ABSTRACT

2-N-(3-methyl)piperidinoquinoline (25), 2-N-(4-methyl)piperidinoquinoline (26), 2-N-anilinoquinoline (28), 2-N-(*m*-methyl)anilinoquinoline (30), 2-N-(p-(32), methyl)anilinoquinoline 2-*N*-(*m*-ethyl)anilinoquinoline (34), 2-N-(pethyl)anilinoquinoline (36), 2-N-methylanilinoquinoline (38), 2-N-ethylanilinoquinoline (40), 2-N-(m-methoxy)anilinoquinoline (42), 2-N-(p-methoxy)anilinoquinoline (44), 2-N-(m-chloro)anilinoquinoline (46), and 2-N-(p-chloro)anilinoquinoline (48) were prepared by reacting 2-chloroquinoline (22) with 3-methylpiperidine (23), 4-methylpiperidine (24), aniline (27), *m*-toluidine (29), *p*-toluidine (31), *m*-ethylaniline (33), *p*-ethylaniline (35), *N*methylaniline (37), N-ethylaniline (39), m-anisidine (41), p-anisidine (43), m-chloroaniline (45) and *p*-chloroaniline (47) respectively. The structure of these compounds were confirmed using ¹H NMR, ¹³C NMR, infra-red and GCMS. The fluorescence properties were recorded using Luminescence Spectrophotometer. Almost all compounds prepared showed highest fluorescence intensity in less polar solvents and lowest fluorescence intensity in polar protic solvents. Compound 30, 34 and 48 showed higher fluorescence intensity in alkaline and neutral conditions while lower fluorescence intensity was recorded in acidic condition.

ABSTRAK

2-N-(3-metil)piperidinoquinolina (25), 2-N-(4-metil)piperidinoquinolina (26), 2-Nanilinoquinolina (28), 2-N- (m-metil)anilinoquinolina (30), 2-N-(p-metil)anilinoquinolina (32), 2-N-(m-etil)anilinoquinolina (34), 2-N-(p-etil)anilinoquinolina (36), 2-Nmetilanilinoquinolina (38), 2-N-etilanilinoquinolina (40), 2-N-(m-metoksi)anilinoquinolina (42), 2-N-(p-metoksi)anilinoquinolina (44), 2-N-(m-kloro)anilinoquinolina (46), dan 2-N-(*p*-kloro)anilinoquinolina (48) disediakan melalui tindakbalas 2-kloroquinolina (22) dengan 3-metilpiperidina (23), 4-metilpiperidina (24), anilina (27), m-toluidina (29), p-toluidina (31), *m*-etilanilina (33), *p*-etilanilina (35), *N*-metilanilina (37), *N*-etilanilina (39), *m*anisidina (41), p-anisidina (43), m-kloroanilina (45) and p-kloroanilina (47). Struktur sebatian ini ditentukan menggunakan ¹H NMR, ¹³C NMR, infra-merah and GCMS. Ciri pendafluoran telah direkod menggunakan Spektrometer Pendafluoran. Hampir semua sebatian yang disediakan menunjukkan keamatan pendafluoran paling tinggi dalam pelarut kurang berkutub dan keamatan pendafluoran yang rendah dalam pelarut protik berkutub. Sebatian **30**, **34** dan **48** menunjukkan keamatan pendafluoran tinggi dalam keadaan berbes dan neutral dan keamatan pendafluoran yang rendah direkodkan dalam keadaan berasid.

ACKNOWLEDGEMENT

Firstly, sincere and deep gratitude goes to my supervisors, Professor Dr. Zanariah Abdullah and Dr. Hairul Anuar Tajuddin as always giving guidance and support during this work. Their understanding, encouraging and personal guidance have provided a good basic for this thesis.

Thanks you to all my friends for a lot of help in completing the laboratory work and provide moral support to complete this task. My warm thanks to the staff members of Chemistry Department for their kind support throughout this work.

My special gratitude goes to my parents, Hasan Md. Ali and Aminah Mustaffa for their concern and loving support. Special thanks to my siblings for their care and understanding to complete my work.

