ASSESSMENT OF BACTERIAL COMMUNTY PATTERNS FROM ECOLOGICALLY DISTINCT ANTARCTIC SOIL ENVIRONMENTS

CHONG CHUN WIE

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

ASSESSMENT OF BACTERIAL COMMUNTY PATTERNS FROM ECOLOGICALLY DISTINCT ANTARCTIC SOIL ENVIRONMENTS

CHONG CHUN WIE

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

UNIVERISTI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Chong Chun Wie

(I.C. 811126-01-6585)

Matrix No: SHC070010

Name of Degree: Doctor of Philosophy

Title of Thesis: ASSESSMENT OF BACTERIAL COMMUNITY PATTERNS FROM

ECOLOGICALLY DISTINCT ANTARCTIC SOIL ENVIRONMENTS

Field of Study: Microbial Ecology

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature Name: Designation: Date

ABSTRACT

It is commonly known that bacteria are ubiquitously distributed in soil environments. They are heavily involved in the biogeochemical cycles and are vital in maintaining soil ecological functions. These functional roles of bacteria are especially important in the extreme and harsh environments of Antarctica where the terrestrial trophic interactions are generally limited to microorganisms due to restricted development of terrestrial plant and animal communities. In order to assess the spatial distribution and taxonomic composition of soil bacterial community in Antarctica, soils were collected from a range of geographically and environmentally distinct locations. These included relatively milder but variable environments on Signy Island, Ryder Bay and Reptile Ridge from maritime Antarctica, more extreme and relatively less disparate locations such as Alexander Island in the transition zone between maritime and continental Antarctica, and Windmill Island on coastal continental Antarctica. The soil bacterial communities were elucidated by using different molecular methods including DGGE, T-RFLP and cloning. Different diversity measures were utilised to address different aspects of diversity and community overlap. In addition, the relationship between the spatial distribution of Antarctic soil bacteria and soil heterogeneity (i.e. variation in pH, salinity, carbon, nitrogen, water and heavy metals content) was investigated using mantel type correlations and/or multiple linear regression method.

The results showed that spatial clustering was a general feature in Antarctic soil bacterial communities as it was detected across all study sites. In addition, spatial patterning can be observed in both species-based (i.e. ANOSIM, PERMANOVA, NMDS) and divergent-based (i.e. nucleotide distance, UniFrac) diversity measures. Such spatial patterns were largely influenced by environmental variations such as the presence of vegetation and/or

animals, anthropogenic impact, and distance to the sea. These factors have profound impacts on the underlying soil chemical parameters. Among the latter, soil pH was shown to contribute a high proportion of explanatory value to the soil bacterial assemblage patterns. On the other hand, between ecologically similar environments, the spatial patterns were influenced by the geographical proximity of the studied locations.

The strong influence of environmental and soil chemical parameters in structuring bacterial community patterns highlighted the importance of niche conservatism and habitat filtering. It was hypothesized that species tend to retain their niches and traits whereby only species with suitable traits will be preferentially selected in stressful environments. This is especially true in Antarctica where most of the soil bacterial communities constantly experience limited water and nutrient input, low temperature and constant freezing-thawing cycle. Tropical or temperate soil systems generally encompassed high bacterial richness with relatively even species distribution (each ribotype occupied <10% proportion in the clone library). In comparison, Antarctic soil have much lower bacteria diversity which is composed of a few numerically dominant (ribotypes which made up >10% of the total retrieved clones in the clone library) and genotypically related species. Furthermore, Antarctic soil might harbour large fraction of unique and novel gene pools distinct from other soil environments. This is because the retrieved sequences generally showed low similarity (<97% similarity) to the closest representatives in tropical or temperate soil environments.

