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1. INTRODUCTION 
 

 Candida is a genus of opportunistic yeasts, unicellular fungi that can cause oral, 

vaginal, lung, and sometimes systemic infections (Madigan and Martinko, 2006). 

Candida species that inhabit the oral cavity are usually harmless members of the 

microflora, but when they become pathogenic they manifest as Oropharyngeal 

Candidiasis (OPC). The most common form of OPC is pseudomembranous OPC, also 

known as oral thrush, in which white thick plaque forms in the oral cavity, causing 

mouth soreness, burning tongue sensation and taste changes. Sites affected include the 

buccal mucosa, tongue and palate. Erythematous or atrophic OPC is a less common 

form of OPC, which exhibits as a redness of the palate and tongue, and in addition may 

cause a feeling of metallic taste or burning (Samaranayake and Yaacob, 1990). 

 

Correct and accurate identification of the candidal species infecting an oral 

candidiasis patient is highly important, as different antifungal agents are effective 

against different candidal species (Ellepola et al., 2003). Typical phenotype-based 

methods for distinguishing between candidal strains are sometimes not useful for 

diagnostic purposes because they differentiate some strains without any correlation to 

pathogenesis, or cannot make distinctions between epidemiologically dissimilar strains 

(Hunter and Fraser, 1989). In addition, candidal infections are typically treated with 

azole antifungal drugs, mainly fluconazole, however many infections are caused by 

non-albicans Candida (NAC) species that may have fluconazole resistance (Niimi et al., 

1999). Some of the more common pathogenic NAC species include Candida krusei, 

which is resistant to fluconazole but sensitive to amphotericin B, ketoconazole and 

itraconazole, and Candida tropicalis, which has resistance to amphotericin B and 

fluconazole (Kremery and Barnes, 2002). Meanwhile Candida dubliniensis has many 
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phenotypic similarities to Candida albicans but has been reported to have fluconazole 

resistance (Sullivan et al., 2005). With the emergence of resistance to antifungal drugs 

(Mirhendi et al., 2006) it becomes of even greater importance to evaluate an antifungal 

drug’s ability to combat various strains. 

 

It is hoped that this research will shed more light on the microorganisms 

involved in oral disease pathogenesis, in addition to providing clinicians with more 

diagnostic tools for combating oral infections. 

 

1.1 Research Objectives 

 

1. To determine and compare the microbial loads of oral Candida species from 

periodontal patients, denture wearers with healthy oral cavity, and non-denture 

wearers with healthy oral cavity. 

2. To differentiate oral Candida sp. based on genotype, in particular the 

characteristics of rDNA. 

3. To assess the effectiveness of using candidal rDNA for identification of candidal 

species 
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2. LITERATURE REVIEW 

 

2.1 Microbial Ecosystem in the Oral Cavity 

 

 The oral ecosystem is defined as being composed of oral microorganisms and 

the oral cavity (Theilade, 1990). The saliva that constantly bathes the oral cavity ensures 

that it is always moist, is stable at a warm temperature of about 34-36 °C, and is 

maintained at a mostly neutral pH of 6.75-7.25, which makes the oral cavity an ideal 

habitat for the growth of microorganisms (Marsh, 2003). Because of this, the oral 

ecosystem supports a wide range of microorganisms, comprising of numerous bacteria, 

yeasts, protozoa and mycoplasmas (Marcotte & Lavoie, 1998). In comparison to other 

microbial habitats in the human body such as the skin or the gastrointestinal tract, the 

oral cavity is one of the most densely populated with more than 500 microbial species 

isolated (Takahashi, 2005), and the microbial community is also considered relatively 

stable, with comparatively fewer differences between individuals (Costello et al., 2009). 

 

2.1.1 Factors Influencing the Microbial Ecosystem of the Oral Cavity 

 

 The growth of microorganisms in the oral cavity is influenced by many factors, 

including temperature, pH, oxidation-reduction potential, nutrient content, water 

availability, oral structures, salivary flow and the host immune system (Marcotte & 

Lavoie, 1998). Any alterations of these factors can upset the microbial homeostasis of 

the oral cavity, causing radical changes to the oral ecosystem, which in turn may have 

adverse effects on the oral health of the host. It has been suggested that changes in the 

oral environment can trigger a shift in the resident microflora, in which potentially 

pathogenic species that were previously not clinically significant become more 
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competitive under the new conditions. Hence, the selection of pathogenic 

microorganisms over non-pathogenic microorganisms in the oral microflora leads to the 

onset of periodontal disease (Marsh, 2003). 

 

2.1.1.1 Temperature and pH 

 

 The oral cavity is maintained at a constant temperature of 35-36 °C and is 

bathed in saliva that regulates the pH at a mostly neutral level, all of which provides 

stable conditions for the growth of various microorganisms. However, changes in these 

environmental conditions can have drastic effects on the oral microflora. Small 

increases in temperature may have significant impacts on bacterial gene expression as 

well as the competitiveness of certain microorganisms. Meanwhile, exposure to low pH 

can inhibit or kill predominant plaque bacteria associated with healthy sites, resulting in 

increased colonization by acid-tolerant species such as Lactobacillus and mutans 

streptococci. Conversely, an increase in pH at the gingival crevice, which occurs during 

the host inflammatory response to periodontal disease, predisposes the site to the 

increased growth of pathogenic anaerobes such as P. gingivilis that grow optimally at 

pH 7.5 (Marsh and Martin, 2009). 

 

2.1.1.2 Nutrients 

 

 The main source of nutrition for microorganisms in the oral cavity is saliva, 

which contains amino acids, peptides, proteins and vitamins. In addition, host diet can 

also influence the microbial ecology of the mouth. A high carbohydrate intake is 

associated with shifts in microbial populations of the dental plaque, predisposing a site 

to dental caries. Meanwhile, dairy products can have a protective effect against caries, 
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and nitrate from green vegetables can inhibit the growth of bacteria implicated  in 

periodontal disease (Marsh and Martin, 2009). 

 

2.1.1.3 Antimicrobial Factors 

 

 Saliva contains a variety of antimicrobial factors that act to suppress or remove 

harmful microorganisms from the oral cavity. Mucins are responsible for agglutinating 

oral bacteria, facilitating their removal from the mouth through swallowing. Lysozyme 

can aggregate Gram positive bacteria as well as Gram negative periodontal pathogens, 

in addition to hydrolyzing peptidoglycan, an important component in bacterial cell 

walls. Lactoferrin is a non-specific antimicrobial factor that is known to have 

bacteriostatic, bactericidal, fungicidal and anti-viral properties. Saliva also contains 

antimicrobial peptides such as histatins, defensins and cathelisidins. The major histatins 

found in saliva include histatin 3, which is effective at inhibiting yeast germination and 

histatin 5, which is comparatively more active at killing germinated yeast cells. There 

are two types of defensins found in the oral cavity:  α-defensins, which are found 

primarily in neutrophils and β-defensins, which are found mainly in epithelial cells 

protecting mucosal surfaces. Other salivary antimicrobial agents include chitinase, 

which is implicated with breaking down yeast cell walls, cystatins, that control 

proteolytic activity, and  chromogranin A, that have anti-fungal and anti-yeast 

properties (Marsh and Martin, 2009). 

 

2.1.2 Oral Microbial Habitats 

 

 Different microorganisms have specific cell surface adhesins that bind to 

complementary specific receptors that can be found on different surfaces. Because of 
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this, oral microorganisms preferentially colonize different surfaces in the oral cavity, 

leading to each oral site having its own distinct population of microbial inhabitants 

(Gibbons, 1989). 

 

2.1.2.1 Saliva 

 

 Saliva influences the oral microbial population in many ways. Saliva facilitates 

the colonization of certain microorganisms by adsorbing on to oral surfaces and forming 

an acquired pellicle layer that provides complemenary receptors for microbial 

attachment. Furthermore, saliva provides a rich nutrient source for microbial growth. 

On the other hand, saliva also plays a prominent role in removing and inhibiting 

microorganisms. Salivary factors aggregate bacteria in the mouth for removal by 

salivary flow and the physical act of chewing. Saliva also inhibits the growth of certain 

microorganisms through antimicrobial factors such as lysozyme, lactoferrin and 

secretory IgA. As such, the rate of salivary flow is an important factor for the overall 

microbial colonization of the oral cavity, as low flow rates reduce the protective 

function of saliva and increases the colonization and development of microorganisms in 

the oral cavity (Marsh and Martin, 2009). 

 

 Microorganisms found in the saliva are derived from microorganisms that have 

been dislodged from other oral sites (Marcotte & Lavoie, 1998). In an oral cavity 

colonized with Candida sp., the average concentration of oral yeasts in the saliva has 

been reported to be about 300-500 cells per ml (Cannon & Chaffin, 2001). 
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2.1.2.2 Gingival Crevice 

 

 The interface between a tooth and its surrounding gingival epithelium forms a 

crevice, also known as the gingival sulcus, that microorganisms can colonize. The 

microbial habitat of the gingival crevice is greatly influenced by gingival crevicular 

fluid (GCF), a serum-like fluid that flows into the mouth through the junctional 

epithelium of the gingivae. GCF removes non-adherent microbial cells and also 

introduces certain nutrients and host defence components such as IgG and leukocytes 

that regulate the microflora of the gingival crevice (Marsh and Martin, 2009). 

 

2.1.2.3 Mucosal Surfaces 

 

 The mucosal surfaces of the palate and cheek are sparsely colonized by local 

microbes, with not more than 25 colony-forming units (CFUs) per epithelial cell 

(Theilade, 1990). The low microbial load is due to the frequent shedding, or 

desquamation, of the mucosal epithelial cells. However, certain specialized surfaces, 

such as the keratinized stratified squamous epithelium of the palate, can influence the 

microbial distribution of the oral cavity (Marsh and Martin, 2009). Streptococcus mitis 

and Gemella hemolysans have been found to be the predominant bacterial species of the 

buccal mucosa, while S. mitis, S. infantis, Gemella hemolysans, Granullicatella elegans, 

Granulicatella adiacens and Neisseria subflava are the predominant bacterial species of 

the palate surface (Aas et al., 2005).  
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2.1.2.4 Tongue 

 

 The surface of the tongue consists of saliva-coated desquamated epithilium for 

microbial adhesion, while the source of nutrition for microbes adhering to the papillary 

surface of the tongue is likewise derived from the saliva as well as the tongue epithilium 

(Takahashi, 2005). In comparison to other oral sites, the tongue surface has a high 

bacterial density, about 100 CFU per epithelial cell (Bowden et al., 1979). A wide range 

of bacteria can be found colonizing the surface of the tongue, including Actinomyces 

sp., Streptococcus sp., Veillonella sp., Fusobacterium sp. and Prevotella sp. (Takahashi, 

2005), though several Streptococcus species such as S. mitis, S. parasanguinis and S. 

salivarius have been found to be the most predominant bacterial flora (Aas et al., 2005). 

A study comparing the bacterial flora of the tongue of healthy subjects and that of 

halitosis subjects revealed that S. salivarius was nearly absent amongst subjects 

suffering from halitosis, suggesting that there is a significant difference in microbial 

populations on the tongue surface between healthy and non-healthy individuals (Kazor 

et al., 2003). The presence of periodontal pathogens such as P. gingivalis, E. corrodens 

and oral spirochetes (Lee et al., 1999) suggests that the tongue may be a reservoir for 

microorganisms involved in periodontal diseases (Van der Valden et al., 1986). 

 

2.1.2.5 Teeth Surfaces 

 

 Microorganisms can usually be found colonizing teeth surfaces in the form of 

dental plaque (Marcotte & Lavoie, 1998). Pyrosequencing of the dental plaque of 

healthy adults has revealed it to be comprised of about 1000 microbial phylotypes 

(Keijser et al., 2008). 
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2.1.2.6 Prosthodontic Applicances 

 

 The presence of dentures provides a low oxygen, low pH microenvironment that 

is conducive for the growth of Candida sp. Furthermore, acrylic dentures may provide 

an enhanced adherence surface in addition to reducing salivary flow. They have been 

found to predispose as many as 65% of elderly people wearing full upper dentures 

towards candidal infection (Akpan & Morgan, 2002). 

 

2.2 Oral Candida Species 

 

 One member of the oral microflora is oral yeast, which is also known to 

sometimes become orally pathogenic due to its opportunistic characteristics. However, 

this does not mean Candida species are always pathogenic, in fact approximately 25-

50% of healthy individuals have Candida species as part of their normal mouth flora, 

without suffering from any adverse effects (Odds, 1988). 

 

2.2.1 Characteristics of Candida Species 

 

 Other than a few exceptions, Candida sp. have similar macroscopic and 

microscopic cultural characteristics. Candida is a yeast with a nuclear pore complex 

within the nuclear membrane, and a plasma membrane that contains large quantities of 

sterols. They are capable of both aerobic and anaerobic metabolisation of glucose, and 

require fixed carbon from environmental sources for growth (Lehmann, 1998). 
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2.2.2 Candidal Colonization of the Oral Cavity 

 

Candida sp. are ubiquitous members of the oral microflora, and need to adhere 

to oral surfaces in order to be sustained in the oral cavity. The binding of candidal cells 

to oral surfaces is mediated by adhesin molecules, most of which are glycoproteins that 

are present in the fungal cell wall. Oral surfaces are covered by a salivary pellicle layer, 

consisting of salivary components that have been adsorbed by the oral surface from 

saliva, and oral yeasts adhere to oral surfaces by binding to these adsorbed salivary 

molecules (Cannon, 2001). Different conditions in the oral cavity may increase or 

decrease the prevalence of candidal colonization (Ryan, 1994). 

 

2.2.2.1 Interaction with Bacterial Flora 

 

 In general, oral Candida species interact with local indigenous bacterial 

microflora in many ways, including competition for common nutrients, association with 

metabolic as well as toxic byproducts, and alterations of the microenvironment 

(Samaranayake, 1990). 

 

2.2.2.1.1 Negative Interaction 

 

 Local bacterial microflora are known to negatively impact the prevalence of 

Candida albicans by competing for epithelial cell adherence sites (Samaranayake, 

1990). Oral bacteria have also been reported to inhibit candidal hyphal phase 

transformation, which is associated with candidal invasion of the epithelium and 

pathogenesis (Nair, 2001). This inhibition could be caused by the production of butyric 

acid, an anti-inflammatory short-chain fatty acid (Bohmig, 1997) that can inhibit 
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candidal hyphal transformation (Hoberg, 1983) and is produced in large quantities as a 

by-product of lactic acid bacterial fermentation (Hove, 1994). 

 

2.2.2.1.2 Positive Interaction 

 

 Positive relationships between Candida and pathogenic bacteria have also been 

observed, in particular the synergistic association between Candida albicans and 

Staphylococcus aureus (McFarlane, 1990). 

