ABSTRACT

Candida is a genus of opportunistic yeast that are usually harmless residents of the oral cavity, but they become pathogenic under conditions which allow them to increase their proportion to other members of the oral microflora. Correct and accurate identification of the candidal species infecting an oral candidiasis patient is important due to antifungal drug resistences. The region in the fungal genome that contains the gene that codes for rRNA, also known as rDNA, has been found to be useful for phylogenetic studies and species identification. The purpose of this study is to compare the candidal loads of denture wearers, periodontal disease patients, and a control group, in addition to differentiating isolated oral *Candida* sp. based on rDNA, in order to assess the effectiveness of using the rDNA region for candidal species identification. Samples from the saliva and the surfaces of the palate, tongue and cheek mucosa were collected from 45 individuals consisting of three target groups: periodontal disease patients, denture wearers with healthy oral cavity, and non-denture wearers with healthy oral cavity as the control group. The samples were subjected to serial dilution and spread on agar plates, which were then scored for Colony-Forming Units (CFUs). Next, fifteen random candidal colonies were isolated and subjected to genomic DNA extraction based on glass beads disruption. ITS1, ITS2, ITS3 and ITS4 primers were used to amplify regions in the rDNA, and the ITS1-5.8S-ITSII region was then digested by *Hinfl* and *MspI* restriction enzymes. The microbial loads on all the sites of denture wearers groups was found to be significantly higher than the control group, while only the microbial loads on the tongue surface of the periodontal disease group was significantly higher than in the control group, while at all the other sites there was no significant difference. Comparing the restriction fragment lengths of the clinical samples to that of seven ATCC control species allowed the identification of *Candida albicans, Candida tropicalis, Candida parapsilosis, Candida dubliniensis* and *Candida glabrata (C. krusei and C. lusitaniae* were also among the
ATCC control species and could be differentiated, but none of the clinical samples were of those species). One clinical sample had a unique band and restriction fragment pattern that could not be matched to any of the control species, however based on the band sizes it is most likely to be *Candida famata*. The *Msp*I restriction digest was not able to distinguish between *C. albicans* and *C. dubliniensis*, whereas the *Hinf*I digest could not distinguish between *C. tropicalis* and *C. parapsilosis*. In conclusion, candidal colonization in denture wearers, while there appears to be no significant difference in periodontal patients other than on the tongue surface. Furthermore, restriction enzyme digestion of the candidal rDNA region is potentially useful for candidal species identification.
ABSTRAK

Candida merupakan genus yis yang opportunis, lazimnya terdapat di ruang mulut dan tidak membahayakan, namun menjadi patogenik di bawah keadaan yang membenarkan mereka membiak dan meningkatkan kadar nisbah mereka berbanding dengan ahli mikro-flora yang lain. Pengecaman tepat dan jitu spesies *Candida* yang menjangkiti pesakit kandidiasis mulut (*oral candidiasis*) adalah penting kerana wujudnya kerintangan terhadap ubat antikulat. Kawasan di dalam genom kulat yang mengandungi gen yang mengkod rRNA, juga dikenali sebagai rDNA, telah pun didapati bermanfaat dalam kajian filogenetik dan pengenalan spesies. Tujuan kajian ini adalah untuk membandingkan kandungan *Candida* di dalam pemakai *denture*, pesakit periodontal dan kumpulan kawalan, serta membezakan antara spesies *Candida* yang diasingkan dari mulut berdasarkan rDNA untuk mengkaji keberkesanan penggunaan kawasan rDNA bagi tujuan pengenalan spesies *Candida*. Sampel dari air liur, permukaan lelangit mulut, lidah dan mukosa pipi diambil dari 45 individual yang terdiri dari 3 kumpulan sasaran; pesakit periodontal, pemakai dentur yang mempunyai rongga mulut yang sihat dan bukan pemakai dentur yang mempunyai rongga mulut yang sihat sebagai kawalan. Pencairan bersiri dijalankan ke atas sampel yang kemudiannya dikira Unit Pembentukan Koloni (CFUs). Kemudian, 15 koloni *Candida* dipilih secara rawak dan diasingkan sebelum melalui proses pengekstrakan DNA genomik berdasarkan penggunaan manik kaca. Primer ITS1, ITS2, ITS3 dan ITS4 digunakan untuk amplifikasi kawasan rDNA, dan kawasan ITSI-5.8S-ITSII kemudiannya dipotong oleh enzim restriksi *Hinfl* dan *Mspl*. Kandungan mikrobial di kesemua kawasan pemakai dentur didapati lebih tinggi dengan signifikan daripada kumpulan kawalan, manakala kandungan mikrobial di permukaan lidah pesakit perodontal adalah lebih tinggi secara signifikan berbanding kumpulan kawalan sementara di kawasan lain tiada perbezaan yang signifikan. Perbandingan antara saiz fragmen
ACKNOWLEDGEMENTS