ABSTRAK

Bakteria merupakan organisma yang paling lazimnya didapati di tanah. Mereka memainkan peranan yang penting dalam kitaran biogeokimia dan memastikan fungsi ekologi tanah djalankan dengan lancar. Peranan ini adalah terutamanya penting di persekitaran ekstrim yang dingin dan kering seperti Antartika, dimana interaksi "trophic" hanya terbatas pada mikroorganisma. Ini adalah kerana penglibatan haiwan dan tumbuhan di daratan Antartika adalah terhad. Demi mengkaji pengedaran "spatial" dan komposisi taksonomi bacteria tanah di Antartika, sampel-sampel tanah telah dikumpul dari berbagai lokasi-lokasi yang merangkumi persekitaran yang berlainan. Ini termasuk lokasi yang berkeadaan serdehana (dari segi kesuburan tanah, cuaca dan iklim) tetapi persekitarannya berbeza-beza di Signy Island, Ryder Bay dan Reptile Ridge dari Antartika maritim (maritime Antarctic), lokasi yang lebih ekstrim dan kurang berbeza di Alexander Island yang terletak di zon peralihan di antara Antartika maritim dan benua Antarctica (maritime/continental Antarctic transition zone), dan Windmill Island yang berlokasi di persisiran bua Antartika (coastal continental Antarctic). Komuniti bakteria daripada tanah tersebut telah dianalisa dengan menggunakan beberapa kaedah molekular termasuk DGGE, T-RFLP dan "cloning". Kaedah-kaedah yang berlainan ini sengaja digunakan untuk mejelaskan pelbagai aspek komuniti yang berbeza. Di samping itu, hubungan antara distribusi "spatial" bakteria tanah dan variasi faktor kimia tanah (variasi pada pH, "salinity" dan kandungan karbon, air, nitrogen dan logam) telah diteliti dengan menggunakan korelasi statistik.

Keputusan kajian ini menunjukkan bahawa "spatial clustering" mungkin adalah ciri umum di kalangan bakteria di Antartika kerana ia telah dikesan di semua kawasan kajian. Selain itu, "spatial patterning" ini juga telah diperhatikan dengan menggunakan kedua-dua "diversity measure", termasuk jenis "species-based" (ANOSIM iaitu, PERMANOVA,

v

NMDS) dan "divergence based" (nucleotide distance, UniFrac). Fenomena ini adalah amat sensitive terhadap variasi persekitaran seperti kewujudan tumbuhan dan/ atau haiwan, pengaruhan manusia dan jarak ke laut. Faktor-faktor ini mempunyai kesan yang mendalam terhadap parameter kimia tanah yang mendasari. Antaranya, pH tanah menyumbang perkadaran yang paling tinggi kepada variasi statistik komuniti bakteria tanah. Namum demikian, membandingkan sampel-sampel yang berasal daripada ekosistem yang serupa, variasi komuniti didapati amat dipengaruhi oleh jarak di antara lokasi yang dikaji.

Pengaruhan kuat daripada parameter kimia tanah terhadap komuniti bakteria telah mencadangkan kepentingan "niche conservatism" dan "habitat filtering". Adalah dihipotesiskan bahawa spesies cenderung untuk mengekalkan "niche" dan "trait" sendiri, manakala hanya spesies yang mempunyai ciri-ciri yang menyumbangkan akan dipilih pada keadaan yang "stress". Ini adalah terutamanya penting di Antartika di mana sebahagian besar komuniti bakteria di darat mengalami kekurangan air, cuaca suhu rendah dan sentiasa mengalami kitaran beku-cair (freeze-thaw cycle).

Sistem tanah tropika dan temperate umumnya merangkumi lebih banyak jenis spesies bacteria dan menunjukkan distribusi spesies serata (setiap "ribotype" yang menyumbangkan <10% perkadaran dalam "clone library"). Sebagai perbandingan, tanah dari Antartika mempunyai jenis spesies bacteria yang terhad, dan biasanya menunjukkan komuniti yang terdiri daripada beberapa spesies yang dominan ("ribotype" yang menyumbangkan >10% perkadaran dalam "clone library") malah berkaitan (berdasarkan "genotype"). Selanjutnya, tanah Antartika mungkin mempunyai sebahagian unik dan "novel" spesies bakteria yang berlainan daripada tanah-tanah lain. Ini adalah kerana "sequences" yang didapati daripada sampel-sampel kajian menunjukkan persamaan genetik yang rendah (<97% persamaan) dengan wakil terdekat dari tanah tropika atau temperate.

vi

ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to all of my supervisors (Dr Irene, Dr Richard and Dr Annie) for having me as part of the research group and providing me with necessary facilities. In particularly, I would like to specially thank Dr Irene for her encouragement and patience throughout the period of this study, and for offering me fieldwork opportunity in Antarctica; Dr Richard for his helpfulness in practically every aspect, and Dr Annie for her valuable comments and suggestions.

Secondly, I would like to thank all my fellow lab mates, including Yuh Shan, Wen Chyin, Ashley, etc for sharing the laughter and time together in the Antarctic lab. It has been a second home to me for the last 4-5 years.

Thirdly, I would like to express my appreciation to Dr Peter Convey, Dr David Pearce, Mike Dunn and Dr Martin Riddle for their comments and helps in the published papers.