 

2.2.2.2 Denture Wearers 

 

Oral candidal colonization has been shown to be higher in denture wearers 

compared to non-denture wearers by 60-100% (Pires et al., 2002). An important factor 

in the pathogenesis and infection of Candida sp. in the oral cavities of denture wearers 

is the ability of the yeast to adhere to the acrylic resin and soft lining material surfaces 

of the denture (Waters et al., 1997). Studies have demonstrated that Candida albicans 

adheres more easily to soft lining materials compared to acrylic surfaces, and that 

retention is also higher on rougher surfaces compared to smooth surfaces (Radford et 

al., 1998). 

 

2.2.2.3 Periodontal Disease 

 

 Periodontal diseases are inflammatory diseases that affect the periodontium, the 

tissue that supports the teeth (Slots & Rams, 1992). Candida sp. are an aerobic species 

that grow optimally at neutral to acidic pH (Odds, 1988), and require sufficient sugar 

supplies, primarily glucose, in order to live (Samaranayake et al., 1986). In contrast, the 
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organisms that are the most implicated with periodontal disease, gram-negative 

anaerobic microbes (Haffajee and Socransky, 1994), generally thrive in and create 

environments that have low oxygen tension (Loesche et al., 1983) and low pH (Eggert 

et al., 1991). In addition, the majority of anaerobic bacteria are dependent on nutrients 

such as proteins, glycoproteins and amino acids (Samaranayake et al., 1986), instead of 

sugars. Consequently, Candida sp. and periodontal anaerobic bacteria can be said to 

occupy different ecological niches and may thus thrive under different environmental 

conditions.  

 

 In further support of this, it has even been demonstrated that anaerobic oral 

microflora can inhibit the growth of yeasts (Kennedy, 1981). However, about 20% of 

patients suffering from adult-stage periodontitis are reported to be host to oral yeasts 

(Dahlen and Wilkstrom, 1996), the majority of which are Candida albicans species 

(Hannula et al., 1997). Thus far it is unknown whether any Candida species are 

involved in the development of periodontal disease. 

 

2.2.2.4 Host Diet 

 

 Host diet can also be a factor in the growth of oral Candida species. Candidal 

growth in the saliva is enhanced by the presence of glucose, and a high carbohydrate 

diet can also enhance candidal adherence to oral epithelial cells (Ohman & Jontell, 

1988). 
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2.2.2.5 Other Influencing Factors 

 

 A study has shown that Candida albicans prevalence is higher in the saliva of 

diabetic patients as well as in that of patients treated with antibiotics and corticosteroids 

(Knight and Fletcher, 1971). Thus, alterations in the microbial flora as a result of 

hormonal changes, illness, and medical treatment could have a significant effect on 

candidal colonization (Rogers and Balish, 1980). 

 

2.2.3 Pathogenesis of Oral Candida Species 

 

  Oral Candida sp. are typically harmless, and only become pathogenic in certain 

situations, such as under conditions that allow them to increase their relative proportion 

to other members of the local flora (Ryan, 1994). Other predisposing factors to oral 

Candida infection include radiation therapy, iron deficiency, endocrine disorders and a 

compromised immune system (Scully et al., 1994). 

 

2.2.3.1 Candidal Factors 

 

 The factors that are implicated during the initial stages of candidal infection are 

candidal adhesion to epithelial cell walls, which is promoted by several fungal cell wall 

components such as C3d receptors, mannoprotein, mannose and saccharins, the ability 

to bind to host fibronectin, and the degree of hydrophobicity. Other factors that 

influence candidal pathogenesis include endotoxins, proteinases, mycelia, germ tube 

formation, tumor necrosis factor induction and persistence within epithelial cells 

(Akpan & Morgan, 2002). 
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2.2.3.2 Salivary Secretion 

 

 Salivary flow rate is an important factor in oral candidal pathogenesis, as the 

secretion  of saliva removes organisms from the mucosa, in addition to saliva containing 

antimicrobial proteins such as lysozyme, lactoferrin, sialoperoxidase and specific 

anticandida antibodies. Thus, impaired salivary gland function and any condition such 

as radiotherapy and Sjogren’s syndrome that inhibits salivary secretion can result in 

higher risk of oral candidiasis (Peterson, 1992). 

 

2.2.3.3 Denture Stomatitis 

 

The high prevalence of Candida species in the oral cavities of denture wearers is 

often associated with denture-induced stomatitis, also known as denture sore mouth. 

Denture stomatitis is symptomized by red sores in the mucosal surface of denture-

bearing tissue. (Budtz-Jorgensen et al., 1975). A study conducted in the United States 

concluded that one in three people who wear removable dentures have denture 

stomatitis (Shulman et al., 2005), while another study has shown that about one in two 

full upper denture users suffer from candida-associated denture stomatitis (Cannon, 

1990). 

 

2.2.3.4 Drugs 

 

 Drug therapy has also been shown to be a predisposing factor for oral 

candidiasis as drugs may suppress cellular immunity and phagocytosis. Broad spectrum 

antibiotics can have an impact on the local oral microflora, altering the environment so 

that it is more suitable for candidal proliferation. Furthermore, immunosuppressive 
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drugs can predispose to oral candidiasis by disrupting the mucosal surface and changing 

the character of the saliva (Akpan & Morgan, 2002). 

 

2.2.4 Candidal Species of Importance 

 

 Among the candidal species of importance and growing emergence as prominent 

pathogens include Candida albicans, Candida tropicalis, Candida krusei, Candida 

parapsilosis, Candida dubliniensis, Candida glabrata and Candida lusitaniae. 

 

2.2.4.1 Candida albicans 

 

 Candida albicans has long been established as the most common oral candidal 

species, constituting 34-85% of the yeast species isolated from the oral cavity (Odds, 

1988), and can be isolated from the oropharynx of over 40% of normal individuals 

(Kleinegger, 1996). Candida albicans has also been considered the predominant species 

responsible for candidal infection (Pfaller et al., 2006), however recently there has been 

a global trend of decreasing rates of Candida albicans isolation (Pfaller et al., 2005). 

 

2.2.4.2 Candida tropicalis 

 

 Candida tropicalis infections have been reported in 4% to 24% of candidemia 

patients  (Pfaller and Diekema, 2007). Candida tropicalis is also considered a major 

cause of invasive candidiasis in cancer patients (Wingard, 1995). 
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2.2.4.3 Candida krusei 

 

 After Candida albicans, Candida krusei is the second most common oral 

Candida species, amounting to as much as 30% of oral yeast isolates (Odds, 1988). In 

addition, the occurrence of Candida krusei in infections has been seen to be increasing 

(Samaranayake and Samaranayake, 1994), and the latest findings also indicate that C. 

krusei has mutated and acquired echinocandin resistance, leading to a greater level of 

pathogenesis (Kahn et al., 2007). 

 

2.2.4.4 Candida parapsilosis 

 

 The incidences of Candida parapsilosis have been on the rise, and Candida 

parapsilosis has been reported to be the second most common candidal species isolated 

from blood cultures (Trofa et al., 2008). It is also the most common species found on 

the hands of health care workers (Strausbaugh et al., 1994). 

 

2.2.4.5 Candidia dubliniensis 

 

 As Candida dubliniensis shares many phenotypic characteristics with Candida 

albicans, distinguishing between these two closely-related species has been historically 

problematic (Pincus et al., 1999). However molecular analysis shows that Candida 

dubliniensis and Candida albicans are dissimilar by 13 to 15 nucleotides in the 

ribosomal RNA sequences (Sullivan et al., 1995). 
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2.2.4.6 Candida glabrata 

 

 Recently, Candida glabrata has emerged as one of the leading candidal 

pathogens. Reports indicate that Candida glabrata colonization and infection is rare in 

infants, but increases significantly with age (Pfaller et al., 2006). Candida glabrata is 

also known for having reduced susceptibility to fluconazole (Malani et al., 2005). 

 

2.2.4.7 Candida lusitaniae 

 

 Candida lusitaniae is known for its amphotericin B resistence (Blinkhorn et al., 

1989) and is now considered an emerging non-albicans Candida (NAC) pathogen 

(Krcmery and Barnes, 2002). 

 

2.3 Methods for Differentiating Candida Species 

 

2.3.1 Serotyping 

 

Serotyping, in which whole cells of Candida sp. are agglutinated with rabbit 

antisera, produces only two distinct serotypes, which is not useful for diagnosis, and in 

addition is unreliable because different methods of serotyping can produce varying 

results (Brawner et al., 1992). As many as four resistogram methods of strain-

differentiation of Candida albicans have been developed, but resistogram typing has 

been shown to have no correlation with pathogenesis, and there have been problems 

because of interpretation and reproducibility (Hunter & Fraser, 1989). 
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2.3.2 Biotyping 

 

An established system for biotyping intraspecific candidal strains combines 

three biotyping tests, the API ZYM, API 20C and boric acid resistance tests. API ZYM 

revolves around biotyping candidal isolates based on the presence of five enzymes: 

valine arylamidase, phosphoamidase, alpha-glucosidase, beta-glucosidase and N-acetyl-

beta-glucosaminidase. Meanwhile, the API 20C test differentiates isolates based on the 

yeast’s ability to assimilate eleven carbohydrates: glycerol, L-arabinose, xylose, 

adonitol, xylitol, sorbitol, methyl-D-glucoside, N-acetyl-D-glucosamine, sucrose, 

trehalose and melezitose. This biotyping system was found to be simple to perform, 

reproducible and discriminatory (Williamson et al., 1987). However, for diagnosis it 

was problematic because many epidemiologically unrelated strains tended to have 

identical biotypes (Hunter & Fraser, 1989). 

 

2.3.3 Selective Agar 

 

The use of CHROMagar, a differential and selective medium, has been found to 

be most useful in identifying selected candidal species such as Candida albicans, 

Candida krusei and Candida tropicalis, although some confusion may arise because of 

ambiguities in colour, as identification is based on colony colouration when grown on 

the medium (Beighton et al., 1995). 
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2.3.4 Molecular Methods for Typing of Oral Candida Species 

 

The diploid genome sequence of Candida albicans has been elucidated through 

whole-genome shotgun sequencing, and this has been a great help for molecular-based 

studies of Candida sp. (Jones et al., 2004). 

 

2.3.4.1 Karyotyping 

 

 One of the earliest molecular methods for typing of Candida sp. is by 

karyotyping, in which yeast strains are identified based on the characteristics of their 

chromosomes. Because yeast chromosomes are too large to separate properly in normal 

gels, pulsed-field gel electrophoresis (PFGE) is employed instead. In PFGE, the 

orientation of the electric field and the gel is constantly changed, enabling separation of 

chromosome-sized fragments of DNA, producing distinct bands depending on the size 

of the fragments, which are then analysed for candidal typing (Schwartz & Cantor, 

1984). PFGE has been used to distinguish phenotypically different strains of Candida 

albicans (Mahrous et al., 1990) and for karyotyping Candida krusei (Dassanayake et al., 

2000). 

 

2.3.4.2 Restriction Enzyme Analysis 

 

Another way to differentiate candidal genotypes is through restriction enzyme 

analysis (REA), in which candidal DNA is extracted and then subjected to restriction 

enzymes that cut DNA at specific points, producing bands of variable lengths, which are 

visible through gel electrophoresis. This method was employed for genotyping candidal 

isolates by digestion with the EcoRI restriction enzyme, and was successful in 
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producing band patterns that sorted Candida species isolates into several mutually 

exclusive groups, and thus was informative for both epidemiological and taxonomic 

studies. In addition, three intense bands were identified to be present in each candidal 

isolate, and these were thought to be ribosomal RNA encoding genes, also known as 

rDNA (Scherer & Stevens, 1987). 

 

2.3.4.3 Restriction Fragment LengthPolymorphisms in Ribosomal DNA 

 

Another study investigated the presence of restriction fragment length 

polymorphisms (RFLPs) in Candida albicans rDNA. Digestion of extracted Candida 

albicans rDNA with EcoRI enzyme yielded six different classes based on restriction 

patterns (Magee et al., 1987). Another study used the HinfI endonuclease to type 21 

different Candida species, and was able to distinguish between Candida albicans, 

Candida krusei, Candida tropicalis and a few other candidal species, in addition to 

dividing them into mutually exclusive subgroups (Fujita and Hashimoto, 2000). The 

HinfI restriction enzyme has also been succesfully used for genotyping Candida krusei 

strains (Sancak et al., 2004) 

 

2.3.4.4 Random Amplified Polymorphic DNA 

 

 Random amplified polymorphic DNA (RAPD) is another molecular typing 

technique. RAPD involves the use of non-specific primers that anneal to random sites 

and amplify dispersed genomic sequences, producing distinct band patterns that are 

based on genetic polymorphisms (Welsh and McCleland, 1991). This method has been 

used for differentiating Candida albicans, Candida parapsilosis and Candida glabrata 

isolates (Valerio et al., 2006). In another study, four nonspecific primers, the 10-mer 
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oligonucleotide AP3, the microsatellite repeat sequences (GTG)5 and (AC)10, and T3B, 

derived from tRNA intergenic spacers, were used separately to amplify the genomic 

DNA of 26 candidal species, and successfully generated distinct profiles for each 

species. The profiles also demonstrated distinctions between different strains of the 

same species (Thanos et al., 1996). A different study involving the use of a primer pair 

based on the sequence of a Candida albicans chitin synthase gene, CHS1, was 

successful in generating distinct bands for four medically important candidal species, C. 

albicans, C. parapsilosis, C. tropicalis, and C. glabrata, which is useful for the 

identification of these four species (Jordan, 1994). 

 

2.3.4.5 Polymerase Chain Reaction (PCR) Amplification 

 

 Polymerase Chain Reaction (PCR) involves the application of primers that 

amplify specific sequences in the genome, generating bands that are visible through gel 

electrophoresis. This method has been used for identifying Candida albicans isolates 

through primer pairs that amplify a species-specific sequence in C. albicans 

mitochondrial DNA (Miyakawa et al., 1993). 

 

2.3.4.6 Probe Hybridization 

 

An alternative molecular approach for typing of candidal species based on 

genetic characteristics is probe hybridization. A DNA probe called 27A has been 

designed based on a DNA fragment that has about 10 copies dispersed among Candida 

albicans genomic DNA (Scherer & Stevens, 1988). In Africa, three genotype groups 

were identified in Candida albicans samples collected from the oral cavities of HIV-
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positive patients through the use of the DNA fingerprinting probe Ca3 (Blignaut et al., 

2002). 