First and foremost, there is not enough gratitude that can be expressed to my supervisor, Dr. Wan Himratul Aznita, for her invaluable guidance, support, advice, patience and understanding throughout the progress of completing this thesis. I would also like to thank Dr. Ros Anita Omar and Dr. Nor Adinar Baharuddin for their help in collecting clinical samples for this project, and Dr. Marhazlinda for her invaluable advice and help for the statistical analysis for this thesis. This entire endeavour would have been impossible without them.

Thanks is also in order for the various Medical Lab Technologists at the Oral Biology Laboratory who have provided numerous assistance throughout this project; Anuar Zainon, Rafiki Rezali and Faraliza Alias. My thanks also to my fellow colleagues who have given help, advice and companionship during the completion of this thesis: Mohd Hafiz Arzmi, Mohd Al-Faisal, Zabidi, Rizal, Anthony, Chua Chong Sing and Wong.

I would also like to give my appreciation to the staff of the Department of Oral Biology who have supported this project in many ways: En. Irwan, Prof. Zubaidah, Dr. Fathilah and Dr. Marina.

Last but not least, thanks is also due to my family for their support: my parents, Raja Halinuddin and Aliah Hanim, my wife Hilyah and of course, to little Anees.
TABLE OF CONTENTS

1. INTRODUCTION

1.1 Research Objectives

2. LITERATURE REVIEW

2.1 Microbial Ecosystem in the Oral Cavity

- 2.1.1 Factors Influencing the Microbial Ecosystem of the Oral Cavity
 - 2.1.1.1 Temperature and pH
 - 2.1.1.2 Nutrients
 - 2.1.1.3 Antimicrobial Factors

- 2.1.2 Oral Microbial Habitats
 - 2.1.2.1 Saliva
 - 2.1.2.2 Gingival Crevice
 - 2.1.2.3 Mucosal Surfaces
 - 2.1.2.4 Tongue
 - 2.1.2.5 Teeth Surfaces
 - 2.1.2.6 Prosthodontic Appliances

2.2 Oral *Candida* Species

- 2.2.1 Characteristics of *Candida* Species
- 2.2.2 Candidal Colonization of the Oral Cavity
 - 2.2.2.1 Interaction with Bacterial Flora
 - 2.2.2.1.1 Negative Interaction
 - 2.2.2.1.2 Positive Interaction
 - 2.2.2.2 Denture Wearers
2.2.2.3 Periodontal Disease

