MICROBIAL ASSESSMENT OF DENTAL UNIT WATERLINE SYSTEM (DUWS)

CHUA CHONG SING

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF DENTAL SCIENCE

FACULTY OF DENTISTRY UNIVERSITY OF MALAYA KUALA LUMPUR

2012

ABSTRACT

Introduction: Dental Unit Waterline System (DUWS) is an interconnected water network found inside a dental chair unit (DCU) that allows water to pass through and deliver to the patient's mouth during treatment. Many previous studies demonstrated the DUWS water was often heavily contaminated and might pose a risk of infection to the patients as well as dental personnel. *Objective:* To determine the sanitary level of output water from DCUs and assess the effectiveness of silver-coated tubing used in DCU in reducing microbial counts in DUWS water. Methods: Water from sources which include the airwater syringe, low speed handpiece, high speed handpiece and distilled water (control) were sampled from 13 DCUs. The temperature and pH of each sample were measured and the microbial counts of the total aerobic bacteria, total coliform, faecal coliform, Escherichia coli, faecal streptococci and Pseudomonas aeruginosa were determined using conventional microbiological procedures. Based on PCR products, the 16S rDNA gene sequence of bacteria isolated from the water samples were determined and used for identification. An *in vitro* model simulating the tubing of a DCU was setup in the laboratory using silver-coated and conventional polyurethane tubes. A microbial suspension comprising of similar bacteria earlier identified in the DUWS outgoing water was passed through the tubing in cycles of stagnation and flushing to mimic the routine operation of a DUWS. The effectiveness of the tubing in preventing biofilm formation was compared and assessed by the counts of adhering bacteria and observed under scanning electron microscope. **Results:** The average pH of the outgoing water was slightly acidic at pH 5.4-5.5 at an average temperature of 23°C. The outgoing water was

found free of pathogenic contaminant but highly loaded with four types of bacteria identified as *Sphingomonas rhizogenes* (17.9%), *Sphingomonas dokdonesis* (79.5%), *Sphingomonas mucosissima* (1.1%) and *Methylobacterium radiotolerans* (1.5%). The interior surface of both polyurethane and silver-coated tubes showed extensive biofilm formation and the outgoing water was heavy with bacterial counts. No significant difference in biofilm formation and bacterial contamination in the outgoing water were found in both types of tubing (P>0.05). *Conclusion:* The microbial load in the outgoing water from DUWS in the clinic under study was high and failed to meet the recommendation by American Dental Association. Silver-coated tubing water when compared with polyurethane tubings.

ABSTRAK

Pengenalan: Sistem Peraliran Unit Pergigian (SPUP) merupakan sistem saluran air yang didapati dalam unit kerusi pergigian (UKP) yang menyalurkan air melaluinya dan ke mulut pesakit semasa rawatan. Akan tetapi banyak penyelidikan yang telah dijalankan mendapati bahawa air dari SPUP adalah dicemarkan dan mungkin dapat menyebabkan jangkitan kepada pesakit dan staf pergigian. Objektif: Untuk menentukan paras kebersihan air dari UKP dan menyiasat kecekapan paip air yang telah dilapisi oleh logam perak bagi mengurangkan kontaminasi mikroorganisma dalam SPUP. Kaedah: Sumber air termasuk air dari tiga penyembur air, hanpis berkelajuan rendah, hanpis berkelajuan tinggi, dan air suling telah dikutip dari 13 unit kerusi pergigian. Suhu dan pH sampel air telah diukur and bilangan mikroorganisma bagi bakteria aerobik, kolifom, fekal kolifom, Escherichia coli, fekal streptokoki, dan Pseudomonas aeruginosa telah ditentukan dengan kaedah pengkulturan. Species bakteria yang mengkontaminasi sumber air SPUP telah dikenalpasti berdasarkan kepada turutan gen 16S rDNA. Selain itu, satu model in vitro yang menyerupai paip air unit kerusi pergigian telah disediakan dalam makmal dengan menggunakan paip air yang dilapisi dengan logam perak dan paip poliuretana seperti yang biasa didapati di unit kerusi pergigian. Species mikroorganisma yang didapati mengkontaminasi SPUP telah ditambah kepada sumber air disalurkan melalui model system paip tersebut bagi menyamai keadaan sebenar di klinik. Keupayaan paip air dalam mencegah pembentukkan biofilm turut dianalisa dan bakteria yang melekat pada permukaan paip diamati dengan menggunakan mikroskop elekton. *Keputusan:* pH purata sampel air adalah sedikit berasid, iaitu lebih kurang pH 5.4-5.5 dan suhu purata ialah 23 °C. Air keluaran dari unit kerusi pergigian didapati bebas dari mikrorganisma penjangkit penyakit tetapi telah dicemari dengan empat species bakteria, iaitu *Sphingomonas rhizogenes* (17.9%), *Sphingomonas dokdonesis* (79.5%), *Sphingomonas mucosissima* (1.1%) dan *Methylobacterium radiotolerans* (1.5%). Kedua-dua jenis paip air menunjukkan pembentukkan biofilm yang banyak dan hasilan air keluaran juga didapati sangat tercemar. Tiada perbezaan yang nyata dari segi pembentukkan biofilm dan pencemaran bakteria dalam air keluaran di antara kedua-dua jenis paip air (P > 0.05). *Kesimpulan:* Bilangan bakteria dalam air keluaran dari unit kerusi pergigian in klinik adalah sangat tinggi dan gagal mencapai cadangan oleh Persatuan Pergigian Amerika. Oleh itu, paip air yang telah dilapisi oleh logamperak tidak berkesan untuk mencegah pembentukkan biofilm bagi mengurangkan kontaminasi bakteria dalam air keluaran apabila dibandingkan dengan poliuretana paip.