 

2.4 Analysis of the the Internal Transcribed Spacer Region of Candidal rDNA 

 

 In eukaryotic organisms, ribosomal RNA genes consist of repetitive sequences 

located in tandem clusters. Regions containing these tandem clusters are known as 

rDNA. In yeasts, the rDNA region contains multiple rRNA genes that are separated 

from each other by short nonstranscribed spacers (Lewin, 2004). The rDNA region is 

known to be the most conserved region in the genome, and thus is most suitable for 

studying phylogenetic differences (Iwen et al., 2002). 

 

 The fungal rRNA gene consists of sequences coding for the small subunit 18S 

rRNA, the 5.8S rRNA and the large subunit 28S rRNA. As can be seen in Figure 2.1, 

there are two Internal Transcribed Spacers (ITS) found in fungal rDNA, namely ITSI 

and ITSII. ITSI is situated between the 18S and 5.8S rDNA sequences, whereas ITSII is 

located between the 5.8S and 28S rDNA sequences. Thus, the rRNA gene can be 

imagined to be a series of sequences in the following order: 18S rDNA, ITSI, 5.8S 

rDNA, ITSII and finally 28S rDNA. In addition, two intergenic spacer (IGS) regions, 

IGSI and IGSII are located between the 28S rDNA end of an rRNA gene and the 18S 

rDNA end of the next rRNA gene. Of all these regions, ITSI and ITSII have been found 

to be most variable between different species of fungi, and thus useful for identification 

of fungal species (White et al., 1990). 
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Figure 2.1: Candidal rDNA and the Locations of ITS1, ITS3 and ITS4 Primers 

(Mirhendi et al., 2006) 

 

2.4.1 ITSII Amplification 

 

 It has been reported that amplification of the ITSII region in the rDNA of 

various candidal isolates through the use of primers annealing to sequences in the fungal 

5.8S (fluorescently labelled ITS86 primer) and 28S (ITS4 primer) ribosome coding 

genes, followed by analysis employing an automated capillary electrophoresis system, 

enables differentiation of eight Candida species, including C. albicans, C. krusei and C. 

tropicalis, with no intraspecific variety detected (Turenne et al., 1999). 

 

2.4.2 Multiplex PCR 

 

 Multiplex PCR has been carried out, in which two different PCR reactions were 

conducted simultaneously, for the identification of 120 yeast isolates. The ITS1 and 

ITS4 primers amplified the ITSI-5.8S-ITSII region, while the ITS3 and ITS4 primers 

simultaneously amplified the ITSII region. This method was successful in 

differentiating 29 out of the 30 yeast species tested (Fujita et al., 2001). 
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2.4.3 Single-Strand Confirmation Polymorphism Analysis 

 

 A recent study compared the effectiveness of various fungal-specific primers for 

the identification of fungal species based on single-stranded confirmation 

polymorphism (SSCP) analysis. Four sets of PCR were compared, namely the ITS1 and 

ITS2 amplification of ITSI, the ITS3 and ITS4 amplification of ITSII, the ITS1 and 

ITS4 amplification of the ITSI-5.8S-ITSII region, and the invSR1R and LR12R 

amplification of the IGS region and 5S rRNA gene. The results concluded that the PCR 

products generated by the ITS1 and ITS2 primers were the most suitable for fungi 

identification (Kumar and Shukla, 2005). 

 

2.4.4 Transposable Intron Amplification 

 

 A primer pair, CA-INT-L and CA-INT-R, which amplifies a transposable intron 

region in the 25S rRNA gene, has been used to classify C. albicans into four different 

genotypic strains (McCullough et al., 1999), while a different study using the same 

primers found five different genotypes (Tamura et al., 2001). Another study in China, 

again using the same primers, found only three different genotypes (Qi et al., 2005). 

 

2.4.5 PCR Amplification and Enzyme Immunosorbent Assay Analysis 

 

 Another method combines both PCR amplification and enzyme immunosorbent 

assay (EIA) analysis for Candida species identification. This PCR-EIA technique 

involves the primer pair ITS3 and ITS4 for amplification of the 5.8S-ITSII region, 

followed by EIA species-specific probes to detect the amplified PCR product. This 

method has been used to correctly identify the Candida species in blood samples taken 
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from 31 patients with candidemia (Hee Shin et al., 1997). A similar method targeting 

the ITSII region was successful in accurately differentiating Candida dubliniensis, 

Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, and 

Candida tropicalis. It was concluded that this method was more reliable than 

phenotypic methods for identifying Candida dubliniensis (Ellepola et al., 2003). 

 

2.4.6 PCR Amplification and Restriction Fragment Length Polymorphism 

Analysis 

 

 Recently, carrying out both PCR and RFLP approaches upon candidal rDNA has 

proven useful for species identification.  In one study, the primers ITS1 (targeting a 

sequence in the 18S rDNA) and ITS4 (targeting a sequence in the 28S rDNA) were used 

to amplify a region spanning ITSI, 5.8S and ITSII in the rDNA of various candidal 

isolates. After that, the amplified region was digested with the MspI restriction enzyme, 

producing bands patterns that could distinguish between six medically significant 

Candida species, namely C. albicans, C. tropicalis, C. parapsilosis, C. glabarata, C. 

krusei, and C. guilliermondii (Mirhendi et al., 2006).  Another study employed MspI 

and BlnI digestion of the amplified ITS1-5.8S-ITSII region to differentiate C. albicans, 

C. tropicalis, C. krusei, C. glabrata, C. parapsilosis, C. guilliermondii and C. 

dubliniensis (Shokohi et al., 2010). 
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METHODOLOGY 

 

3.1 Research Materials 

 

3.1.1 Chemicals 

 

Agarose (Sisco Research Lab, Mumbai) 

Boric Acid (BDH, England) 

Chloroform (SystemChem AR) 

Decon 90 (Decon, England)  

Ethanol 95% (John Kollin Corporation, USA) 

EDTA (Fluka, Germany) 

EtBr Destroyer Sprayer (Favogen) 

Germisep (Hovid, Malaysia)  

Glycerol (Merck, Germany) 

Isopropanol (R&M Chemicals, United Kingdom) 

Lysozyme (Sigma, USA) 

Lyticase (Fluka) 

Proteinase K (Sigma, USA) 

RNase A (Sigma, USA) 

Sorbitol (R&M Chemicals, United Kingdom) 

Sodium chloride (BDH, England) 

Triton X-100 (R&M Chemicals, United Kingdom) 

Tris-HCl (Sisco Research Lab, Mumbai) 
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3.1.2 Glasswares  

 

Beaker (Bibby, UK)  

Conical flask (Pyrex, England)  

Glass beads, 3 mm diameter (Merck, Germany)  

Glass bottle (Schott, UK) 

 

3.1.3 Consumables  

 

Aluminium foil (Diamond, USA)  

Bunsen burner gas (Campingaz, France) 

Latex Gloves (Unigloves, Malaysia) 

Parafilm (Peching Plastic Packaging, Menasha) 

Petri dish (Brandon, USA)  

Pipette tips (Appendorf, Canada) 

 

3.1.4 Media  

 

Brain Heart Infusion Broth (Difco, France) 

Brain Heart Infusion Agar (Difco, France) 

Sabouraud Dextrose Agar (Difco, France) 

 

3.1.5 Microbial Control Strains 

 

Candida albicans (ATCC 14053), American Type Culture Collection, USA 

Candida tropicalis (ATCC 13803), American Type Culture Collection, USA 
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Candida krusei (ATCC 14243), American Type Culture Collection, USA 

Candida parapsilosis (ATCC 22019), American Type Culture Collection, USA 

Candida dubliniensis (ATCC MYA-2975), American Type Culture Collection, USA 

Candida glabrata (ATCC 90030), American Type Culture Collection, USA 

Candida lusitaniae (ATCC 64125), American Type Culture Collection, USA 

 

3.1.6 Equipments  

 

Autoclave, HICLA VE HVE-50 (Hirayama, Japan)  

Balancer (Denver Instrument, USA) 

Chiller, 4 ºC (Mutiara, Malaysia) 

Electric drying cabinet, Weifo KD-112 (Weifo, Singapore) 

Freezer, -80 ºC, Hetofrig CL410 (Hetofrig, Denmark)  

Fume cupboard, Ductless (Labcaire, England) 

Gel-Pro Analyzer (Media Cybernetics, USA) 

Gel Imaging System (Microlambda) 

Icemaker (Nuove Tecnologie del Freldo, Italy) 

Incubator (Memmert, Germany)  

Laminar Air Flow Cabinet, ERLA CFM Series (Australia)  

Micropipettors (Appendorf, Canada)  

Microwave oven (Panasonic, UK) 

Mastercycler, Gradient (Eppendorf, Germany) 

pH Meter (Eutech Instuments) 

Power Pack (BioRad, USA) 

Spectrophotometer, Shimadzu UV160A (Shimadzu, Japan) 

Thermal Printer (Mitsubishi Electric, Japan) 
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Vortex Mixer (Glas-Col, USA) 

Water Bath (Grant, United Kingdom) 

Water Distiller (J Bibby Merit, England)  

Water Purifier System (ELGA, UK) 

 

3.2 Research Methods 

 

3.2.1 Research Outline 

 

The overall research process consists of six stages, as detailed in Figure 3.1. 

 

3.2.2 Sample Collection 

 

 Samples were collected from the oral cavity of a total of 45 individuals. Three 

target groups were identified for sample collection, consisting of 15 non-denture 

wearers with a healthy oral cavity (this acts as the control group), 15 upper full denture 

wearers with healthy oral cavity, and 15 non-denture wearers suffering from adult-stage 

periodontal disease. Samples were collected in accordance with ethical code DF 

0B0702/2002(L) (refer to Appendix A). 
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Figure 3.1: Six Stages of the Research Design 
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3.2.2.1 Preparation of Transport Medium 

 

 The transport medium consisted of phosphate buffer saline (PBS). Beforehand, 1 

L of PBS was prepared by adding the ingredients as shown in Table 3.1 to 800 mL of 

sterile distilled water. The total pH of the mixture was then adjusted to 7.4 and the 

solution topped up to 1 L with sterile distilled water. 

 

Table 3.1: Ingredients for 1 L of PBS 

Materials Amount 

NaCl 8 g 

KCl 0.2 g 

Na2HPO4 1.44 g 

KH2PO4 0.24 g 

 

 

 Following preparation, 1.5 mL of the transport media was dispensed into sterile 

2 mL microcentrifuge tubes  before storing at 4 °C 

 

3.2.2.2 Inclusion and Exclusion Criteria 

 

 The samples were taken from individuals of 35-65 years of age, who were non-

smokers, not diabetic, and had not taken any antimicrobial treatment for the past 6 

months prior to sampling. Each sampled individual was given an information sheet 

(refer to Appendix B) to ensure that they understood what they were participating in, 

and then asked to fill out a consent form (refer to Appendix C) before having their 

samples taken. 
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3.2.2.3 Sampling Sites and Collection Methods 

 

 In addition to collecting samples from saliva, samples were also collected from 

the surfaces of the tongue, palate and the buccal mucosa (cheek mucosal surface). 

 

 Samples from the tongue, palate and buccal mucosa surfaces were taken by 

brushing against the surface 10 times consecutively with a cytobrush. In order to collect 

saliva, a pea sized cotton ball was used to soak the saliva at the floor of the mouth. All 

of the samples were then transferred into the transport medium (refer to 3.2.2.1), which 

were stored in ice and brought to the laboratory. 

 

3.2.3 Microbial Load Determination 

 

3.2.3.1 Preparation of Agar Plates and Broth Mediums 

 

 Fresh agar plates were prepared prior to each sampling as well as prior to 

carrying out colony isolation. Fresh agar slants and broth media were also prepared 

prior to storage of the isolated colonies. 

 

3.2.3.1.1 Sabouraud Dextrose Agar (SDA) Plates and Slants 

 

 SDA plates were prepared by first suspending 65 g of SDA powder in 1 L of  

distilled water. The suspension was boiled in a microwave oven and mixed through 

frequent agitation in order to ensure the powder was dissolved thoroughly. The solution 

was then autoclaved at 121 °C for 15 minutes at 15 psi. While still in liquid form, the 
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sterilized media was then poured into sterile petri dishes and left to solidify before 

storing at 4 °C in an inverse direction. 

 

 SDA slants were also prepared by dispensing 2.5 mL of the sterilized media, 

while still in its liquid form, into sterilized universal bottles that were then left to 

solidify at an inclined angle. The agar slants were stored at 4 °C. 

 

3.2.3.1.2 Brain-Heart Infusion (BHI) Agar Plates 

 

 BHI agar plates were prepared by suspending 52 g of BHI agar powder in 1 L of 

distilled water, and then following the same steps of dissolving, autoclaving, dispensing 

and storage as outlined in 3.2.3.1.1 for SDA plates. 

 

3.2.3.1.3 Yeast-Extract-Peptone-Dextrose (YEPD) Broth 

 

 The ingredients as shown in Table 3.2 were dissolved in 500 mL of distilled 

water and then autoclaved at 121 °C for 15 minutes at 15 psi. 

 

Table 3.2: Chemical Ingredients Required for YEPD Broth 

Materials Amount 

D (+) Glucose 10 g 

Peptone 10 g 

Yeast extract 5 g 
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3.2.3.2 Serial Dilution 

 

 Once the transport medium containing the samples were brought to the 

laboratory, serial dilution was carried out, in which the microcentrifuge tubes containing 

the samples were vortexed to ensure the microbes were evenly mixed in the broth, 

before pipetting 0.1 mL of the broth into 9.9 mL of sterile distilled water in a Falcon 

tube, which was also vortexed to produce a 10
2
 dilution. From this first tube, 1 ml was 

transferred to a new tube containing 9 ml of sterile distilled water and vortexed, 

producing a 10
3
 dilution. This step was serially repeated two more times to produce 

tubes containing 10
4
 and 10

5
 dilutions. The process of serial dilution is further 

illustrated in Figure 3.2. 
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Figure 3.2: The Process of Serial Dilution and Plating 
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3.2.3.3 Microbial Plating 

 

 After the serial dilution was carried out, 100 µl was pipetted from the undiluted 

sample as well as from each serial dilution tube, all of which were vortexed prior to 

pipetting, and plated on triplicate SDA as well as BHI agar plates, producing plates that 

were inoculated with the following dilutions: 10
0
, 10

2
, 10

3
, 10

4
 and 10

5
. The plates were 

incubated at 37 °C for 48 hours under aerobic conditions, to allow for the growth of 

candidal organisms on SDA plates, and the growth of both candidal and aerobic 

bacterial organisms on BHI plates, respectively. Following incubation, each plate was 

then scored for colonies, enabling the calculation of the total microbial, candidal and 

bacterial loads of each sample, expressed in colony-forming units (CFUs), as based on 

the following formulas: 
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3.2.3.4 Isolation and Storage of Candidal Colonies 

 

Fifteen unidentified yeast colonies were randomly selected for isolation. In 

addition, pure colonies of the following seven ATCC yeast species were also obtained 

as positive control samples: Candida albicans, Candida tropicalis, Candida krusei, 

Candida parapsilopsis, Candida dubliniensis, Candida glabrata and Candida 

lusitaniae. This was carried out by following the manufacturer’s instruction: 0.5 mL of 

sterile distilled water was added to an ampoule containing lyophilised cells of the 

Candida species. Following rehydration of the cells in the ampoule, 100 µl of the 

suspension was then inoculated on an SDA plate and incubated at 37 °C for 24 hours. 