2.2.2.4 Host Diet

2.2.2.5 Other Influencing Factors

2.2.3 Pathogenesis of Oral *Candida* Species

2.2.3.1 Candidal Factors

2.2.3.2 Salivary Secretion

2.2.3.3 Denture Stomatitis

2.2.3.4 Drugs

2.2.4 Candidal Species of Importance

2.2.4.1 *Candida albicans*

2.2.4.2 *Candida tropicalis*

2.2.4.3 *Candida krusei*

2.2.4.4 *Candida parapsilosis*

2.2.4.5 *Candida dubliniensis*

2.2.4.6 *Candida glabrata*

2.2.4.7 *Candida lusitaniae*

2.3 Methods for Differentiating Candida

2.3.1 Serotyping

2.3.2 Biotyping

2.3.3 Selective Agar

2.3.4 Molecular Methods for Typing of Oral *Candida* Species

2.3.4.1 Karyotyping

2.3.4.2 Restriction Enzyme Analysis

2.3.4.3 Restriction Fragment Length Polymorphisms in Ribosomal DNA
2.3.4.4 Random Amplified Polymorphic DNA
2.3.4.5 Polymerase Chain Reaction (PCR) Amplification
2.3.4.6 Probe Hybridization
2.4 Analysis of the Internal Transcribed Spacer Region of Candidal rDNA
2.4.1 ITSII Amplification
2.4.2 Multiplex PCR
2.4.3 Single-Strand Confirmation Polymorphism Analysis
2.4.4 Transposable Intron Amplification
2.4.5 PCR Amplification and Enzyme Immunosorbent Assay Analysis
2.4.6 PCR and Restriction Fragment Length Polymorphism Analysis

3. METHODOLOGY
3.1 Research Materials
3.1.1 Chemicals
3.1.2 Glasswares
3.1.3 Consumables
3.1.4 Media
3.1.5 Microbial Control Strains
3.1.6 Equipments
3.2 Research Methods
3.2.1 Research Outline
3.2.2 Sample Collection
3.2.2.1 Preparation of Transport Medium
3.2.2.2 Inclusion and Exclusion Criteria
3.2.2.3 Sampling Sites and Collection Methods
3.2.3 Microbial Load Determination
3.2.3.1 Preparation of Agar Plates and Broth Mediums
 3.2.3.1.1 Sabouraud Dextrose Agar (SDA) Plates and Slants
 3.2.3.1.2 Brain-Heart Infusion (BHI) Agar Plates
 3.2.3.1.3 Yeast-Extract- Peptone-Dextrose (YEPD) Broth
3.2.3.2 Serial Dilution
3.2.3.3 Microbial Plating
3.2.3.4 Isolation and Storage of Candidal Colonies
3.2.4 DNA Extraction
 3.2.4.1 Preparation of Yeast Cultures
 3.2.4.2 Preparation of Reagents
 3.2.4.2.1 Preparation of EDTA Solution
 3.2.4.2.2 Preparation of Tris-HCl
 3.2.4.2.3 Preparation of Tris-EDTA (TE) Buffer
 3.2.4.2.4 Preparation of Tris-Borate-EDTA (TBE) Buffer
 3.2.4.2.5 Preparation of Lysis Buffer
 3.2.4.2.6 Preparation of Sodium Acetate Solution
3.2.4.3 Preparation of 1% Agarose Gel
3.2.4.4 Genomic DNA Extraction Methods
3.2.4.1 Commercial Yeast Genomic DNA Extraction Kit
3.2.4.2 Genomic DNA Extraction Based on Rapid Freeze-Thawing
3.2.4.3 Genomic DNA Extraction Based on Glass Beads Disruption
3.2.4.4 Genomic DNA Lyticase-Based Enzymatic Extraction
3.2.4.5 Qualitative Confirmation of DNA Presence
3.2.4.6 Quantitative Determination of DNA Yield
3.2.4.7 Determination of DNA Extract Purity
3.2.4.8 Selection of Extraction Method for Clinical Samples

3.2.5 PCR Amplification
3.2.5.1 Amplification of ITSI Region
3.2.5.2 Amplification of 5.8S-ITSII Region
3.2.5.3 Amplification of ITSI-5.8S-ITSII Region
3.2.5.4 Visualization of PCR Products

3.2.6 Restriction Endonuclease Enzyme Digestion
3.2.6.1 MspI Digestion
3.2.6.2 HinfI Digestion
3.2.6.3 Restriction Fragment Visualization

4. RESULTS
4.1 Microbial Loads
4.1.1 Comparison of Microbial Loads Between Groups
4.1.2 Mean Percentages of Candidal Loads 56