Finally, my fondest thanks go to my wife, Cindy for her support, suggestions and precious time in listening to my grumbling and complaining. I would also like to thank her for giving me a cute and chubby son, Jayden. Additionally, I am indebted to my parents and my in-laws, for their constant support both mentally and financially.

TABLE OF CONTENTS

TIT	LE	i
DEC	CLARATION	ii
ABS	TRACT	iii
ACK	KNOWLEDGEMENT	vii
TAB	BLE OF CONTENTS	viii
LIST	Γ OF FIGURES	xiv
LIST	Γ OF TABLES	xvi
LIST	Γ OF SYMBOLS AND ABBREVIATIONS	xviii
CHA	APTER ONE: INTRODUCTION	
1.1	General introduction	1
1.2	Why molecular approach?	2
1.3	Soil bacterial community patterns	3
1.4	Why Antarctica?	4
1.5	Objectives	6

CHAPTER TWO: LITERATURE REVIEW

2.1	Antar	ctic Terrestrial Environments	8
2.2	Antar	ctic soil bacteria communities	11
2.3	16S rI	RNA based molecular methods	13
	2.3.1	Denaturing gradient gel electrophoresis (DGGE)	15
	2.3.2	Terminal restriction fragment length polymorphism (T-RFLP)	16
	2.3.3	Clone library construction	17
	2.3.4	Measures for diversity	18

CHAPTER THREE: GENERAL METHODOLOGIES

3.1	Site de	escriptions and sampling procedures	21
	3.1.1	Study 1	21
	3.1.2	Studies 2 and 3	24
	3.1.3	Studies 4 and 5	29
3.2	Soil cl	nemical analysis	32
3.3	Extrac	tion of Total DNA from soil	33
3.4	DGGE		33
	3.4.1	PCR and DGGE condition	33
	3.4.2	Sequencing of DGGE bands	34
	3.4.3	Genetic distance	35
	3.4.4	Statistical analysis	35
3.5	T-RFI	_P	37
	3.5.1	T-RFLP condition	37

	3.5.2	Statistical analysis	38
3.6	Clonir	ng, sequencing and phylogenetic analyses	39
	3.6.1	Cloning library construction	39
	3.6.2	Phylogenetic and statistical analysis	40
3.7		ation of environmental data with bacterial diversity richness acterial community patterns	41

CHAPTER FOUR: STUDY 1. DGGE FINGERPRINTING OF BACTERIA IN SOILS FROM EIGHT ECOLOGICALLY DIFFERENT SITES AROUND CASEY

STATION, ANTARCTICA

4.1	Introd	uction and objectives	44
4.2	Mater	ials and Methods	45
4.3	Result	ts and Discussion	45
	4.3.1	Soil chemical properties	45
	4.3.2	DGGE profiles	47
	4.3.3	Bacterial diversity and environmental variables	51
	4.3.4	NMDS ordination	52
4.4	Summ	nary	55

CHAPTER FIVE: STUDY 2. ENVIRONMENTAL INFLUENCES OF BACTERIAL

DIVERSITY OF SOILS ON SIGNY ISLAND, MARITIME ANTARCTIC

5.1	Introduction and objectives	56
5.2	Materials and Methods	57
5.3	Results	57
	5.3.1 Soil chemical properties	57

	5.3.2 DGGE profiling and bacterial diversity	61
5.4	Discussion	67
5.5	Summary	71

CHAPTER SIX: STUDY 3. HIGH LEVELS OF SPATIAL HETEROGENEITY IN THE BIODIVERSITY OF SOIL PROKARYOTES ON SIGNY ISLAND, ANTARCTICA

6.1	Introd	Introductions and objectives	
6.2	Mater	Materials and Methods	
6.3	Result	Results	
	6.3.1	Soil chemical properties	74
	6.3.2	Bacterial diversity index and genetic distance	78
	6.3.3	DGGE profiles and sequences identity	81
	6.3.4	Differences and variations among assemblages	84
	6.3.4	Correlations of soil properties with bacterial assemblages	86
6.4	Discus	ssion	89
	6.4.1	Soil properties and correlations with bacterial community profile	90
	6.4.2	Prokaryote diversity	91
	6.4.3	External influences on soil properties	92
	6.4.4	Human influences superimposed on prokaryote assemblages	93
6.5	Summ	ary	95