Finally, I'm grateful to University of Malaya for the Fellowship and Research Grant for their financial assistance throughout the entire course.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
APPENDICES	ix
LIST OF FIGURES	Х
LIST OF TABLES	xii
LIST OF SCHEMES	xii
LIST OF SYMBOLS AND ABBREVIATIONS	xiv
CHAPTER ONE: SYNTHESIS AND REACTIVITY OF QUINOL	INE
1.0 Introduction of Quinoline	1
1.2 Synthesis of Quinoline	2
1.2.1 Skraup synthesis	2
1.2.2 Doebner-von Miller synthesis	2

1.2.4	The Friedländer synthesis	3	j
	•		

1.2.3 The Combes synthesis

v

3

1.3	React	ivity of Quinoline	4
	1.3.1	General features of the chemistry of quinolines	4
	1.3.2	Reactions with nucleophilic reagents	5
		1.3.2.1 Nucleophilic substitution with hydride transfer	5
		1.3.2.2 Nucleophilic substitution with displacement of halide	6
CHA	PTER	R TWO: FLUORESCENCE SPECTROSCOPY	
2.0	Introd	luction	7
2.1	Histor	rical development	7
2.2	Theory of fluorescence		8
2.3	Factor	rs that effect the fluorescence characteristic	11
	2.3.1	Environmental effects	11
		2.3.1.1 Solvent effects	11
		2.3.1.2 Influence of pH	13
		2.3.1.3 Effect of oxygen	15
	2.3.2	Chemical structure	16
		2.3.2.1 Carbon skeleton	16
		2.3.2.2 The geometrical arrangement of the molecules	17
		2.3.2.3 The type and positions of substituents	18
			vi

2.4	Instru	nentation of fluorescence spectroscopy	19
	2.4.1	Light sources	20
	2.4.2	Monochromators	20
	2.4.3	Slits	21
	2.4.4	Sample cells	22
	2.4.5	Detectors	22
2.5	Object	ives of the project	23
СНА	PTER	3: RESULTS AND DISCUSSION	
3.1	Synthe	esis of Quinoline Derivatives	24
3.1.1	2- <i>N</i> -(3	-methyl)piperidinoquinoline (25) and	
	2- <i>N</i> -(4	-methyl)piperidinoquinoline (26)	25
3.1.2	Reacti	ons of 22 with Various Amines.	27
3.3	Fluore	scence Characteristics	37
СНА	PTER	4: CONCLUSION	51
СНА	PTER	5: EXPERIMENTAL DETAILS	
5.0	Genera	al procedures	52
5.1	Prepar	ation of quinoline derivatives	53
	5.1.1	Preparation of 2- <i>N</i> -(<i>m</i> -methyl)piperidinoquinoline (25)	53 _{vii}

	5.1.2	Preparation of 2- <i>N</i> -(<i>p</i> -methyl)piperidinoquinoline (26)	54
	5.1.3	Preparation of 2- <i>N</i> -anilinoquinoline (28)	55
	5.1.4	Preparation of 2- <i>N</i> - (<i>m</i> -methyl)anilinoquinoline (30)	56
	5.1.5	Preparation of 2- <i>N</i> -(<i>p</i> -methyl)anilinoquinoline (32)	57
	5.1.6	Preparation of 2- <i>N</i> -(<i>m</i> -ethyl)anilinoquinoline (34)	58
	5.1.7	Preparation of 2- <i>N</i> -(<i>p</i> -ethyl)anilinoquinoline (36)	59
	5.1.8	Preparation of 2- <i>N</i> -methylanilinoquinoline (38)	60
	5.1.9	Preparation of 2- <i>N</i> -ethylanilinoquinoline (40)	61
	5.1.10	Preparation of 2- <i>N</i> -(<i>m</i> -methoxy)anilinoquinoline (42)	62
	5.1.11	Preparation of 2- <i>N</i> -(<i>p</i> -methoxy)anilinoquinoline (44)	63
	5.1.12	Preparation of 2- <i>N</i> -(<i>m</i> -chloro)anilinoquinoline (46)	64
	5.1.13	Preparation of 2- <i>N</i> -(<i>p</i> -chloro)anilinoquinoline (48)	65
5.2	Fluore	scence Measurements	66
	5.2.1	Fluorescence Measurement of quinoline derivatives	66
REF	EREN	ICES	69
LIST OF PUBLICATIONS			