4.3 Assessment of Candidal DNA Extractions 58

4.3.1 Estimation of Time and Materials Required for Extractions 58

4.3.2 Pilot Study of Candidal DNA Extraction Methods 60

4.3.2.1 Qualitative Confirmation of Candidal DNA Extracts 60

4.3.2.2 Quantitative Assessment of Candidal DNA Extracts 63

4.3.2.2.1 DNA Yield 63

4.3.2.2.1 DNA Purity 63

4.3.3 Selection of Optimal DNA Extraction Method 66

4.4 PCR Amplification of rDNA Regions 66

4.4.1 Amplification of ITS1 Region 67

4.4.2 Amplification of 5.8S-ITSII Region 71

4.4.3 Amplification of ITS1-5.8S-ITSII Region 75

4.5 Restriction Fragment Length Polymorphisms 79

4.5.1 MspI Digestion 79

4.5.2 HinfI Digestion 83

4.6 Genotype Profiles 87

5. DISCUSSION 90

5.1 Microbial Loads of Candida Species in the Oral Cavity 90

5.1.1 Intra-Oral Distribution of Candida Species in the Control Group 90

5.1.2 Intra-Oral Distribution of Candida Species in the Denture Wearers Group 91
5.1.3 Intra-Oral Distribution of *Candida* Species in the Periodontal Disease Group

5.2 Evaluation of DNA Extraction Methods

5.3 Differentiation of Oral Candida Based On ITS Region of rDNA

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. LIMITATIONS</td>
<td>101</td>
</tr>
<tr>
<td>7. CLINICAL SIGNIFICANCE</td>
<td>102</td>
</tr>
<tr>
<td>8. CONCLUSION</td>
<td>103</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>105</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>106</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>107</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>108</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Candidal rDNA and the Locations of ITS1, ITS3 and ITS4 Primers (Mirhendi et al., 2006)</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Six Stages of the Research Design</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>The Process of Serial Dilution and Plating</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>The Regions Amplified by Each of the Three Primer Pairs ITS1 and ITS4; ITS1 and ITS2; and ITS3 and ITS4</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Gel Picture Comparing the Presence of Candidal DNA from the Extracts of Method 1 (Commercial Kit), Method 2 (Rapid Freeze-Thawing) and Method 3 (Glass Beads Disruption)</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Gel Picture Comparing the Presence of DNA from the Extracts of Method 1 (Commercial Kit), Method 3 (Glass Beads Disruption) and Method 4 (Lyticase-Based)</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Gel Picture Showing the ITS1 PCR Products of the Following Clinical Samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16)</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Gel Picture Showing the ITS1 PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, C. tropicalis ATCC 13803 (CT) – Lane 3, C. krusei ATCC 14243 (CK) – Lane 4, C. parapsilosis ATCC 22019 (CP) – Lane 5, C. dubliniensis ATCC MYA-2975 (CD) – Lane 6, C. glabrata ATCC 90030 (CG) – Lane 7 and C. lusitaniae ATCC 64125 (CL) – Lane 8 and C. lusitaniae ATCC 64125 (CL) – Lane 8</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Gel Picture Showing the 5.8S-ITSII PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, C. tropicalis ATCC 13803 (CT) –</td>
</tr>
</tbody>
</table>
Lane 3, *C. krusei* ATCC 14243 (CK) – Lane 4, *C. parapsilosis* ATCC 22019 (CP) – Lane 5, *C. dubliniensis* ATCC MYA-2975 (CD) – Lane 6, *C. glabrata* ATCC 90030 (CG)

Figure 4.6: Gel Picture Showing the 5.8S-ITSII PCR products of the Following Clinical samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16)

Figure 4.7 Gel Picture Showing the ITSI-5.8S-ITSII PCR Products of *C. albicans* ATCC 14053 (CA) – Lane 2, *C. tropicalis* ATCC 13803 (CT) – Lane 3, *C. krusei* ATCC 14243 (CK) – Lane 4, *C. parapsilosis* ATCC 22019 (CP) – Lane 5, *C. dubliniensis* ATCC MYA-2975 (CD) – Lane 6, *C. glabrata* ATCC 90030 (CG)

