METRICAL ANALYSES OF THE LOCATION OF THE MANDIBULAR CANAL USING CBCT

SAIF YOUSIF ABDULLAH

DISSERTATION SUBMITTED IN FULFILLMENT OF REQUIREMENTS FOR THE DEGREE IN MASTER OF DENTAL SCIENCE

DEPARTMENT OF ORAL AND MAXILLOFACIAL SURGERY FACULTY OF DENTISTRY UNIVERSITY OF MALAYA

KUALA LUMPUR

YEAR 2011

TABLE OF CONTENT

1) TITLE	i
2) CONTENTS	ii
3) DEDICATION	viii
4) ACKNOWLEDGMENT	ix
5) DECLARATION	xi
6) ABSTRACT	xii
7) LIST OF TABLES	xiv
8) LIST OF FIGURES	xvii
9) LIST OF SYMBOLS AND ABBREVIATIONS	xix
CHAPTER 1: INTRODUCTION	
1.1 Aim of the study	1
1.2 Statement of problem	1
1.3 Objectives of the study	3
1.4 Research Questions	4
1.5 Significance of the study	5
1.6 Limitations of the study	5
CHAPTER 2: REVIEW OF RELATED LITERATURE	
2.1 Anatomical Consideration	6
2.2 Anatomical Variations	7
2.2.1 Vertical position	7
2.2.2 Horizontal position	11
2.3 Bifid mandibular canal (MC)	12
2.4 Inferior alveolar neurovascular bundle	13
2.5 Injury of the inferior alveolar nerve	16

2.5.1 IAN nerve injury due to implant surgery	17
2.5.1.1 Inferior alveolar nerve injury during traumatic local anaesthesia injection	ı 17
2.5.1.2 Inferior alveolar nerve injury by implant drill	18
2.5.1.3 Inferior alveolar nerve injury by dental implant	20
2.5.1.4 Inferior alveolar nerve injury – the mental nerve	22
2.5.2 IAN nerve injury due to other surgical procedure	22
2.6 Radiographic methods used to locate the mandibular canal	23
2.6.1 Periapical radiographs	24
2.6.2 Panoramic radiography	25
2.6.3 Conventional tomography	27
2.6.4 Computed tomography (CT)	28
2.7 Studies locating the mandibular canal preoperatively	32
2.8 Cone Beam Computed Tomography (CBCT) in dentistry	36
2.8.1 Accuracy of using CBCT	42
2.8.2 Image quality of CBCT	44
2.9 SimPlant interactive software	46
CHAPTER 3: RESEARCH METHODOLOGY	
3.1 Introduction	47
3.2 The materials of the study	47
3.3 The subjects of the study	48
3.3.1 Sample of the study	48
3.3.2 The variables of the study	49
3.3.3 Selection criteria of the samples	49

3.4 Methodology	51
3.4.1 Methods	51
3.4.2 Measurements	52
3.4.3 Reliability of the measurements	54
3.5 Data analysis	54
CHAPTER 4: RESULTS AND DATA ANALYSIS	
4.1 Introduction	56
4.2 Comparison of D locations on the right and left sides	59
4.3 Descriptive summary of D1	61
4.3.1 Comparison of D1 length between ethnicity (Race)	62
4.3.2 Descriptive summary of D1 location by gender	63
4.3.3 Comparison of D1 value by ethnicity and gender	64
4.3.3.1 Descriptive summary of D1 by gender among Malays	64
4.3.3.2 Descriptive summary of D1 by gender among Chinese	65
4.3.3.3 Descriptive summary of D1 by gender among Indians	66
4.3.4 Comparison of D1 value with age groups	67
4.4 Descriptive summary of D2	68
4.4.1 Comparison of D2 length between ethnicity (Race)	69
4.4.2 Descriptive summary of D2 location by gender	70
4.4.3 Comparison of D2 value by ethnicity and gender	71
4.4.3.1 Descriptive summary of D2 by gender among Malays	71
4.4.3.2 Descriptive summary of D2 by gender among Chinese	72
4.4.3.3 Descriptive summary of D2 by gender among Indians	73
4.4.4 Comparison of D2 value with age groups	74
4.5 Descriptive summary of D3	75
4.5.1 Comparison of D3 length between ethnicity (Race)	76