CHAPTER SEVEN: STUDY 4. BACTERIAL COMMUNITY STRUCTURING AND PHYLOGENETIC CLUMPING ON ALEXANDER ISLAND IN THE MARITIME AND CONTINENTAL ANTARCTIC TRANSITION ZONE

7.1	Introd	Introduction and objectives	
7.2	Mater	Materials and Methods	
7.3	Resul	ts	99
	7.3.1	Soil properties	99
	7.3.2	Taxonomic identity and composition of clone libraries	100
	7.3.3	T-RFLP and DGGE community structure analyses	115
	7.3.4	Soil bacterial assemblage patterns and taxonomic composition	116
	7.3.5	Correlations between measured soil variables and bacterial assemblage patterns	118
7.4	Discu	ssion	119
	7.4.1	Soil chemistry and bacterial community composition on Alexander Island compared with other regions	119
	7.4.2	Chemistry and bacterial assemblage patterns in the study sites	121
7.5	Summ	nary	123

CHAPTER EIGHT: STUDY 5. GEOGRAPHICAL PROXIMITY HAS LESSINFLUENCE ON SOIL BACTERIAL COMMUNITY PATTERNS ANDTAXONOMIC COMPOSITIONS COMPARED TO ALTITUDE AND SOIL PH8.1Introduction and objectives1248.2Materials and Methods1258.3Results1268.3.1Soil chemical properties126

	8.3.2	Spatial variability of qualitative and semi-quantitative measures derived from species-based T-RFLP analysis	132
	8.3.3	Spatial variability of qualitative and semi-quantitative measures derived from divergence-based clone libraries analysis	137
	8.3.4	Taxonomic distinctness of the retrieved ribotypes	138
	8.3.5	Correlations of bacterial assemblage patterns and taxonomic distinctness with elevation, separation distance and measured soil chemical parameters	141
8.4	Discu	ssion	141
8.5	Summ	ary	146

CHAPTER NINE: GENERAL DISCUSSION AND CONCLUSION

9.1	General discussion	147
9.2	Soil bacterial spatial patterns in Antarctica	148
9.3	Bacterial diversity, richness and taxonomic composition in Antarctic soil	151
9.4	Limitations and technical considerations	154
9.5	Conclusion and future directions	157

CHAPTER TEN: REFERENCES

159

APPENDIX A	Buffer and Solutions	179
APPENDIX B	Culture media for cloning	181
APPENDIX C	Presentations and Publications	182

LIST OF FIGURES

Fig 2.1	Terrestrial biogeographical zones in Antarctica	9
Fig 2.2	Two hypothetical communities: open boxes and solid boxes	20
Fig 3.1	Map of Windmill Island	22
Fig 3.2	Map of Signy Island	27
Fig 3.3	Map of the studied sites on Reptile Ridge, Ryder Bay and Alexander Island	31
Fig 4.1	DGGE banding patterns of 16S rDNA fragments	49
Fig 4.2	Non-metric Multidimensional Scaling Plots (NMDS) of DGGE profiles based on presence/absence binary matrix	54
Fig 5.1	DGGE banding patterns of 16S rDNA fragments	62
Fig. 6.1	CAP ordination of bacterial assemblages based on different influence (barren, vegetated, vertebrate and shore)	82
Fig. 6.2	Explanatory value of single variables from all, natural and impacted sites inferred from marginal test of DISTLM	88
Fig 7.1	UPGMA tree showing the phylogenetic relationship of 16S rRNA gene clones retrieved from Viking Valley (VV), Mars Oasis (MO) and Ares Oasis (AO)	112
Fig 7.2	Rarefaction curve obtained from each clone library	113
Fig 7.3	DGGE banding patterns of Viking Valley (VV), Mars Oasis (MO) and Ares Oasis (AO)	114
Fig 7.4	NMDS of (a) DGGE and (b) T-RFLP derived bacterial assemblage patterns	117
Fig 8.1	PCO ordination of soil chemical parameters based on Euclidean distance: (A) all sites, (B) without KB and LI	129
Fig 8.2	Species based α -diversity indices from T-RFLP analysis	130
Fig 8.3	PCO ordination based on PERMANOVA pairwise similarity	131

Fig 8.4	Phylum/class level 16S rRNA gene composition	134
Fig 8.5	Divergent based α -diversity indices	135
Fig 8.6	PCO ordination	136