ACKNOWLEDGEMENT

First of all, I would like to say thousands of thanks to my supervisors, Associate Prof. Dr. Fathilah binti Abdul Razak and Dr. Wan Himratul Aznita binti Wan Harun for accepting me as their master student. I also feel grateful for their guidance upon my Master Degree research project.

Moreover, I would like to say thanks to Prof. Dr. Zubaidah binti Haji Abdul Rahim as Head of Department of Oral Biology and Associate Prof. Dr. Marina binti Mohd Bakri. I also would like to say thanks to Prof. Dr. Phrabhakaran A/L K Nambiar and Dr. Nor Himazian binti Mohamed for allowing me to collect water samples from General Dental Practice Clinic (GDP).

In addition, I also would like to thank Mr. Rafiki Rezali, Miss Faraliza Alias and Mr Anuar Zainon as medical laboratory assistants and Madam Zarina Idris, Miss Sumiati Pool and Mr. Hassan Ismail for their excellent help in the electron microscope observation. With their committed helps, I have acquired some hands-on experience on ultrastructural research work. Furthermore, I would also like to thank other postgraduate colleagues and research assistants for their selfless support.

Last but not least, I would like to say thanks to my parents for giving me the support and always by my side in my attempt to complete this Master Degree.

CONT	TENTS		Page
ABST	FRACT		ii
ACK	NOWL	EDGEMENT	vi
CON	TENTS		viii
LIST	OF FIG	GURES	xii
LIST	OF TA	BLES	xiv
LIST	OF SY	MBOLS AND ABBREVIATIONS	xvi
CHA	PTER (ONE: INTRODUCTION AND OBJECTIVES	1
1.1	INTR	ODUCTION	2
1.2	OBJE	CTIVES	4
CHA	PTER 7	FWO: LITERATURE REVIEW	5
2.1	DENT	TAL UNIT WATERLINE SYSTEM AND BIOFILM FORMATION	6
	2.1.1	Dental Unit Waterline System (DUWS)	6
	2.1.2	Biofilm Formation	6
2.2	MICR	OBIAL CONTAMINATION AND HEALTH RISKS	8
	2.2.1	Exposure to Endotoxin	10
	2.2.2	Exposure to Pseudomonas aeruginosa	11
	2.2.3	Exposure to Legionellae	12
	2.2.4	Exposure to Non-tuberculous Mycobacteria (NTM)	14
2.3	TREA	TMENTS FOR MICROBIAL CONTAMINATION	15
	2.3.1	Anti-retraction Valves and Retrograde Aspiration of Oral Fluids	15

	2.3.2	Flushing	16
	2.3.3	Filtration	16
	2.3.4	Independent Clean Water System	17
	2.3.5	Chemical Treatment	18
		2.3.5.1 Side Effects and Limitations	18
		2.3.5.2 Common Chemical Treatments	20
	2.3.6	DUWS Cleaning and Disinfection System	25
	2.3.7	Modification of tubing	27
2.4	GUID	ELINES AND RECOMMENDATIONS ON DUWS	27
2.5	METH	IODS OF DETECT CONTAMINATION	28