Figure 4.8: Gel Picture Showing the ITSI-5.8S-ITSII PCR products of the Following Clinical samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16)

Figure 4.22: Gel Picture Showing the *Msp*I Restriction Fragments of the ITSI-5.8S-ITSII PCR Products of *C. albicans* ATCC 14053 (CA) – Lane 2, *C. tropicalis* ATCC 13803 (CT) – Lane 3, *C. krusei* ATCC 14243 (CK) – Lane 4, *C. parapsilosis* ATCC 22019 (CP) – Lane 5, *C. dubliniensis* ATCC MYA-2975 (CD) – Lane 6, *C. glabrata* ATCC 90030 (CG) – Lane 7 and *C. lusitaniae* ATCC 64125 (CL) – Lane 8

Figure 4.10: Gel Pictures Showing the *Msp*I Restriction Fragments of the ITSI-5.8S-ITSII PCR Products of the Following Clinical Samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16)
Figure 4.11: Gel Picture Showing the *Hinf*I Restriction Fragments of the ITSI-5.8S-ITSII PCR products of *C. albicans* ATCC 14053 (CA) – Lane 2, *C. tropicalis* ATCC 13803 (CT) – Lane 3, *C. krusei* ATCC 14243 (CK) – Lane 4, *C. parapsilosis* ATCC 22019 (CP) – Lane 5, *C. dubliniensis* ATCC MYA-2975 (CD) – Lane 6, *C. glabrata* ATCC 90030 (CG) – Lane 7 and *C. lusitaniae* ATCC 64125 (CL) – Lane 8

Figure 4.12: Gel Picture Showing the *Hinf*I Restriction Fragments of the 5.8S-ITSII PCR Products of the Following Clinical Samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16)
<table>
<thead>
<tr>
<th>Table 3.1:</th>
<th>Ingredients for 1 L of PBS</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.2:</td>
<td>Chemical Ingredients Required for YEPD Broth</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.4:</td>
<td>Chemical Ingredients Required for Lysis Buffer</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Median Microbial Loads of the Saliva, Tongue, Palate and Buccal Mucosa Sites of the Healthy Control Group, Periodontal Disease Group and Denture Wearers Group</td>
<td>55</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Mean Percentages and Standard Deviations of Candidal Loads out of Total Microbial Loads</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>Comparison of Required Time and Materials of Four DNA Extraction Methods</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>Mean Concentration of Extracted DNA of Four ATCC Species</td>
<td>64</td>
</tr>
<tr>
<td>Table 4.5:</td>
<td>Number of DNA Extracts Free From Protein and Phenol Contamination of Four ATCC Control Species</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.6:</td>
<td>PCR Product Sizes of the Amplified ITS1 Region</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.7:</td>
<td>PCR Product Sizes of the Amplified 5.8S-ITS2 Region</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.8:</td>
<td>PCR Product Sizes of the Amplified ITS1-5.8S-ITS2 Region</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.9:</td>
<td>MspI Restriction Fragment Sizes of the ITS1-5.8S-ITS2 PCR Product</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.10:</td>
<td>HinfI Restriction Fragment Sizes of the ITS1-5.8S-ITS2 PCR Product</td>
<td>86</td>
</tr>
<tr>
<td>Table 4.11:</td>
<td>Genotype Profiles of the Seven ATCC Species</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.12:</td>
<td>Genotype Profiles and Species Match of the Fifteen Clinical Samples</td>
<td>89</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
<td></td>
</tr>
<tr>
<td>°C</td>
<td>degree centigrade</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td></td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
<td></td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
<td></td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
<td></td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
<td></td>
</tr>
<tr>
<td>ed.</td>
<td>edition</td>
<td></td>
</tr>
<tr>
<td>et al.</td>
<td>et alia (and others)</td>
<td></td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
<td></td>
</tr>
<tr>
<td>sp.</td>
<td>species</td>
<td></td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming unit</td>
<td></td>
</tr>
</tbody>
</table>