Table 2.1	Generalised thermal characteristic of the major regions of Antarctica, in comparison with those of the high Arctic	10
Table 3.1	Location and description of the soil collection sites around Casey Station, Windmill Island	23
Table 3.2	Sampling sites for Study 2 and Study 3	28
Table 3.3	Locations and descriptions of soil sample collection sites in Studies 4 and 5	30
Table 4.1	Selected environmental properties of soils samples around Casey Station, Windmill Island	46
Table 4.2	Identity from BLAST search in GenBank	59
Table 5.1	Selected environmental properties (mean \pm SE) of soil samples from the study sites (n=6 for each site)	59
Table 5.2	Diversity indices, multivariate dispersion indices, genetic distance and taxonomic composition derived from DGGE banding patterns	60
Table 5.3	Identity of excised and sequenced DGGE bands from BLAST search in GenBank	63
Table 5.4a	Pairwise ANOSIM of DGGE derived bacteria community structure	65
Table 5.4b	Grouped pairwise ANOSIM of sites with and without animal influence	65
Table 5.5	Spearman rank correlations of environmental variables with the bacterial DGGE banding profiles	66
Table 5.6	Heavy metal content (µg/g dry weight) of representative Antarctic organisms	69
Table 6.1	Selected environmental properties and diversity indices (mean \pm standard error) of the aggregated locations	77
Table 6.2	Identity of excised and sequenced DGGE bands from BLAST search in GenBank	79
Table 6.3	Cumulative number of bands and proportions of	

	affiliated prokaryotic taxonomic groups at each location	83
Table 6.4	PERMANOVA on Jaccard similarities for DGGE derived assemblages of bacterial diversity with different environmental influence on Signy Island	85
Table 6.5	Pairwise similarity between/within groups based on Jaccard similarities	85
Table 6.6	Mean and standard error (SE) within grouping variation (distance from centroid) and Pairwise PERMDISP of environmental influences	86
Table 6.7	DISTLM marginal test results for the regression of the DGGE derived bacterial community patterns and forth root transformed soil properties	87
Table 7.1	GPS locations and selected surface soil variables for the three studied locations on Alexander Island and in comparison with other locations from the maritime and continental Antarctic	101
Table 7.2	Similarity of 16S rRNA gene sequences from clone libraries obtained in the current study compared to the GenBank database	103
Table 7.3	TRF lengths and representative OTUs	107
Table 7.4	Distributions of 16S rRNA gene phylotypes in clone libraries	111
Table 8.1	Soil chemical properties of the 9 studied sites	128
Table 8.2	Net relatedness index (NRI) and nearest taxa index (NTI) for the studied sites	138
Table 8.3	Correlation of altitude, geological distance and soil chemical parameters to the bacterial assemblage patterns derived from different measures	140

LIST OF SYMBOLS AND ABBREVIATIONS

ASPA	Antarctic Specially Protected Area
bp	base pair
CAP	canonical analysis of principal coordinates
ddH ₂ O	double distilled water
DGGE	denaturing gradient gel electrophoresis
DNA	deoxyribonucleic acid
DISTLM	distance-based linear models
dNTP	deoxynucleotide
EDTA	ethylenediamine-tetraacetic acid
GPS	global positioning system
H'	Shannon diversity index
L	litre
L MgCl ₂	litre magnesium chloride
MgCl ₂	magnesium chloride
MgCl ₂ min	magnesium chloride minute
MgCl ₂ min mL	magnesium chloride minute mililitre
MgCl ₂ min mL mM	magnesium chloride minute mililitre milimolar
MgCl ₂ min mL mM MVDISP	magnesium chloride minute mililitre milimolar multivariate dispersion indices
MgCl ₂ min mL mM MVDISP ng	magnesium chloride minute mililitre milimolar multivariate dispersion indices nanogram
MgCl ₂ min mL mM MVDISP ng NMDS	magnesium chloride minute mililitre milimolar multivariate dispersion indices nanogram non multidimensional scaling plot

PCR	polymerase chain reaction
PD	phylogenetic diversity
PERMANOVA	permutational multivariate analysis of similarity
PERMDISP	homogeneity of dispersion
ppm	part per million
RE	restriction enzyme
RFLP	restriction fragment length polymorphism
RNA	ribonucleic acid
rpm	revolutions per minute
sec	second
TAE	Tris-acetate EDTA
T-RFLP	terminal restriction fragment length polymorphism
~	approximately
\mathfrak{C}	degree Celcius
=	equals to
<	less than
>	more than
≤	equal or less than
2	equal or more than
%	percent
%C	carbon percentage
%N	nitrogen percentage
μΙ	microlitre
μg	microgram

micromolar

μΜ

μS/cm micro siemens per centimeter