CHAI	PTER 7	THREE: MATERIALS AND METHODS	31
3.1	RESE	ARCH DESIGN	32
3.2	MEDI	A, DILUENT, AND APPARATUS	34
3.3	SAMI	PLES COLLECTION	34
	3.3.1	Dental Chair Unit (DCU)	34
	3.3.2	Collection of Water Samples	36
3.4	LABC	DRATORY PROCESSING OF WATER SAMPLES	38
	3.4.1	pH and Temperature Measurement	38
	3.4.2	Heterotrophic Plate Count	38
	3.4.3	Total Coliforms Plate Count	39
	3.4.4	Faecal Coliforms Plate Count	41
	3.4.5	Escherichia coli Plate Count	41

	3.4.6	Faecal Streptococci Plate Count	42
	3.4.7	Pseudomonas aeruginosa Plate Count	42
	3.4.8	Statistical Analysis	43
	3.4.9	Control Cultures for Laboratory Processing	43
3.5	IDEN	TIFICATION OF BACTERIAL ISOLATES	44
	3.5.1	Gram Staining	45
	3.5.2	Observation under Scanning Electron Microscope	45
	3.5.3	Identification of Bacterial Genomic DNA	46
		3.5.3.1 Genomic DNA Purification of Gram-Negative Bacteria	46
		3.5.3.2 Polymerase Chain Reaction (PCR)	47
		3.5.3.3 PCR Product Purification	48
		3.5.3.4 Agarose Gel Electrophoresis	48
		3.5.3.5 DNA Concentration, Yield and Purity Determination	49
		3.5.3.6 Sequencing of the 16S rDNA Gene and Bacterial	50
		Identification	
3.6	THE	ANTIBIOFILM PROPERTIES OF SILVER-COATED TUBING	50
	3.6.1	In Vitro Dental Unit Waterline System (DUWS) Biofilm Model	50
	3.6.2	Assessment of Antibiofilm Properties of Tubing	52
		3.6.2.1 Determination of Number of Adhering Bacteria	53
		3.6.2.2 Determination of Number of Planktonic Bacteria	53
		3.6.2.3 Observation under Scanning Electron Microscope (SEM)	53
	3.6.3	Statistical Analysis	54

CHAPTER FOUR: RESULTS

4.1	LABO	RATORY PROCESSING OF WATER SAMPLES	56
	4.1.1	pH and Temperature Measurement	56
	4.1.2	Heterotrophic Plate Count	57
	4.1.3	Microbiological Tests (Total Coliforms Count, Faecal Coliforms	62
		Count, Escherichia coli Count, Faecal Streptococci Count and	
		Pseudomonas aeruginosa Count)	
4.2	IDEN'	TIFICATION OF BACTERIAL ISOLATES	68
	4.2.1	Colony, Cells and Ultrastructural Characteristics	68
	4.2.2	Gel Electrophoresis Visualisation	73
	4.2.3	Nucleotide Sequence Comparison with GenBank Database and	74
		Microbial Abundance Percentage	
4.3	THE A	ANTIBIOFILM PROPERTIES OF SILVER-COATED	75
	TUBI	NG	
	4.3.1	Determination of the Number of Adhering Bacteria	75
	4.3.2	Determination of the Number of Planktonic Bacteria	79
	4.3.3	Gradual Changes in the Number of Bacteria over Period of Trial	81
СНА	PTER I	FIVE: DISCUSSION	83
5.1	LABC	DRATORY PROCESSING OF WATER SAMPLES	84
5.2	IDEN	TIFICATION OF BACTERIAL ISOLATES	91
5.3	THE A	ANTIBIOFILM PROPERTIES OF SILVER-COATED TUBING	93

55

CHAPTER SIX: CONCLUSION			96
6.1	CONC	LUSION	97
6.2	5.2 FUTURE RECOMMENDATIONS		97
CHAP	TER S	EVEN: REFERENCES	98
APPEN	NDIX		111
Append	lix 1:	List of Equipments	112
Append	lix 2:	Preparation of Media, Diluent and Appratus	113
Append	lix 3:	Quantitation of Bacterial Cells	121
Append	lix 4:	Dental Unit Water Lines, Biofilm and Water Quality	122