 

The fifteen clinical colonies and seven ATCC colonies were isolated on SDA 

plates. This was conducted by streaking each sample on an agar plate with a sterile wire 

loop, and then incubating the plates at 37 °C for 48 hours, in order to obtain pure single 

colonies. Several pure colonies were then picked, subcultured on SDA slants (refer to 

3.2.3.1.1) and incubated at 37 °C for 48 hours before placing in 4 °C for short term 

storage. 

 

For long term storage, colonies from the agar slants were inoculated into 5 mL 

of YEPD broth (3.2.3.1.3) and incubated overnight at 37 °C. Then, 800 µl of the growth 

suspension was transferred to a sterile eppendorf tube, after which 200 µl of glycerol 

was added and mixed. The 20% glycerol stock was stored at -80 °C. 
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3.2.4 DNA Extraction 

 

 Genomic DNA was at first extracted from the ATCC control yeast colonies 

using several methods – a commercial yeast DNA extraction kit, a lyticase-based 

enzymatic extraction method, an extraction method based on rapid freeze-thawing and a 

glass bead disruption extraction method – before determining which method was best 

suited for candidal genomic DNA extraction. Prior to this, the necessary reagents, stock 

solutions and buffers were prepared accordingly. 

 

3.2.4.1 Preparation of Yeast Cultures 

 

 Fresh yeast cultures were prepared before each DNA extraction procedure. 

Purified yeast colonies (see 3.2.3.4) were picked and inoculated into 2 mL 

microcentrifuge tubes containing 1.5 mL YEPD broth (see 3.2.3.1.3). The tubes were 

then incubated at 37 °C for 48 hours. The yeast cultures were standardized to 0.144 at a 

wavelength of 550 nm (10
6
 cells per mL) using spectrophotometry. 

 

3.2.4.2 Preparation of Reagents 

 

 An ethylenediamine tetraacetic acid (EDTA) stock solution (3.2.4.2.1) was 

required for preparation of Tris-EDTA (TE) buffer (3.2.4.2.3) as well as Tris-Borate-

EDTA (TBE) buffer (3.2.4.2.4) stocks. A Tris-HCl (3.2.4.2.2) stock solution was also 

required for preparation of the TE buffer.  It was necessary to prepare 10× TE buffer 

stock solution (3.2.4.2.3), as 1× TE buffer was required for storage of extracted DNA, 

while 3× TE buffer was needed for Lyticase-based enzymatic DNA extraction 

(3.2.4.4.4). Meanwhile, TBE buffer was prepared for gel electrophoresis of the DNA 
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extracts (3.2.4.5). Also, Lysis Buffer stocks (3.2.4.2.5) were prepared before carrying 

out the rapid freeze-thawing (3.2.4.4.2) and glass beads disruption (3.2.4.4.3) extraction 

methods. A sodium acetate solution (3.2.4.2.6) was also required for the glass beads 

disruption method. 

 

3.2.4.2.1 Preparation of EDTA Solution 

 

 A 500 mL stock solution of 0.5M EDTA was prepared by weighing 93.05 g 

EDTA disodium salt and dissolving in 400 mL sterile deionized water and adjusting the 

pH to 8.0 with NaOH. The solution was then topped up to a final volume of 500 mL. 

 

3.2.4.2.2 Preparation of Tris-HCl 

 

 A 500 mL stock solution of 1M Tris-HCl was prepared by dissolving 60.55 g 

Tris base in 400 mL deionized water and adjusting the pH to 7.5 with hydrochloric acid 

(HCl). The solution was then topped up to a final volume of 500 mL. 

 

3.2.4.2.3 Preparation of Tris-EDTA (TE) Buffer 

 

 To prepare a 500 mL 10× TE buffer stock solution, 50 mL of the 1M Tris-HCl 

stock solution (3.2.4.1.2.2) was mixed with 10 mL of 0.5M EDTA (see 3.2.4.1.2) and 

440 mL sterile deionized water. The 3× and 1× TE buffer solutions were later obtained 

by diluting the 10× TE buffer stock solution. 
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3.2.4.2.4 Preparation of Tris-Borate-EDTA (TBE) Buffer 

 

 Stock solutions of 5× TBE buffer were prepared by weighing 54 g Tris base and 

27.5 g boric acid and dissolving both in 900 mL sterile deionized water. Then, 20 mL of 

0.5M EDTA (see 3.2.4.2.1) was added and the solution was topped up to a final volume 

of 1 L. Later, 1× TBE buffer solutions were obtained by diluting the 5× stock solution. 

 

3.2.4.2.5 Preparation of Lysis Buffer 

 

 The ingredients as shown in in Table 3.3 were dissolved in 500 mL of sterile 

distilled water in order to prepare Lysis Buffer stock. 

 

 

Table 3.3: Chemical Ingredients Required for Lysis Buffer 

Materials Amount 

Triton X-100 2% 

SDS 1% 

NaCl 100 mM 

Tris-HCl (pH 8.0) 10 mM 

EDTA (pH 8.0) 1 mM 
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3.2.4.2.6 Preparation of Sodium Acetate Solution 

 

 A 500 mL stock solution of 3M sodium acetate was prepared by dissolving 204 

g of sodium acetate in 400 mL of deionized water and adjusting the pH to 5.2 with 

acetic acid. The solution was then topped up to 500 mL. 

 

3.2.4.3 Preparation of 1% Agarose Gel 

 

 A fresh 1% agarose gel was prepared each time before running gel 

electrophoresis of DNA extracts (3.2.4.6). In order to prepare 50 mL of 1% agarose gel, 

0.5 g of agarose powder was suspended in 50 mL TBE buffer (see 3.2.4.2.4) inside a 

conical flask. The flask was microwaved with frequent agitation in order to ensure the 

powder was properly dissolved in the solution. The process of heating was stopped at 

the boiling point. After 15 minutes in which the solution had cooled to body warmth 

temperature, 0.1 µl of ethidium bromide was pippeted into the solution and mixed well. 

The solution was then poured into a gel caster, and a well comb was inserted to form 

wells. After the gel had cooled and hardened, the well comb was removed. 

 

3.2.4.4 Genomic DNA Extraction Methods 

 

 Four different genomic DNA extractions were employed in this study: the use of 

a commercial yeast genomic DNA extraction kit (3.2.4.4.1), an extraction method that 

uses a Triton X-100 lysis buffer and rapid freeze-thwaing for yeast cell disruption 

(3.2.4.4.2), an extraction method also employing the Triton X-100 lysis buffer but 

instead based on glass beads disruption (3.2.4.4.3), and an enzymatic extraction method 

based on Lyticase (3.2.4.4.4). 
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3.2.4.4.1 Commercial Yeast Genomic DNA Extraction Kit 

 

 DNA was extracted by following the procedure as given by the supplier of the 

MasterPure Yeast DNA Purification Kit. Fresh yeast cultures (3.2.4.1) were centrifuged 

at 4,000 rpm for 5 minutes at room temperature before discarding the supernatant and 

suspending the pellet in 300 µl Yeast Cell Lysis Solution (provided in the kit). The 

suspension was then incubated at 65 °C for 15 minutes, followed by placing on ice for 5 

minutes. Afterwards, 150 µl MPC Protein Precipitation Reagent (provided in the kit) 

was added and the mixture was vortexed for 10 seconds before being centrifuged at 

10,000 rpm for 10 minutes. The resulting upper aqueous layer was transferred to a new 

a tube, and then 500 µl isopropanol was added and gently mixed. The mixture was then 

centrifuged at 10,000 rpm for 10 minutes, and the supernatant was discarded by 

pipetting. Next, 500 µl 70% ice-cold ethanol was added and gently mixed before 

centrifuging at 12,000 rpm for 5 minutes. The supernatant was discarded and the pellet 

was air dried for about an hour before resuspending in 50 µl TE buffer (provided in the 

kit) and storing at -20 °C 

 

3.2.4.4.2 Genomic DNA Extraction Based on Rapid Freeze-Thawing 

 

 This extraction method  was based on the “Bust and grab” extraction protocol 

(Harju et al., 2004), with a few minor alterations. Tubes containing fresh yeast cultures 

(see 3.2.4.1) were centrifuged at 4,000 rpm for 5 minutes at room temperature. The 

supernatants were discarded and the remaining pellets were suspended in 200 µl Lysis 

Buffer (see 3.2.4.1.2.5). The suspended pellets were then placed in a -80 °C freezer for 

2 minutes, and then immediately transferred to a 95 °C water bath for 1 minute. This 
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step was then repeated a second time before vortexing the suspension for 30 seconds 

and adding 200 µl chloroform. The resulting mixture was then vortexed for 2 minutes 

before centrifugation at 4,000 rpm for 3 minutes at room temperature. The resulting 

upper aqueous layer was transferred to a new tube containing 400 µl ice-cold 70% 

ethanol, gently mixed and then incubated at room temperature for 5 minutes. Following 

incubation, the mixture was centrifuged at 12,000 rpm for 5 minutes at room 

temperature and the supernatant was discarded. The pellet containing the DNA extract 

was washed in ethanol by adding 500 µl 70% ethanol, centrifuging at 4,000 rpm for 5 

minutes at room temperature, and then discarding the supernatant. The tube was then air 

dried before suspending the DNA extract in 50 µl TE buffer (see 3.2.4.1.4) and storing 

it at -20 °C. 

 

3.2.4.4.3 Genomic DNA Extraction Based on Glass Beads Disruption 

 

 Genomic DNA extraction based on glass bead disruption was carried out using a 

slightly modified protocol employed by Mirhendi (2006). Yeast cells from the yeast 

cultures (3.2.4.1.1) were pelleted by centrifugation at 4,000 rpm for 5 minutes and then 

suspended in 300 µl Lysis Buffer (3.2.4.2.5). Next, 300 µl of PCI (phenol-chloroform-

isopropanol, 25:24:1) and 300 mg glass beads were added, and the mixture was 

vortexed for 5 minutes in order to disrupt the yeast cells. 

 

 Following centrifugation at 10,000 rpm for 5 minutes, the cell lysate, which had 

been collected in the supernatant, was then transferred to a new tube. In order to remove 

traces of phenol from the lysate, 500 µl of chloroform was added, vortexed for two 

minutes, and then centrifuged at 12,000 rpm for 3 minutes. The resulting upper aqueous 

layer was then transfered to a new tube. DNA precipitation was carried out by adding 20 
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µl of sodium acetate (3.2.4.2.6) and 220 µl of isopropanol. The mixture was gently 

mixed and incubated on ice for 15 minutes. 

 

 After incubation, the mixture was centrifuged at 12,000 rpm for 10 minutes and 

the supernatant was discarded. The resulting DNA precipitate was then washed in 500 

µl of 70% ice-cold ethanol. Centrifugation was at 12,000 rpm for 5 minutes, followed 

by discarding of the supernatant. The washed DNA precipitate was finally air dried for 

an hour before being suspended in 50 µl of TE buffer (see 3.2.4.2.3). DNA extracts 

were stored at -20 °C. 

 

3.2.4.4.4 Genomic DNA Lyticase-Based Enzymatic Extraction 

 

 The DNA extraction protocol that was employed was based on a slightly 

modified version of the Yeast DNA Mini-preparation Protocol (Lee, 1992). Fresh yeast 

cultures (3.2.4.1) were centrifuged at 4,000 rpm for 5 minutes at room temperature. The 

supernatant was discarded and the pellet was resuspended in 500 µl 1M sorbitol and 

vortexed. Then, 250 µl of Lyticase was added and the mixture was incubated at 37 °C 

for 30 minutes. Afterwards, the suspension was centrifuged at 12,000 rpm for 1 minute 

at room temperature. The supernatant was discarded, and the pellet was resuspended in 

500 µl of 3x TE buffer. 

 

Next, 25 µl of 20% sodium dodecyl sulphate (SDS) was added, and the solution 

was incubated in a water bath at 65 °C for 20 minutes. This was followed by adding 5 

µl of Proteinase K, concentration 20 mg/ml, and incubation at 55 °C for 15 minutes. 

The next step was the addition of 400 µl 5M potassium acetate, pH 5.2, followed by 

incubation for 30 minutes on ice. The resulting solution was centrifuged at 12,000 rpm 
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for 5 minutes. Then, 750 µl of the supernatant from the centrifugation was transferred 

into a new microcentrifuge tube, and the pellet was discarded. To the new tube, 750 µl 

of isopropanol was added, and the resulting solution was mixed for 30 minutes at room 

temperature. 

 

 After mixing, the solution was centrifuged at 12,000 rpm for 5 minutes. The 

supernatant was discarded, and 300 µl of TE buffer (see 3.2.4.2.3) was added to the 

tube, being careful not to disturb the pellet. The tube was then treated with 1.5 µl of 10 

mg/ml RNAse A for 1 hour at 37 °C, during which the pellet was observed to dissolve. 

DNA precipitation was then carried out by adding 30 µl of 3M sodium acetate, pH 5.2, 

followed by 300 µl of isopropanol. This was followed by centrifugation at 12,000 rpm 

for 10 minutes. 

 

 The supernatant was then discarded, and the pellet was washed in 500 µl of 70% 

ice-cold ethanol. Centrifugation was at 12,000 rpm for 5 minutes, followed by 

discarding of the supernatant. The resulting DNA precipitates were then air dried for an 

hour before being resuspended in 50 µl TE buffer (3.2.4.2.3) and stored at -20 °C. 

 

3.2.4.5 Qualitative Confirmation of DNA Presence 

 

 The presence of DNA was detected by carrying out gel electrophoresis. After 

1% agarose gel was prepared (3.2.4.3) and submerged in TBE buffer (3.2.4.2.4) in a gel 

tank, 5 µl of each DNA extract was mixed with 1 µl of DNA Loading Dye and pipetted 

into the wells of the gel. The gel was ran at 80 V for 80 minutes, after which the 

resulting bands of genomic DNA were visualized by viewing the gel under ultraviolet 

light. 



