSO4]  1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) 

ethylsulfate 

[N4111][NTf2] N-butyltrimethylammonium 

bis[(trifluoromethyl)sulfonyl]imide 

AAD Absolute average deviation 

MET  Measurement Equivalence-point Titration 

ρ Density of the system (g cm-3) 

αp  Coefficient of thermal expansion 

η  Viscosity of the system (mPas) 

η∞ Viscosity at infinite temperature (mPas) 

αCO2  CO2 loading (mol of CO2/ total mol system) 

note: total mol system = mol (MDEA + [gua][OTf] + 
H2O) 

T  Temperature (K) 

Tθ Standard temperature (298 K) 

PCO2  Partial pressure of CO2 (kPa) 

PT  Total pressure (kPa) 

PV  Vapor pressure (kPa) 

R  Gas constant, 8.314 (kJ/ mol K) 

Ea  Activation energy (kJ/ mol) 

VHCl Volume of HCl needed to neutralize the basic species 

(mL) 

Vsample Volume of sample taken for analysis (mL) 

Vgc  Volume of gas container (L) 

Vcell Volume cell (L) 

Vsol  Volume solution (L) 

i  Initial condition 

f Final condition 

M Molarity (mol dm-3)   
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[MDEA]t  Total concentration of MDEA (mol dm-3) 

 ntotal  Summation of moles of MDEA and/ or the other 

absorbents in the liquid phase 

Kov Overall equilibrium constant 

HCO2  Henry’s constant  

xil Mole fraction of ionic liquid 

xCO2 Mole fraction of CO2 

ω  Angular velocity of spindle (rad/ sec) 

Rc Radius of container (cm) 

Rb Radius of spindle (cm) 

L  Effective length of spindle (cm) 

ml Millilitre 

K Kelvin 

kJ Kilojoule 

kg Kilogram 

m Meter 

cm  Centimeter 

MPa Megapascal 

kPa Kilopascal 

M Mol dm-3 

mPas  Millipascal 

ppm Parts per million 

cP Centipoise 

h Planck constant, 6.62606896 × 10−34 J−1 

Y
E Excess Gibbs energy of activation for viscosity flow 

NA Avogadro’s number, 6.022 141 99 x 1023 

γ Thermal pressure coefficient 

VE
 Excess molar volume  
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