LIST OF FIGURES

Figure 3.1	Flow chart of the design of the study 33		
Figure 3.2	An overview of a dental chair unit in a dental teaching clinic 3		
Figure 3.3	The filter unit used to filter municipal water source prior to	35	
	distillation		
Figure 3.4	The water distilled placed in the clinic 35		
Figure 3.5	Distilled water collected from the distiller and was stored in	36	
	20 L plastic container		
Figure 3.6	The tip points of each handpieces were wiped with alcohol	37	
	prior to sampling		
Figure 3.7	Water inlet to dental chair 3		
Figure 3.8	A filtration apparatus consisting of glass funnel, filter base and	40	
	vacuum beaker was assembled correctly and connected to an		
	electronic vacuum pump		
Figure 3.9	A piece of sterile gridded cellulose nitrate membrane filter with	40	
	$0.45\ \mu m$ pore size and 47 mm diameter was as eptically placed on		
	to the filter base		
Figure 3.10:	In vitro model for DUWS biofilm formation	51	
Figure 3.11:	Schematic diagram of in vitro model for DUWS biofilm	52	
	formation		
Figure 4.1	A bar chart showing that the pH of water collected from four	56	
	different water sources		
Figure 4.2	A bar chart showing that the temperature of water collected from	57	

four different water sources

Figure 4.3	The mean of microbial load from different water sources58		
Figure 4.4	Images of heterotrophic plate counts 6		
Figure 4.5	Images of total coliforms counts 6		
Figure 4.6	Images of faecal coliforms counts	64	
Figure 4.7	Images of Escherichia coli counts	65	
Figure 4.8	Images of faecal streptococci counts	66	
Figure 4.9	Images of Pseudomonas aeruginosa counts	67	
Figure 4.10	Images of isolate A	69	
Figure 4.11	Images of isolate B	70	
Figure 4.12	Images of isolate C 71		
Figure 4.13:	Images of isolate D 72		
Figure 4.14:	Image of gel electrophoresis 7		
Figure 4.15: The number of adhering bacteria (cfu/cm^2) to the inner surface of		75	
	silver-coated tubing compared to the conventional polyurethane		
	tubing.		
Figure 4.16:	Electron micrograph showing the gradual increase in the bacterial	77	
	colonisation population to the inner surface of polyurethane tubing		
Figure 4.17: Electron micrograph showing the gradual increase in the bacte		78	
	colonisation population to the inner surface of silver-coated tubing		
Figure 4.18:	The number of bacteria found in water samples collected from	79	
	silver-coated tubing compared to that of the conventional		
	polyurethane tubing		

LIST OF TA	BLES	Page
Table 2.1	Types of organisms isolated from dental unit waterline system	9
Table 2.2:	List of proposed disinfectant and their respective efficiency	20
Table 3.1	Cultures used as positive and negative controls in the laboratory	44
	processing	
Table 4.1	Comparison of heterotrophic plate count from different water	59
	sources to the standard recommended by ADA	
Table 4.2	Comparison of heterotrophic plate count between output water	60
	from the air-water syringe, low and high speed handpieces to that	
	of distilled water source	
Table 4.3	Microbiological tests of distilled water, air-water syringe, low	62
	speed handpiece and high speed handpiece	
Table 4.4	Colony characteristics of isolates recovered from water samples	68
Table 4.5:	Identity of common bacteria isolated from water samples as	74
	determined by comparing their 16S rDNA gene sequences with	
	that of GenBank database	
Table 4.6:	The number of adhering bacteria (cfu/cm) to the inner surface of	76
	silver-coated tubing compared to the conventional polyurethane	
	tubing.	
Table 4.7:	The number of planktonic bacteria found in water samples collecte	d 80
	from silver-coated tubing compared to that of the conventional	
	polyurethane tubing	

Table 4.8:The number of adhering bacteria and planktonic bacteria from81

xiv

polyurethane tubing was compared over the period of trial

Table 4.9:The number of adhering bacteria and planktonic bacteria from82silver-coated tubing was compared over the period of trial.

LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation	Description
et al.	And others
bp	Base pairs
cm	Centimeter
cfu/mL	Colony forming units per mililitre
cfu/cm ²	Colony forming units per centrimetre square
°C	Degree celsius
DNA	Deoxyribonucleic acid
EU/mL	Endotoxin units per mililitre
g	Gravity
g	Gram
g/ml	Gram per millilitre
g/L	Gram per litre
hr	Hours
kPa	kilo Pascal
L	Litre
mL	Millilitre
mL/min	Mililitre per minute
μg/mL	Microgram per mililitre
μL	Microlitre
μm	Micromolar
µmole/ml	Micromoles per milliliter
mg	Miligram

mg/mL	Miligram per mililitre
mm	Milimetre
mM	Milimolar
min	Minute
М	Molar
MW	Molecular weight
nm	Nanometer
Р	Probrability
pp.	Pages
rDNA	Ribosomal Deoxynucleic Acid
rRNA	Ribosomal Ribonucleic Acid
%	Percent
sec	Seconds
spp.	Species
i.e.	That is
U/ml	Unit per milliliter
V	Voltage
w/v	Weights per volume