46 
 
 

 

3.2.4.6 Quantitative Determination of DNA Yield 

 

 After the presence of DNA had been confirmed, the optical density (OD) of the 

extracts was assessed using spectrophotometry. This was carried out by pipetting 5 µl of 

the DNA extract to a 2 mL microcentrifuge tube containing 495 µl sterile distilled water 

and vortexing. The 500 µl diluted DNA extract was then transferred to a clean cuvette, 

which was placed in the spectrophotometer. The total DNA yield of the extract was 

calculated based on the OD reading at 260 nm wavelength, using the following 

calculation: 

 

Concentration of DNA = OD260 × 50 µg/mL × Dilution Factor 

(1 OD reading at 260 nm wavelength corresponds to 50 µg/mL double-stranded DNA) 

 

3.2.4.7 Determination of DNA Extract Purity 

 

 In addition to DNA yield, possible protein and phenol contamination of the 

extracts were also determined by taking the ratios of OD260:OD280 and OD260:OD270 

wavelength, respectively. The DNA extract was considered to be free of protein 

contamination when the OD260:OD280 ratio was 1.8 to 2.0, whereas it was considered 

free of phenol contamination when the OD260:OD270 ratio was between 1.0 to 1.2. 

 

3.2.4.8 Selection of Extraction Method for Clinical Samples 

 

 After extracting genomic DNA from the ATCC colonies using each of the 

different extraction methods and confirming the presence of DNA with gel 
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electrophoresis, the yield and purity of the DNA extracts was determined with 

spectrophotometry. Based on this, it was then determined which of the methods was 

most suitable for extracting DNA in this study, and the selected method was then used 

for all the selected clinical samples. 

 

3.2.5 PCR Amplification 

 

 The extracted DNA samples were subjected to three different PCR 

amplifications using four different primers: ITS1 forward primer (5’-

TCCGTAGGTGAACCTGCGG-3’), ITS2 reverse primer (5’-

GCTGCGTTCTTCATCGATGC-3’), ITS3 forward primer (5’-

GCATCGATGAAGAACGCAGC-3’) and ITS4 reverse primer (5’-

TCCTCCGCTTATTGATATGC-3’). In general the PCR protocols of the reactions 

were based on a slightly modified version of the Kumar & Shukla (2005) protocol, and 

all the reactions were carried out using an Eppendorf Mastercycler Gradient 

thermocycler. During each batch of reactions, a negative control, in which the DNA 

template was substituted with sterile distilled water, was simultaneously included. 

 

3.2.5.1 Amplification of ITSI Region 

 

 The ITS1 and ITS2 primers were used to amplify the ITS1 region of the 

candidal rDNA, as illustrated in Figure 3.3. 
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Figure 3.3: The regions amplified by each of the three primer pairs ITS1 and ITS4; 

ITS1 and ITS2; and ITS3 and ITS4  
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 Prior to carrying out the reaction, all the tubes containing the reagents, buffers 

and DNA templates necessary for the reaction, with the exception of Taq Polymerase, 

were left to thaw at room temperature for about 15 minutes before vortexing. Each PCR 

reaction tube consisted of a mixture of 4 µl of the DNA template, 5 µl of 10× PCR 

buffer, 0.1µM of the ITS1 primer, 0.1µM of the ITS2 primer, 100µM of dNTP mixture 

and 1 U of Taq Polymerase. Sterile distilled water was used to top up the mixture to a 

total of 50 µl. The Taq Polymerase was added to the mixture last, after briefly thawing 

the tube containing Taq Polymerase. Each reaction mixture tube was vortexed before 

being placed in the thermocycler. 

 

 The amplification process consisted of an initial denaturation step at 96 °C for 

10 minutes; 30 cycles of denaturation at 95 °C for 1 minute, annealing at 60 °C for 1 

minute and extension at 72 °C for 1 minute; and a final extension of 72 °C for 10 

minutes. After the reaction was completed, the tubes containing the PCR products were 

stored at -20 °C. 

 

3.2.5.2 Amplification of 5.8S-ITSII Region 

 

 The ITS3 and ITS4 primers were used to amplify the 5.8S-ITSII region of the 

candidal rDNA, as illustrated in Figure 3.3. 

 

 Prior to carrying out the reaction, all the tubes containing the reagents, buffers 

and DNA templates necessary for the reaction, with the exception of Taq Polymerase, 

were left to thaw at room temperature for about 15 minutes before vortexing. Each PCR 

reaction tube consisted of a mixture of 4 µl of the DNA template, 5 µl of 10× PCR 

buffer, 0.1µM of the ITS1 primer, 0.1µM of the ITS2 primer, 100µM of dNTP mixture 
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and 1 U of Taq Polymerase. Sterile distilled water was used to top up the mixture to a 

total of 50 µl. The Taq Polymerase was added to the mixture last, after briefly thawing 

the tube containing Taq Polymerase. Each reaction mixture tube was vortexed before 

being placed in the thermocycler. 

 

 The amplification process consisted of an initial denaturation step at 96 °C for 

10 minutes; 30 cycles of denaturation at 95 °C for 1 minute, annealing at 56 °C for 1 

minute and extension at 72 °C for 90 seconds; and a final extension of 72 °C for 10 

minutes. After the reaction was completed, the tubes containing the PCR products were 

stored at -20 °C. 

 

3.2.5.3 Amplification of ITSI-5.8S-ITSII Region 

 

 The ITS1 and ITS4 primers were used to amplify the ITS1-5.8S-ITSII region of 

the candidal rDNA, as illustrated in Figure 3.3. 

 

 Prior to carrying out the reaction, all the tubes containing the reagents, buffers 

and DNA templates necessary for the reaction, with the exception of Taq Polymerase, 

were left to thaw at room temperature for about 15 minutes before vortexing. Each PCR 

reaction tube consisted of a mixture of 4 µl of the DNA template, 5 µl of 10× PCR 

buffer, 0.1µM of the ITS1 primer, 0.1µM of the ITS4 primer, 100µM of dNTP mixture 

and 1 U of Taq Polymerase. Sterile distilled water was used to top up the mixture to a 

total of 50 µl. The Taq Polymerase was added to the mixture last, after briefly thawing 

the tube containing Taq Polymerase. Each reaction mixture tube was vortexed before 

being placed in the thermocycler. 
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 The amplification process consisted of an initial denaturation step at 95 °C for 

10 minutes; 30 cycles of denaturation at 95 °C for 1 minute, annealing at 55 °C for 1 

minute and extension at 72 °C for 90 seconds; and a final extension of 72 °C for 10 

minutes. After the reaction was completed, the tubes containing the PCR products were 

stored at -20 °C. 

 

3.2.5.4 Visualization of PCR Products 

 

 Following amplification, the PCR products were then visualized through gel 

electrophoresis, using 1.5% agarose gels containing ethidium bromide. The gels were 

prepared following the same procedure as detailed in 3.2.4.3, except that 0.75 g of 

agarose was used instead of 0.5 g. Once the gel had been prepared and submerged in 

TBE buffer inside a gel tank, 5 µl each of the extracted DNA samples were mixed with 

1 µl of DNA loading dye and then pipetted into the wells. Gel electrophoresis was 

conducted at 90 V for 100 minutes, and the resulting bands were compared to a 100 bp 

DNA marker using the Gel Imaging System software to determine band size. 

 

3.2.6 Restriction Endonuclease Enzyme Digestion 

 

 Following PCR amplification, the restriction enzymes MspI and HinfI were used 

to digest the ITS1-5.8S-ITSII PCR products, resulting in fragments of different sizes. 

 

3.2.6.1 MspI Digestion 

 

 The MspI restriction enzyme cuts at the CCGG recognition site. Prior to carrying 

out the digestion, all the tubes containing the enzymes, buffers and PCR products 
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necessary for the digestion reaction were left to thaw at room temperature for about 15 

minutes before vortexing. The MspI digestion was carried out by mixing 10 µl of the 

PCR product together with 2 µl of 10× Buffer Tango, 18 µl of sterile distilled water and 

1 µl of MspI. The tubes containing the digestion mixture were then vortexed and then 

spun down before incubating at 37 °C for 1 hour. 

 

3.2.6.2 HinfI Digestion 

 

 The HinfI restriction enzyme cuts at the GANTC recognition site. Prior to 

carrying out the digestion, all the tubes containing the enzymes, buffers and PCR 

products necessary for the digestion reaction were left to thaw at room temperature for 

about 15 minutes before vortexing. The HinfI digestion was carried out by mixing 10 µl 

of the PCR product together with 2 µl of 10× Buffer R, 18 µl of sterile distilled water 

and 1 µl of HinfI. The tubes containing the digestion mixture were then vortexed and 

then spun down before incubating at 37 °C for 1 hour. 

 

3.2.6.3 Restriction Fragment Visualization 

  

 The resulting restriction fragments were visualized through gel electrophoresis, 

using 2% agarose gels. The gels were prepared following the same procedure as detailed 

in 3.2.4.3, except 1 g of agarose was used instead of 0.5 g. The gels were ran at 70 V for 

120 minutes. 
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4. RESULTS 

 

4.1 Microbial Loads 

 

 The candidal and total microbial loads of the oral sampling sites were 

determined based on candidal and total microbial CFU counts, respectively. Bacterial 

loads were determined by calculating the difference between candidal and total 

microbial loads. 

 

4.1.1 Comparison of Microbial Loads Between Groups 

  

 Statistical analysis was carried out to compare between the microbial loads for 

each site between the three different groups. The Shapiro-Wilk test for normality was 

used on SPSS analysis software to determine that the collected sample data was not 

normally distributed. Therefore, a non-parametric independent variable test, the 

Kruskal-Wallis test, was employed to determine if there were any significant differences 

between the three different groups.  

 

 According to the Kruskal-Wallis test, the average microbial loads between all 

three groups were significantly different (p value < 0.05) for candidal loads of the saliva 

(H=12.84, p=0.006), candidal loads (H=12.601, p=0.006) and bacterial loads (H=14.28, 

p=0.006) of the tongue,  as well as the candidal loads (H=15.973, p=0.003) and bacterial 

loads (H=14.605, p=0.003) of the palate. There were no significant differences between 

all three groups for the microbial loads of the buccal mucosa site. 
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 Furthermore, the control group was used as a baseline to determine whether the 

use of dentures or the onset of periodontal disease could have any significant difference 

on microbial loads in the oral cavity. Thus, a  two-independent variable test, also known 

as the Mann-Whitney test, was used to compare between the average microbial loads at 

each of the oral sites of the sampled groups (the periodontal disease and denture wearer 

groups) and the control group. Table 4.1 shows the average CFU counts, represented in 

medians, of the candidal and bacterial loads, as well as the results of the Mann-Whitney 

non-parametric two-independent variable test, for each of the sampled oral sites of each 

of the three groups. All significance tests considered significance to be at p value < 

0.05. 

 

As can be seen, in the denture wearers group, the average bacterial loads of the 

saliva and the buccal mucosa have no significant difference with the control group, 

while all the other average microbial loads are significantly higher in comparison to the 

control group. Meanwhile, in the periodontal disease group, the average microbial loads 

of the tongue are significantly higher than in the control group, while the average 

microbial loads of the other three sites have no significant differences with the control 

group
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Table 4.1: Median Microbial Loads of the Saliva, Tongue, Palate and Buccal Mucosa Sites of the Healthy Control Group, Periodontal Disease Group 

and Denture Wearers Group 

 

Site 

Healthy Control Group Denture Wearers Group Periodontal Disease Group 

Median Candidal 

CFU/mL 

Median Bacterial 

CFU/mL 

Median Candidal 

CFU/mL 

Median Bacterial 

CFU/mL 

Median Candidal 

CFU/mL 

Median Bacterial 

CFU/mL 

Saliva 0.02 ×10
3
 54.93 ×10

3
 0.80 ×10

3 b
 163.07 ×10

3 a
 0.14 ×10

3  a
 32.98 ×10

3 a 

Tongue 2.61 ×10
3
 281.57 ×10

3
 244.77 ×10

3 c
 1,711.46 ×10

3 d
 128.02 ×10

3 h
 1,049.435 ×10

3 i
 

Palate 2.52 ×10
3
 44.06 ×10

3
 40.07 ×10

3 e
 165.90 ×10

3 f
 3.68 ×10

3 a
 85.160 ×10

3 a
 

Buccal mucosa 2.68 ×10
3
 296.53 ×10

3
 12.04 ×10

3 g
 287.00 ×10

3 a
 13.175 ×10

3 a
 108.24 ×10

3 a
 

a
 No significant difference with the control group 

b 
Significantly higher (U = 34, p = 0.001) than the control group 

c 
Significantly higher (U = 47, p = 0.002) than the control group 

d 
Significantly higher (U = 37, p = 0.003) than the control group

 

e 
Significantly higher (U = 29, p = 0.001) than the control group 

 

f 
Significantly higher (U = 39, p = 0.012) than the control group 

g 
Significantly higher (U = 36, p = 0.005) than the control group

 

h 
Significantly higher (U = 46, p = 0.006) than the control group 

i 
Significantly higher (U = 45, p = 0.009) than the control group 
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4.1.2 Mean Percentages of Candidal Loads 

 

 The percentages of candidal loads out of total microbial loads were calculated 

for each sample. Table 4.2 shows the mean percentages of candidal loads out of total 

microbial loads for each sampled oral site of each of the three groups. Standard 

deviations are shown for each mean. 

 

For the control group, it can be seen that bacteria clearly dominates at each of 

the oral sites, as the candidal load at each oral site constitutes only 0.6% to 17% of the 

total microbial load. Out of the five sampled oral sites in the control group, the surface 

of the tongue has the highest percentage of candidal load, while saliva contains the 

lowest. The ranking of mean candidal load percentage for the control group, in order 

from lowest to highest, is as follows: Saliva < Palate < Buccal mucosa < Tongue. 

 

In the denture wearers group, the palate surface is the oral site which has the 

highest percentage of candidal load, followed by the surface of the tongue. Meanwhile 

saliva once again has the lowest candidal percentage. The saliva, tongue and palate 

surfaces have higher percentages of candidal load compared to the control group, while 

the cheek mucosal surface and the gingival sulcus have lower percentages. The ranking 

of mean candidal load percentage for the denture-wearers group, in order from lowest to 

highest, is as follows: Saliva < Buccal mucosa < Tongue < Palate. 
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Table 4.2: Mean Percentages and Standard Deviations of Candidal Loads out of Total 

Microbial Loads 

Group Oral Site Mean Percentage of Candidal Loads out 

of Total Microbial Loads 

Mean Percentage Standard Deviation 

Healthy Control Saliva 0.61%
 

1.09 

Tongue 16.82%
 

30.78 

Palate 7.75%
 

9.65 

Buccal mucosa 11.81%
 

18.84 

Denture Wearers Saliva 1.41% 1.23 

Tongue 19.11%
 

24.95 

Palate 22.27%
 

25.85 

Buccal mucosa 8.71% 12.61 

Periodontal Disease Saliva 1.67%
 

3.77 

Tongue 11.42%
 

14.31 

Palate 13.41% 17.54 

Buccal mucosa 12.44% 23.87 
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Meanwhile for the periodontal disease group, the percentages of candidal load 

range between 1.6% and 14%. Saliva once again contains the lowest percentage of 

candidal load while the palate now has the highest. The percentages of candidal load at 

each site are higher than in the control group, with the exception of the tongue surface, 

which has a comparatively lower percentage. Apart from the saliva, the percentages of 

candidal load at all of the sampled oral sites are between 11% to 14%. The ranking of 

mean candidal load percentage for the periodontal disease group, in order from lowest 

to highest, is as follows: Saliva < Tongue < Buccal mucosa < Palate. 