CONFERENCE PROCEEDINGS

APPENDICES

Appendix 1: 1H, 13C, IR, GCMS spectra for all compounds prepared

Appendix 2: Fluorescence spectra for all compounds prepared in various solvents

Appendix 3: Publications

LIST OF FIGURES

	Page
Figure 1.1: Structure and numbering of quinoline	1
Figure 1.2: Skraup synthesis of quinoline	2
Figure 1.3: Doebner-von Miller synthesis of quinoline	3
Figure 1.4: Combes synthesis of quinoline	3
Figure 1.5: Friedländer synthesis of quinoline	4
Figure 1.6: Addition reactions initiated by electrophilic attack at nitrogen	5
Figure 1.7: Alkylation and arylation of quinoline	5
Figure 1.8: Amination of quinoline	б
Figure 1.9: Nucleophilic substitution with displacement of halide of quinoline	б
Figure 2.1: Transition giving rise to absorption and fluorescence emission spectra	9
Figure 2.2: Schematic representation of equilibrium and Franck-Condon (F-C) electronic states	12
Figure 2.3: Overall excitation-reaction sequence of phenol	14
Figure 2.4: Schematic diagram of a typical fluorescence measuring devices	19
Figure 3.1: Reactions of 2-chloroquinoline with various piperidine	25
Figure 3.2: Reactions of 2-chloroquinoline with anilines derivatives	28
Figure 3.3: Ortep diagram of 2- <i>N</i> -(<i>p</i> -chloro)anilinoquinoline (48)	37
Figure 3.4: Fluorescence intensity of 28 , 36 and 48 in different solvent	38
Figure 3.5: The formation of a complex with the solvent through hydrogen bonding	39
Figure 3.6: The formation of a complex with the solvent through hydrogen bonding	40
Figure 3.7: Proton transfer to the ring nitrogen	40

Figure 3.8: I	ntramolecular charge transfer transitions via hydrogen bonding	41
Figure 3.9: F	Fluorescence graph of 2- <i>N</i> -anilinoquinoline (28) in different time in chloroform (4.5399 X 10^{-4} M)	42
Figure 3.10:	Fluorescence graph of 2- <i>N</i> -(<i>p</i> -methyl)anilinoquinoline (32) in different time in chloroform (4.2680 X 10^{-4} M)	42
Figure 3.11:	Fluorescence graph of 2- <i>N</i> -(<i>p</i> -chloro)anilinoquinoline (48) in different time in chloroform ($3.9260 \times 10^{-4} \text{ M}$)	43
Figure 3.12:	Fluorescence intensity of 2- <i>N</i> -anilinoquinoline (28) at different concentration in ethyl acetate	44
Figure 3.13:	Fluorescence intensity of 2- <i>N</i> -(<i>p</i> -ethyl)anilinoquinoline (36) at different concentration in ethyl acetate	45
Figure 3.14:	Fluorescence intensity of 2 - N -(p -chloro)anilinoquinoline (48) at different concentration in ethyl acetate	45
Figure 3.15:	Fluorescence intensity of 2- <i>N</i> - (<i>m</i> -methyl)anilinoquinoline (30) in pH 5, 7 and 9	48
Figure 3.16:	Fluorescence intensity of 2- <i>N</i> -(<i>m</i> -ethyl)anilinoquinoline (34) in pH 5, 7 and 9	48
Figure 3.17:	Fluorescence intensity of 2- <i>N</i> -(<i>p</i> -chloro)anilinoquinoline (48) in pH 5, 7 and 9	49
Figure 3.18:	The proton transfer to the ring nitrogen of 2- <i>N</i> - (<i>m</i> -methyl)anilinoquinoline (30) and 2- <i>N</i> -(<i>m</i> -ethyl)anilinoquinoline (34)	50
Figure 3.19:	The proton transfer to the ring nitrogen of 2- <i>N</i> -(<i>p</i> -chloro)anilinoquinoline (48)	50

LIST OF TABLES

Table 3.1: Crystal data and structure refinement of 48	36
Table 3.2: Fluorescence characteristic of 28 , 36 and 48 in different solvents	38
Table 3.3: Fluorescence characteristic of 28 , 36 and 48 in different concentrations	44
Table 3.4: Fluorescence characteristic of 30, 34 and 48 in acetonitrile with variation of pH.	47

Page

LIST OF SCHEMES

Scheme 3.1:	Proposed reaction of nucleophilic substitution between	25
	2-chloroquinoline and amines at position-2 of quinoline system	

Page

LIST OF SYMBOLS AND ABBREVIATIONS

The following symbols and abbreviations have been used throughout this thesis.

CDCl ₃	deuterated chloroform
CH ₃ CN	acetonitrile
d	doublet
dd	doublet of doublets
EtOAc	ethyl acetate
EtOH	ethanol
IR	infrared
J	coupling constant
М	mole per liter
m	multiplet
m.p	melting point
min.	minute
MW	molecular weight
NMR	nuclear magnetic resonance
q	quartet
S	singlet
t	triplet
td	triplet of doublets
THF	tetrahydrofuran
TLC	thin layer chromatography
δ	chemical shift
λ	wavelength
ν	stretching vibration