 

4.2 Assessment of Candidal DNA Extractions 

 

 Four different extraction methods were assessed for their effectiveness at 

extracting candidal genomic DNA for this study. 

 

4.2.1 Estimation of Time and Materials Required for Extractions 

 

 Table 4.6 compares the estimated time and materials required for each of the 

four DNA extraction methods used in this study. As can be seen, the lyticase-based 

method appears to require the most materials in addition to being the most labor-

intensive. The commercial kit method, the freeze-thaw method and the glass beads 

disruption method take around the same amount of time, however the glass beads 

disruption method becomes less practical and requires more time with large batch 

numbers. The freeze-thaw method is both the fastest and most convenient method while 

also being the cheapest as it requires the fewest amount of materials. 
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Table 4.3: Comparison of Required Time and Materials of Four DNA Extraction Methods 

Method Estimated 

Extraction 

Time 

(minutes) 

Required Materials (per sample) 

1.5 mL 

Centrifuge 

tubes 

TE 

Buffer

(µl) 

70% 

EtOH 

(µl) 

Sodium 

acetate 

(µl) 

Iso-

propanol

(µl) 

Lysis 

Buffer 

(µl) 

Chlo-

roform 

(µl) 

PCI 

(µl) 

Sor-

bitol 

(µl) 

Ly-

ticase 

(µl) 

SDS 

(µl) 

Pro-

teinase 

(µl) 

Rnase 

A (µl) 

3× TE 

Buffer 

(µl) 

Commer-

cial Kit 

120 2 - 500 - 500 - - - - - - - - - 

Rapid 

Freeze-

Thawing 

120 2 50 500 - - 200 200 - - - - - - - 

Glass 

Beads 

Disruption 

150   (extra 

10 mins. for 

each extra 2 

samples) 

3 50 - 20 220 300 500 300 - - - - - - 

Lyticase-

Based 

360 minutes 2 300 - 30 1050 - - - 500 250 25 5 1.5 500 
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4.2.2 Pilot Study of Candidal DNA Extraction Methods 

 

 The four DNA extraction methods were first carried out on the Candida 

albicans  (ATCC 14053) control sample. The yeast cultures for each DNA extraction 

were standardized to 10
6
 cells per mL by spectrophotometry (refer to 3.2.4.1). After 

confirming the presence of DNA in the extracts using gel electrophoresis, it was 

determined that only two of the four extraction methods were successful in extracting 

genomic candidal DNA. DNA extraction using those two methods was then carried out 

on four of the ATCC control species as samples: Candida tropicalis (ATCC 13803), 

Candida parapsilosis (ATCC 22019), Candida glabrata (ATCC 90030) and Candida 

lusitaniae (ATCC 64125). The yield and the purity of these DNA extracts were 

determined with spectrophotometry. 

 

4.3.2.1 Qualitative Confirmation of Candidal DNA Extracts 

 

 Figures 4.1 and 4.2 show the presence of DNA in the extracts from four 

different extraction methods: Method 1 – Commercial Kit (see 3.2.4.2), Method 2 – 

Rapid Freeze-Thawing (see 3.2.4.3), Method 3 – Glass Beads Disruption (see 3.2.4.4) 

and Method 4 – Lyticase-Based (see 3.2.4.5), as visualized under ultraviolet light in 1% 

agarose gels that underwent electrophoresis at 70 V for 60 minutes. Based on visual 

confirmation of the DNA under ultraviolet light, it was determined that the commercial 

kit and glass bead disruption methods were succesful in extracting genomic DNA from 

the ATCC colonies. 
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Figure 4.1: Gel Picture Comparing the Presence of Candidal DNA from the Extracts of Method 1 (Commercial Kit) in Lanes 1-3, Method 2 (Rapid 

Freeze-Thawing) in Lanes 4-5 and Method 3 (Glass Beads Disruption) in Lanes 6-7 
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Figure 4.2: Gel picture comparing the presence of DNA from the extracts of Method 1 (Commercial Kit) in Lanes 1-2, Method 3 (Glass Beads 

Disruption) in Lanes 3-4 and Method 4 (Lyticase-Based) in Lanes 5-6 
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4.3.2.2 Quantitative Assessment of Candidal DNA Extracts 

 

 The yield and purity of the DNA extracts of four ATCC control samples using 

the two different methods was compared in order to determine which method was the 

best method to be used in this study. 

 

4.3.2.2.1 DNA Yield 

 

 Table 4.7 compares the average concentration of the extracted DNA of four 

ATCC control species using two different methods, the glass beads disruption method 

and the commercial kit method. As can be seen, the glass beads disruption extraction 

method produced higher yields for the Candida tropicalis and Candida lusitaniae 

samples, whereas the commercial kit produced higher yields for the Candida 

parapsilosis and Candida glabrata samples. 

 

4.3.2.2.2 DNA Purity 

 

 Table 4.8 compares the number of DNA extracts, from a total of 3 each, that 

were free of protein and phenol contamination between the commercial kit and glass 

beads disruption extraction method. As the table shows, with the exception of Candida 

glabrata, the glass beads disruption extraction method resulted in more extracts that 

were free of protein or phenol contamination. 
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Table 4.4: Mean Concentration of Extracted DNA of Four ATCC Control Species 

 

Species 

Glass Beads Disruption 

Method 

Commercial Kit 

Mean 

Concentration 

(µg/µL) 

Standard 

Deviation 

Mean 

Concentration 

(µg/mL) 

Standard 

Deviation 

 

Candida tropicalis 

(ATCC 13803)  

 

1.528 

 

1.099 

 

1.318 

 

0.647 

 

Candida parapsilosis 

(ATCC 22019) 

 

0.122 

 

0.059 

 

0.388 

 

0.039 

 

Candida glabrata 

(ATCC 90030) 

 

1.481 

 

1.383 

 

5.61 

 

1.732 

 

Candida lusitaniae 

(ATCC 64125) 

 

0.825 

 

0.389 

 

0.555 

 

0.007 
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Table 4.5: Number of DNA Extracts Free From Protein and Phenol Contamination of 

Four ATCC Control Species 

 

Species 

Glass Beads Disruption Method Commercial Kit 

Number of 

Extracts Free 

From Protein 

Contamination 

Number of 

Extracts Free 

From Phenol 

Contamination 

Number of 

Extracts Free 

From Protein 

Contamination 

Number of 

Extracts Free 

From Phenol 

Contamination 

 

Candida 

tropicalis (ATCC 

13803)  

 

1 out of 3  

 

3 out of 3 

 

0 out of 3 

 

2 out of 3 

 

Candida 

parapsilosis 

(ATCC 22019) 

 

2 out of 3 

 

2 out of 3 

 

0 out of 3 

 

2 out of 3 

 

Candida glabrata 

(ATCC 90030) 

 

0 out of 3 

 

3 out of 3 

 

2 out of 3 

 

3 out of 3 

 

Candida 

lusitaniae (ATCC 

64125) 

 

3 out of 3 

 

3 out of 3 

 

1 out of 3 

 

3 out of 3 

 

 

 

 



66 
 
 

4.3.3 Selection of Optimal DNA Extraction Method 

 

 Comparing between the commercial kit and glass beads disruption as methods 

for DNA extraction, it was noted that the glass beads disruption method is more labor-

intensive and more costly. In terms of DNA yield, the commercial kit produced better 

DNA yields for two of the four tested ATCC species, whereas glass beads disruption 

resulted in better yields for the other two species. However, almost all of the glass beads 

disruption DNA extracts had better purity, in terms of being free of protein 

contamination, compared to the commercial kit DNA extracts. As DNA purity is highly 

important to ensure the success of PCR amplification, it was decided to use the glass 

beads disruption method for the extraction of DNA from the rest of the ATCC and 

clinical samples. 

 

4.4 PCR Amplification of rDNA Regions 

 

 Three primer pairs were used to amplify three different rDNA regions of 

candidal genomic DNA: the ITSI region (4.4.1), the 5.8S-ITSII region (4.4.2)  and the 

entire ITSI-5.8S-ITSII region (4.4.3). Following analysis of the sizes of the generated 

PCR productss and restriction fragments (see 4.5), the fifteen unidentified clinical 

samples were grouped into six different genotype profiles, designated in this study as A, 

B, C, D, E and F (see 4.6). For convenience, the clinical samples have been labeled 

throughout this chapter according to their genotype profile group. 
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4.4.1 Amplification of ITSI Region 

 

 Figures 4.3 and 4.4 show the ITSI PCR products of the seven ATCC control 

species, and the 15 clinical samples, respectively, as visualized on 1.5% agarose gels. 

Table 4.9 summarizes the sizes of all the ITSI PCR products. 

 

 With the exception of C. glabrata  ATCC 90030 and the C1-C4 group which 

have a distinctively large ITS1 band size, all the tested samples have ITSI sizes ranging 

between 120 and 220. Three of the ATCC control species, namely C. albicans ATCC 

14053, C. tropicalis ATCC 13803 and C. parapsilosis ATCC 22019 have identical band 

sizes, and C. dubliniensis ATCC MYA-2975 has a band size that is very close to the 

aforementioned three, implicating difficulties if ITS1 were to be used for species 

identification. Meanwhile, C. krusei ATCC 14243 and C. lusitaniae ATCC 64125 have 

distinctively smaller band sizes compared to the other samples. The F1 genotype is the 

only unidentified sample that does not share the same size with any of the ATCC 

species. 
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Figure 4.3: Gel Picture Showing the ITS1 PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, C. tropicalis ATCC 13803 (CT) – Lane 3, C. 

krusei ATCC 14243 (CK) – Lane 4, C. parapsilosis ATCC 22019 (CP) – Lane 5, C. dubliniensis ATCC MYA-2975 (CD) – Lane 6, C. glabrata ATCC 

90030 (CG) – Lane 7 and C. lusitaniae ATCC 64125 (CL) – Lane 8 
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Figure 4.4: Gel Picture Showing the ITS1 PCR Products of the Following Clinical Samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), 

D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16) 
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Table 4.6: PCR Product Sizes of the Amplified ITSI Region 

Samples ITSI Size 

(basepairs) 

C. albicans ATCC 14053 

C. tropicalis ATCC 13803 

C. parapsilosis ATCC 22019 

A1, A2, A3, A4, B1, B2, B3, B4, D1 

 

 

 

220 

C. dubliniensis ATCC MYA-2975 

E1 

 

210 

C. krusei ATCC 14243 170 

C. glabrata ATCC 90030 

C1, C2, C3, C4 

 

480 

C. lusitaniae ATCC 64125 120 

F1 230 
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4.4.2 Amplification of 5.8S-ITSII Region 

 

 Figures 4.5 and 4.6 show the ITSI PCR products of the seven ATCC control 

species, and the 15 clinical samples, respectively, as visualized on 1.5% agarose gels. 

Table 4.10 summarizes the sizes of all the 5.8S-ITSII PCR products. 

 

 The band sizes of the 5.8S-ITSII region range between 250 and 420 basepairs. 

Once again C. glabrata ATCC 90030 has the largest band size and C. lusitaniae ATCC 

64125 has the smallest, making both easily distinguishible. Unlike ITS1, C. albicans 

ATCC 14053, C. krusei ATCC 14243, C. dubliniensis ATCC MYA-2975 have the 

same band size, while C. tropicalis ATCC 13803 has a band size that is close to them 

and difficult to visually distinguish. Once again, the F1 genotype band size does not 

match that of any of the ATCC control species. 
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Figure 4.5: Gel Picture Showing the 5.8S-ITSII PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, C. tropicalis ATCC 13803 (CT) – Lane 3, 

C. krusei ATCC 14243 (CK) – Lane 4, C. parapsilosis ATCC 22019 (CP) – Lane 5, C. dubliniensis ATCC MYA-2975 (CD) – Lane 6, C. glabrata 

ATCC 90030 (CG) – Lane 7 and C. lusitaniae ATCC 64125 (CL) – Lane 8 
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Figure 4.6: Gel Picture Showing the 5.8S-ITSI1 PCR products of the Following Clinical samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 

10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16) 
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Table 4.7: PCR Product Sizes of the Amplified 5.8S-ITSII Region 

Samples 5.8S-ITSII Size 

(basepairs) 

C. albicans ATCC 14053 

C. krusei ATCC 14243 

C. dubliniensis ATCC MYA-2975 

A1, A2, A3, A4, E1 

 

 

 

340 

C. tropicalis ATCC 13803 

D1 

 

320 

C. parapsilosis ATCC 22019 300 

C. glabrata ATCC 90030 

C1, C2, C3, C4 

 

420 

C. lusitaniae ATCC 64125 250 

F1 370 
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4.4.3 Amplification of ITSI-5.8S-ITSII Region 

 

 Figures 4.7 and 4.8 show the ITSI-5.8S-ITSII PCR products of the seven ATCC 

control ATCC species, and the 15 clinical samples, respectively, as visualized on 1.5% 

agarose gels. Table 4.11 summarizes the sizes of all the ITSI-5.8S-ITSII PCR products. 

 

 PCR amplification of the ITSI-5.8S-ITSII region generates band sizes of around 

500  basepairs for almost all of the tested samples, with C. glabrata ATCC 90030 and 

C. lusitaniae ATCC 64125 once again distinctively having the largest and smallest band 

sizes, respectively. Two pairs of ATCC control species, C. albicans ATCC 14053 and 

C. dubliniensis MYA-2975, as well as C. tropicalis ATCC 13803 and C. parapsilopsis 

ATCC 22019, have similar band sizes. Unsurprisingly, the F1 genotype cannot be 

matched with any of the ATCC control species.  
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Figure 4.7: Gel Picture Showing the ITSI-5.8S-ITSII PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, C. tropicalis ATCC 13803 (CT) – 

Lane 3, C. krusei ATCC 14243 (CK) – Lane 4, C. parapsilosis ATCC 22019 (CP) – Lane 5, C. dubliniensis ATCC MYA-2975 (CD) – Lane 6, C. 

glabrata ATCC 90030 (CG) – Lane 7 and C. lusitaniae ATCC 64125 (CL) – Lane 8 
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Figure 4.8: Gel Picture Showing the ITS1-5.8S-ITSII PCR Products of the Following Clinical Samples: A1-4 (Lanes 2-5), B1-4 (Lanes 6-9), C1-4 

(Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16)  
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Table 4.8: PCR Product Sizes of the Amplified ITSI-5.8S-ITSII Region 

Samples ITSI-5.8S-ITSII Size 

(basepairs) 

C. albicans ATCC 14053 

C. dubliniensis MYA-2975 

A1, A2, A3, A4, E1 

 

 

540 

C. tropicalis ATCC 13803 

C. parapsilopsis ATCC 22019 

B1, B2, B3, B4, D1 

 

 

520 

C. krusei ATCC 14243 510 

C. glabrata ATCC 90030 

C1, C2, C3, C4 

 

900 

C. lusitaniae 380 

F1 630 
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4.5 Restriction Fragment Length Polymorphisms 

 

 The restriction enzymes MspI and HinfI were each used seperately to digest the 

ITSI-5.8S-ITSII PCR product. 

 

4.5.1 MspI Digestion 

 

 Figures 4.9 and 4.10 show the MspI restriction fragments of the ITSI-5.8S-ITSII 

PCR products of the seven ATCC control ATCC species, and the 15 clinical samples, 

respectively, as visualized on 2% agarose gels. Table 4.12 summarizes the sizes of all 

the restriction fragments. 

 

 MspI digestion of the ITSI-5.8S-ITSII region produced unique restriction 

fragment patterns for all of the ATCC species, with the exception of C. albicans and C. 

dubliniensis, which have identical patterns. The PCR product of C. parapsilosis was not 

cut at all, retaining its original size, indicating that it lacks the MspI recognition site. 

The other patterns are very distinctive and easy to distinguish. For the clinical samples, 

it generated five different restriction fragment patterns, four of which could be matched 

to the restriction fragment pattern of at least one ATCC species. The F1 clinical sample 

once again has a very different genotype compared to the rest. 
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Figure 4.9: Gel Picture Showing the MspI Restriction Fragments of the ITSI-5.8S-ITSII PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, C. 

tropicalis ATCC 13803 (CT) – Lane 3, C. krusei ATCC 14243 (CK) – Lane 4, C. parapsilosis ATCC 22019 (CP) – Lane 5, C. dubliniensis ATCC 

MYA-2975 (CD) – Lane 6, C. glabrata ATCC 90030 (CG) – Lane 7 and C. lusitaniae ATCC 64125 (CL) – Lane 8 
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Figure 4.10: Gel Pictures Showing the MspI Restriction Fragments of the ITSI-5.8S-ITSI1 PCR Products of the Following Clinical Samples: A1-4 

(Lanes 2-5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1 (Lane 15) and F1 (Lane 16) 
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Table 4.9: MspI Restriction Fragment Sizes of the ITSI-5.8S-ITSII PCR Product 

Samples Total ITSI-5.8S-ITSII Size 

(basepairs) 
MspI Fragments Sizes 

(basepairs) 

C. albicans ATCC 14053 

C. dubliniensis ATCC MYA-2975 

A1, A2, A3, A4, E1 

 

 

540 

 

 

300, 240 

C. tropicalis ATCC 13803 

D1 

 

520 

 

340, 180 

C. krusei ATCC 14243 510 260, 250 

C. parapsilosis ATCC 22019 

B1, B2, B3, B4 

 

520 

 

520 

C. glabrata ATCC 90030 

C1, C2, C3, C4 

 

900 

 

570, 330 

C. lusitaniae ATCC 64125 380 260, 120 

F1 630 370, 160 
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4.5.2 HinfI Digestion 

 

 

 Figures 4.11 and 4.12 show the HinfI restriction fragments of the ITSI-5.8S-

ITSII PCR products of the seven ATCC control ATCC species, and the 15 clinical 

samples, respectively, as visualized on 2% agarose gels. In many cases, the sizes of the 

restriction fragments were too similar to the point that the fragments did not seperate 

from each other within the gel; in such cases the presence of the fragment was 

extrapolated based on the total size of the ITSI-5.8S-ITSII PCR product. The bands that 

were assumed to represent multiple fragments of identical sizes are represented in the 

table in brackets. Table 4.13 summarizes the sizes of all the restriction fragments. 

 

 HinfI digestion of the ITSI-5.8S-ITSII region produced unique restriction 

fragment patterns for all of the ATCC species, with the exception of C. tropicalis and C. 

parapsilosis, which have identical patterns. Furthermore the fragment sizes of these two 

species are very similar to that of C. albicans, making distinguishing between them 

prone to error. Apart from that, HinfI digestion generated easily distinguishible 

restriction fragment patterns for the other species. The F1 genotype has a unique HinfI 

restriction fragment pattern. 
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Figure 4.11: : Gel Picture Showing the HinfI Restriction Fragments of the ITSI-5.8S-ITSII PCR Products of C. albicans ATCC 14053 (CA) – Lane 2, 

C. tropicalis ATCC 13803 (CT) – Lane 3, C. krusei ATCC 14243 (CK) – Lane 4, C. parapsilosis ATCC 22019 (CP) – Lane 5, C. dubliniensis ATCC 

MYA-2975 (CD) – Lane 6, C. glabrata ATCC 90030 (CG) – Lane 7 and C. lusitaniae ATCC 64125 (CL) – Lane 8 
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Figure 4.12: Gel Picture Showing the HinfI Restriction Fragments of the 5.8S-ITSI1 PCR Products of the Following Clinical Samples: A1-4 (Lanes 2-

5), B1-4 (Lanes 6-9), C1-4 (Lanes 10-13), D1 (Lane 14), E1  (Lane 15) and F1 (Lane 16) 
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Table 4.10: HinfI Restriction Fragment Sizes of the ITSI-5.8S-ITSII PCR Product 

Samples Total ITSI-5.8S-ITSII Size 

(basepairs) 
HinfI Fragments Sizes 

(basepairs) 

C. albicans ATCC 14053 

A1, A2, A3, A4 

 

540 

 

(270, 270) 

C. tropicalis ATCC 13803 

C. parapsilosis ATCC 22019 

B1, B2, B3, B4, D1 

 

 

520 

 

 

(260, 260) 

C. krusei ATCC 14243 510 240, (150, 150) 

C. dubliniensis ATCC MYA-2975 

E1 

 

540 

 

290, 260 

C. glabrata ATCC 90030 

C1, C2, C3, C4 

 

900 

 

570, 330 

C. lusitaniae ATCC 64125 380 360, (270, 270) 

F1 630 320, 290 
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4.6  Genotype Profiles 

 

 Based on the sizes of the PCR products (see 4.3) and restriction fragments (see 

4.4), it was possible to construct a genotype profile for each of the seven ATCC samples 

and fifteen clinical samples. By matching the profiles of the clinical samples to the 

ATCC samples, it was possible to determine the species of fourteen out of fifteen  of the 

clinical samples. This is summarized in Tables 4.14 and 4.15. 

 

 However, the F1 clinical species is unknown, as its genotype profile does not 

match any of the seven ATCC species genotype profiles. However, based on the sizes 

of the ITSI-5.8S-ITSII and 5.8S-ITSII PCR products, it can be surmised that the F1 

species is Candida famata (Fujita et al., 2001). 

 

 It should be noted that the area amplified by the ITS1 and ITS2 primer pair, 

although refered to as “ITSI” in this thesis, also includes a small part of the 18S rDNA 

and the 5.8S rDNAs, whereas the ITS3 and ITS3 primer pair that amplifies an area 

designated as “5.8S-ITSII”, similarly includes a small part of the 5.8S and 28S rDNAs. 

As such, the ITSI and 5.8S-ITSII regions may overlap with each other and the sum of 

their sizes do not necessarily equal to the size of the entire ITS-5.8S-ITSII region. 
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Table 4.11: Genotype Profiles of the Seven ATCC Candidal Control Species 

Control 

Species 

ITSI 5.8S-

ITSII 

ITSI-

5.8S-

ITSII 

MspI 

Restriction 

Fragments 

HinfI 

Restriction 

Fragments 

C. albicans 

ATCC 14053 

220 340 540 300, 240 (270, 270) 

C. tropicalis 

ATCC 13803 

220 320 520 340, 180 (260, 260) 

C. krusei  

ATCC 14243 

170 340 510 260, 250 240, (150, 150) 

C. 

parapsilopsis 

ATCC 22019 

220 300 520 520 (260, 260) 

C. dubliniensis 

ATCC MYA-

2975 

 

210 

 

340 

 

540 

 

300, 240 

 

290, 260 

C. glabrata 

ATCC 90030 

480 420 900 570, 330 360, (270, 270) 

C. lusitaniae 

ATCC 64125 

120 250 380 260, 120 (190, 190) 
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Table 4.12: Genotype Profiles and Species Match of the Fifteen Clinical Samples 

 A1-A4 B1-B4 C1-C4 D1 E1 F1 

ITSI 220 220 480 220 210 230 

5.8S-ITSII 340 300 420 320 340 370 

ITSI-5.8S-

ITSII 

540 520 900 520 540 630 

MspI 

Restriction 

Fragments 

 

300, 240 

 

520 

 

570, 330 

 

340, 180 

 

300, 240 

 

370, 160 

HinfI 

Restriction 

Fragments 

 

(270, 

270) 

 

(260, 260) 

360, 

(270, 

270) 

 

(260, 

260) 

 

290, 260 

 

320, 290 

Species 

Match 

C. 

albicans 

C. 

parapsilosis 

C. 

glabrata 

C. 

tropicalis 

C. 

dubliniensis 

Possibly 

C. 

famata 
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5. DISCUSSION 

 

5.1 Microbial Loads of Candida Species in the Oral Cavity 

 

5.1.1 Intra-Oral Distribution of Candida Species in the Control Group 

 

 In the control group as well as in the other two tested groups, saliva is the oral 

site that has the lowest percentage of candida, with more than 99% of the 

microorganisms found in the saliva consisting of bacteria. As microorganisms in the 

saliva are derived from microbes dislodged from other oral surfaces (Marsh and Martin, 

1992), salivary microbiota can be considered to reflect changes in the microbiota of the 

rest of the oral cavity (Li et al., 2005). Hence, the very low percentage of candida in 

saliva could be a reflection of the low yeast carriage in comparison to bacterial carriage 

in the oral cavity. In this study, the percentage of candidal load at all oral sites in all 

three groups is less than 24%. Furthermore, the presence of antimicrobial factors such 

as histatin, secretory IgA and lysozyme in the saliva (Marsh and Martin, 2009) could be 

another reason why candidal loads in the saliva are so low. 

 

 Meanwhile, the tongue surface was found to have the highest mean percentage 

of candidal load in the control group. The surface of the tongue is considered to be an 

ideal environment for candidal colonization because of the humidity, temperature and 

existence of hidden niches between the papillae of the tongue (Zadik et al., 2010). This 

is also supported by a study which concluded that the tongue is the primary oral 

reservoir for candidal species (Arendorf and Walker, 1980). As the most common oral 

candidiasis typically affects the surface of the tongue (Samaranayake and Yaacob, 
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1990), it can be surmised that the tongue may harbor many of the potentially pathogenic 

candidal species responsible for oral candidal infection.  

 

 Next to the tongue, the cheek mucosal surface has the highest percentage of 

candidal occurrence, indicating that the squamous stratified epithelium of the buccal 

mucosa is less ideal for candidal colonization compared to the papillary surface of the 

tongue. A possible reason for this is the continuous shedding by exfoliation of the 

buccal mucosa, as buccal epithelial cells have an estimated turnover rate of 5-6 days 

(Harris and Robinson, 1992).  

 

 Meanwhile, the palate has a lower percentage of candidal occurrences compared 

to the tongue and the cheek mucosal surfaces, indicating that Candida sp. does not 

compete as well against bacteria for adhesion sites on the surface of the palate. This 

may be because of the unique qualities of the squamous epithelium of the palate which 

is keratinized and is also less permeable compared to buccal mucosa (Harris and 

Robinson, 1992). Furthermore, as different oral sites have different cell surface 

receptors (Gibbons, 1989), it is also a possibility that the cell surface receptors of the 

palate favour the cell surface adhesins of bacterial species over candidal species. 

 

5.1.2 Intra-Oral Distribution of Candida Species in the Denture Wearers Group 

 

 One of the most important roles of saliva in the oral microenvironment is the 

removal and clearance of microorganisms from the oral cavity (Marsh and Martin, 

2009). As the presence of dentures in the oral cavity has the effect of slowing down 

salivary flow rate (Akpan & Morgan, 2002), this of course encourages the growth of 

oral microorganisms. Furthermore, denture use encourages the colonisation of oral 
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Candida (Shulman et al., 2005) in addition to predisposing towards candidal infection 

(Pires et al., 2002). This is in agreement with the results which show that there is a 

significantly higher candidal load in the saliva of denture-wearers compared to the 

control group, while there is no significant difference for the bacterial load. All of this 

indicates that candidal species in the oral cavity become increasingly competitive in the 

presence of dentures. 

 

 The results show that both the candidal and bacterial loads of the palate are 

significantly higher than in the control group. As dentures protect the palate from the 

washing action of saliva by trapping saliva in the palatal-denture space, it is 

unsurprising that the presence of dentures can cause an increase in microbial growth on 

the palate. However, something that differentiates the denture wearer group from the 

control group is that in the denture wearer group, the palate surface has the highest 

mean percentage of candidal load, being more than three times higher than in the 

control group. It has been found that immobilized salivary mucins can promote candidal 

adhesion to surfaces (Edgerton et al., 1993), thus it can be surmised that the arrested 

salivary flow in the palatal-denture space is responsible for greatly enhancing candidal 

growth, leading to a higher proportion of candidal species on the palate surface. 

 

 Elsewhere, the candidal loads on the cheek mucosal surface are significantly 

higher in comparison to the control group, while there is no significant difference in 

bacterial load. From this we can conclude that the presence of dentures also encourages 

candidal colonization on the cheek mucosal surface, which is in agreement with 

previous studies (Shulman et al., 2005), but has little to no effect on bacterial 

colonization of the buccal mucosa. 
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 Meanwhile, like the palate surface, the tongue surface shows signficantly higher 

microbial loads for both candidal and bacterial populations in comparison to the control 

group. However, unlike the palate surface, there appears to be no drastic increase in 

candidal load percentage, as the candidal load percentage differs from the control group 

by about only 2%. Thus, it can be concluded that the slowed salivary flow rate in the 

oral cavity, which encourages oral microbial growth in denture wearers, also affects 

microbial growth on the tongue surface, however unlike at the other sites, it does not 

appear to allow candidal species to compete any better than bacteria. This is perhaps 

unsurprising as the tongue surface is known to have dense (Bowden et al., 1979) and 

diverse (Takahashi, 2005) bacterial populations, and thus it would be very tough for 

candidal populations to compete with them. 

 

5.1.3 Intra-Oral Distribution of Candida Species in the Periodontal Disease 

Group 

 

 In periodontal patients, the tongue is the only sampled oral site which has 

microbial loads that are significantly different from the control group; at all the other 

sites there are no significant differences from the control group. 

 

 With the onset of periodontal disease, among the responses of the host immune 

system is the release of antibacterial factors, the production of antibodies stimulated by 

bacterial antigens (Marsh and Martin, 2009), as well as the elevation of non-specific 

antimicrobial factors in the saliva (Lamster et al., 2003). All of these salivary 

antimicrobial factors could be the reason why there are no significant differences 

between the microbial loads of periodontal patient saliva and the saliva of the control 

group, as the elevation of antimicrobial factors may be inhibiting any increased growth 
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of oral microorganisms that could occur as a result of periodontal disease, maintaining 

microbial growth at the same levels as in the control. 

 

 As saliva continuously bathes the oral cavity, the microbial growth inhibitory 

effect would also extend to the palate and cheek mucosal surfaces as well, which 

explains why the microbial loads of the palate and buccal mucosa surfaces of 

periodontal patients are not significantly different from the control group. However, on 

the tongue surface, both candidal and bacterial loads are found to be significantly 

higher, indicating that the tongue of periodontal patients provides a better environment 

for bacterial species to compete against oral Candida species. This is consistent with the 

suggestion that the tongue is a reservoir for bacterial species that cause periodontal 

disease (Van der Velden et al., 1986). It can thus be surmised that as periodontal 

disease-linked bacterial species become more competitive on the tongue surface during 

the onset of periodontal disease, the candidal colonization of the tongue is adversely 

affected, which is why the tongue of periodontal patients has a lower mean percentage 

of candidal load than the cheek and palate mucosal surfaces, demonstrating that in 

periodontal patients, the tongue is a less suitable environment for candidal colonization 

compared to those other sites.  

 

 There is another possible reason why the mucosal surfaces of the oral cavity are 

better candidal colonization sites than the tongue in periodontal patients. In addition to 

the washing action and antimicrobial factors of saliva that would also affect the 

microbial growth on the mucosal surfaces of the oral cavity, the oral epithelial cells of 

both the palate and cheek mucosal surfaces can also be stimulated by bacterial infection 

to produce interleukins such as interleukin-6 that inhibit microbial growth on the 

mucosal surface (Hedges et al., 1992), in addition to being actively involved with 
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neutrophils in the immune response to bacterial infection (Dale, 2000). It is possible that 

both of these oral epithelium-mediated immune responses are better at suppressing 

bacterial species rather than candidal species, allowing candidal populations on oral 

mucosal surfaces to compete better against oral bacterial populations. This is supported 

by studies which show that disrupting bacterial populations in the oral cavity promotes 

the growth of oral Candida (Scully et al., 1994). 

 

 Another difference from the control group is that in periodontal patients, the 

palate surface becomes the oral site which has the highest mean percentage of candidal 

load, overtaking both the tongue and cheek mucosal surfaces, indicating that in 

periodontal patients, the palate is the best environment for candidal species to compete 

against bacterial speciess. Something that differentiates the palate and cheek mucosal 

surfaces is the flow of gingival crevicular fluid, containing antibodies, neutrophils, 

leukocytes and other antimicrobial factors that have been stimulated by periodontitis 

(Marsh and Martin, 2009). It is possible that  during the onset of periodontal disease, the 

flow of gingival crevicular fluid on the cheek mucosal surface also acts to suppress 

candidal colonization on the buccal mucosa, which is why the mean percentage of 

candidal load is higher on the surface of the palate. 

 

5.2 Evaluation of DNA Extraction Methods 

 

 Comparing the four extraction methods based only on cost and time to carry out, 

the lyticase-based method appears to require the most materials in addition to being the 

most labor-intensive. The commercial kit method, the freeze-thaw method and the glass 

beads disruption method take around the same amount of time, however the glass beads 

disruption method becomes less practical and requires more time with large batch 
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numbers. The freeze-thaw method is both the fastest and most convenient method while 

also being the cheapest as it requires the fewest amount of materials. 

 

 Qualitative assessment of the DNA extracts, as visualized through gel 

electrophoresis, revealed that the lyticase-based and freeze-thaw extraction methods 

were unsuccesful in extracting candidal DNA. The complexity, inconvenience and the 

long duration of the lyticase-based method could be the reasons for its failure, as 

genomic DNA may have degraded when carrying out the DNA purification steps. In 

addition, many temperature-sensitive enzymes were involved in the lyticase-based 

method and deactivation of any of these enzymes could have been a cause. Meanwhile, 

the freeze-thaw extraction method is based on the premise that rapid freezing and 

thawing causes cells to lyse. In this procedure, the samples underwent only two cycles 

of rapid freezing and thawing, and this may have been insufficient to completely lyse 

the cells. It is also possible that the extremities of temperature required for rapid freeze-

thawing were not achieved during the procedure. 

 

 The DNA yield and purity of the commercial kit and glass beads disruption 

extracts were compared to determine which was the better extraction method. The 

commercial kit produced higher yields for Candida parapsilosis and Candida glabrata, 

while the glass beads disruption extraction method had higher Candida tropicalis and 

Candida lusitaniae DNA yields. It is possible that minor differences in the structures of 

the yeast cell walls mean that enzymatic disruption is more effective against C. 

parapsilosis and C. glabrata, whereas mechanical disruption is better suited against C. 

tropicalis and C. lusitaniae. 
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 Considering the heavy use of PCI (phenol-chloroform-isopropanol, 25:24:1), it 

is surprising that the glass beads disruption method produced only a few DNA extracts 

that were contaminated by phenol. This indicates that mixing the lysate with 

isopropanol and centrifuging is sufficient at removing traces of phenol from the lysate. 

Meanwhile, comparatively more of the commercial kit DNA extracts have protein 

contamination. After the centrifugation step of the lysate mixture with the “MPC 

Protein Precipitation Reagent” provided by the kit, it was observed that traces of protein 

precipitates had not completely pelleted and were suspended in the supernatant. Despite 

careful pipetting to ensure that none of these protein precipitates were also pipetted, it is 

highly likely that traces of the protein precipitate were also taken up in addition to the 

lysate and this is the cause of the protein contamination. 

 

5.3 Differentiation of Oral Candida Species Based on ITS Region of rDNA 

 

 The PCR product sizes of the ITSI region for C. albicans, C. tropicalis and C. 

krusei are approximately in agreement with those reported by Kumar and Shukla 

(2005). The 5.8S-ITSII amplification for C. albicans, C. krusei and C. lusitaniae are 

consistent with the reports of Fujita et al. (2001), but the sizes for C. tropicalis and C. 

parapsilosis differ by about 10 basepairs. Meanwhile, the band sizes of the ITSI-5.8S-

ITSII region for C. albicans, C. tropicalis, C. krusei and C. parapsilosis are in 

agreement with Mirhendi et al. (2006), but the reported product size for C. glabrata 

differs by 20 basepairs. Elsewhere, Fujita et al. (2001) reported similar product sizes for 

the species C. tropicalis, C. parapsilosis and C. lusitaniae, but the reported product 

sizes for C. albicans and C. krusei both differ with those observed in this study by about 

10 basepairs. Lastly, the MspI restriction fragment sizes of the ITSI-5.8S-ITSII 

amplicons for C. albicans, C. tropicalis, C. krusei and C. parapsilosis are consistent 
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with those reported by Mirhendi et al. (2006). However, the fragment sizes for C. 

glabrata differ by 13-16 basepairs. 

 

 As the most highly conserved region in the candidal genome, the candidal rDNA 

region is very suitable for comparing the genotypic differences between species (Iwen et 

al., 2002). Unfortunately, the band size of the ITSI amplification is incapable of 

distinguishing between C. albicans, C. tropicalis and C. parapsilosis, while 5.8S-ITSII 

cannot distinguish between C. albicans, C. krusei and C. dubliniensis. Meanwhile the 

ITSI-5.8S-ITSII band cannot distinguish between C. albicans and C. dubliniensis, as 

well as C. tropicalis and C. parapsilosis. Thus, clinical species identification would be 

problematic unless multiple PCR reactions are employed, as no single amplified region 

by itself can distinguish between all of the ATCC control species. 

 

  Comparing the ITSI, 5.8S-ITSII and the ITSI-5.8S-ITSII band sizes, there is 

very little difference between C. albicans, C. dubliniensis, C. tropicalis, C. krusei and 

C. parapsilosis.. Meanwhile, the sizes of C. glabrata and C. lusitaniae are markedly 

different, indicating that they are, by comparison, genetically more dissimilar from the 

other four species. 

 

 The sizes of the C. albicans and C. dubliniensis 5.8S-ITSII as well as ITSI-5.8S-

ITSII bands are identical, which is unsurprising as these two species have always been 

closely linked and difficult to distinguish morphologically (Pincus et al., 1999). 

Meanwhile, C. tropicalis and C. parapsilosis have identical ITSI and ITSI-5.8S-ITSII 

bands, despite their differences in morphology. On the other hand, their 5.8S-ITSII 

bands differ by as much as 20 base pairs. Interestingly, both C. tropicalis and C. 
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parapsilosis have shorter 5.8S-ITSII regions compared to C. albicans, C. dubliniensis 

and C. krusei. 

 

 C. krusei distinguishes itself by having a smaller ITSI region compared to the 

other four candidal species it appears to be genetically closer related to. Elsewhere, C. 

glabrata and C. lusitaniae, by virtue of having significantly different ITSI-5.8S-ITSII 

region sizes from the others and from each other, also have substantially different ITSI 

and 5.8S-ITSII region sizes as well. 

 

 In addition to using PCR amplification, the MspI and HinfI restriction enzymes 

were assessed to determine if restriction enzyme analysis could be combined with PCR 

amplification of candidal rDNA as an effective means for species identification. 

 

 MspI digestion of the ITSI-5.8S-ITSII PCR product resulted in restriction 

fragment patterns capable of distinguishing between C. tropicalis, C. krusei, C. 

parapsilosis, C. glabrata and C. lusitaniae. However, C. albicans and C. krusei 

produced identical banding patterns, indicating that they have identical recognition sites 

for MspI. Each species has one MspI recognition site, with the exception of C. 

parapsilosis, which has none. Meanwhile HinfI digestion resulted in unique restriction 

fragment banding patterns for all the species with the exception of C. tropicalis and C. 

parapsilosis, which have identical restriction fragments. Furthermore, the sizes of the 

resulting restriction fragments are very close to the sizes of the restriction fragments of 

C. albicans, potentially making clinical identification problematic. The identical HinfI 

recognition sites of C. tropicalis and C. parapsilosis further indicates that they are 

genetically related, despite their morphological differences. Each of the candidal species 
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tested has 2-3 HinfI recognition sites, and for some species, they produced bands of 

similar sizes that overlapped each other when visualized in the gel. 

 

 While the F1 clinical sample genotype could not be matched with the genotype 

of any of the control samples, there is a possibility, based on the sizes of the ITSI-5.8S-

ITSII and 5.8S-ITSII PCR products, that it is Candida famata. Candida famata is a 

hemiacomycetous yeast that is difficult to phenotypically distinguish from Candida 

guilliermondii (Desnos-Ollivier et al., 2008). It is known to be a common environmental 

isolate, but rarely recovered clinically (Rippon, 1988). However, recently it has been 

recognized as a potential emerging pathogen, and a recent study has shown that it is able 

to adhere to gingival epithelial cells and trigger an immune response from the epithelial 

cells (Bahri et al., 2010) 
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6. LIMITATIONS 

 

 This study is limited by its small sample size (n = 15). Thus, the results and 

conclusions that can be derived from this study are limited in scope. The comparison of 

candidal microbial loads in the oral cavity between different groups would be better 

supported if more individuals were sampled for each of the three groups. Meanwhile, 

the effectiveness of using candidal rDNA for the purposes of species identification as 

utilised in this study would be better demonstrated if more clinical samples were 

obtained in order to further investigate the usefulness of this candidal species 

identification method.  It is recommended that future studies employ larger sample sizes 

in order to improve the veracity of the data presented in this study. 
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7. CLINICAL SIGNIFICANCE 

 

 A better understanding of the prevalence and intra-oral distribution of candida in 

the oral cavity under different conditions of periodontitis and denture use should be an 

invaluable guide for future studies concerning factors that are involved in candidal 

growth, and hopefully this will lead to clinical applications such as better management 

of oral candidal growth and ecological balance of the oral microbiota, as well as better 

treatment and prevention of candidal pathogenesis. 

 

 This study also illuminates the usefulness of the ITS regions of fungal rDNA, 

and their potential use as a means for identifying candidal species based on genotype. 

As the differing sizes of the restriction fragments of the ITSI-5.8S-ITSII region has 

been shown to be able to distinguish between different candidal species, it may be 

possible to construct genetic probes that target those specific fragments, enabling swift 

and precise identification of candidal species. 
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8. CONCLUSION 

 

 In fulfilment of the first objective of this study, the candidal loads of the saliva, 

tongue, palate and buccal mucosa of denture-wearers were found to be significantly 

higher compared to the control group, while only the candidal loads of the tongue of 

periodontal patients were found to be significantly higher, whereas at all the other sites 

there were no significant differences. Meanwhile, the mean percentage of candidal loads 

were the lowest in the saliva for all three groups, while it was the highest on the tongue 

surface of the control group, and highest on the palate surface of denture-wearers and 

periodontal patients. 

 

 For the second objective, fifteen clinical samples were randomly isolated and 

were then differentiated into six different genotypes based on the sizes of their ITS 

regions and restriction fragments. Out of these six different genotypes, five were 

succesfully matched to the genotype profile of a control species, enabling identification 

of their species. 

 

 In terms of fulfilling the third and final objective, out of the seven control 

species of C. albicans, C. tropicalis, C. krusei, C. parapsilosis, C. dubliniensis, C. 

glabrata and C. lusitaniae, MspI restriction digest of the amplified ITSI-5.8S-ITSII 

region was successful in differentiating between all those species, with the exception of 

not being able to distinguish between C. albicans and C. dubliniensis, whereas the HinfI 

digest could differentiate all of the aforementioned species with the exception of not 

being able to distinguish between C. tropicalis and C. parapsilosis. Combining the 

results of both digestions would enable candidal species identification of these seven 

species. 
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 Future studies could concern further investigation of these and other restriction 

fragments as well as the possibility of developing hybridization probes for rapid 

genotype-based species identification. 
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