	4.5.2 Descriptive summary of D3 location by gender	77	
	4.5.3 Comparison of D3 value by ethnicity and gender	78	
	4.5.3.1 Descriptive summary of D3 by gender among Malays	78	
	4.5.3.2 Descriptive summary of D3 by gender among Chinese	79	
	4.5.3.3 Descriptive summary of D3 by gender among Indians	80	
	4.5.4 Comparison of D3 value with age groups	81	
4.6	4.6 Descriptive summary of D4		
	4.6.1 Comparison of D4 length between ethnicity (Race)	83	
	4.6.2 Descriptive summary of D4 location by gender	84	
	4.6.3 Comparison of D4 value by ethnicity and gender	85	
	4.6.3.1 Descriptive summary of D4 by gender among Malays	85	
	4.6.3.2 Descriptive summary of D4 by gender among Chinese	86	
	4.6.3.3 Descriptive summary of D4 by gender among Indians	86	
	4.6.4 Comparison of D4 value with age groups	87	
4.7	4.7 Descriptive summary of D5		
	4.7.1 Comparison of D5 length between ethnicity (Race)	89	
	4.7.2 Descriptive summary of D5 location by gender	90	
	4.7.3 Comparison of D5 value by ethnicity and gender	91	
	4.7.3.1 Descriptive summary of D5 by gender among Malays	91	
	4.7.3.2 Descriptive summary of D5 by gender among Chinese	92	
	4.7.3.3 Descriptive summary of D5 by gender among Indians	93	
	4.7.4 Comparison of D5 value with age groups	94	
4.8	Descriptive summary of the mandibular canal diameter	95	
	4.8.1 Comparison of the mandibular canal diameter between ethnicity (Race)	96	
	4.8.2 Descriptive summary of the mandibular canal diameter by gender	96	
	4.8.3 Comparison of the mandibular canal diameter by ethnicity and gender	97	

4.8.4 Comparison of the mandibular canal diameter value with age groups	99
4.9 Descriptive summary of the mandibular foramen diameter	99
4.9.1 Comparison of the mandibular foramen diameter between ethnicity (Race)	100
4.9.2 Descriptive summary of the mandibular foramen diameter by gender	100
4.9.3 Comparison of the mandibular foramen diameter by ethnicity and gender	101
4.9.4 Comparison of the mandibular foramen diameter value with age groups	102
4.10 Bifid mandibular canal	103
4.10.1 Association between the bifid mandibular canals with ethnicity (Race)	104
4.10.2 Comparison of the bifid mandibular canal between gender	105
CHAPTER 5: DISCUSSION	
5.1 Rational for choice of study topic	106
5.2 Specimen selection	108
5.3 Technique	109
5.3.1 The imaging system	109
5.3.2 Landmarks, Base line and Measurements	109
5.3.3 Reliable landmarks for mandibular canal position	110
5.4 Comparison of data between right and left jaw	111
5.5 Position of the mandibular canal	111
5.5.1 Apicocoronal position of the mandibular canal	111
5.5.2 Buccolingual position of mandibular canal	115
5.6 Age group	121
5.7 Diameter of the mandibular canal	124
5.8 Diameter of the mandibular foramen	125
5 9 Rifid Canal	126

CHAPTER 6: CONCLUSION, IMPLICATIONS AND SUGGESTIONS

6.1 Introduction	127	
6.2 Summary of the findings	127	
6.3 Implications of the study	129	
6.4 Recommendations for further research	129	
6.5 Closure	130	
CHAPTER 7: DEVELOPMENT OF THE MANDIBULAR CANAL SIMULATION		
SOFTWARE	131	
REFERENCES	133	
REFERENCES		
APPENDIX 1	145	

Dedicated to:

My father, Yousif
My mother, Na'met
My beloved wife Maryam
My two flowers, Yousif & Teeba

ACKNOWLEDGEMENT

In the name of Allah, most gracious, most merciful

First of all, I would like to thank the Almighty Allah for granting me the will and strength to accomplish this research. I pray that Allah's blessings upon me to continue throughout my life, and Allah's blessing and peace be upon the messenger Mohammad (SAW).

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

Associate Prof. Dr. Palasuntharam Shanmuhasuntharam, my supervisor whose encouragement and guidance enabled me to develop an understanding of the subject;

My utmost gratitude to Professor Dr. Phrabhakaran A/L K N Nambiar, my second supervisor, whose sincerity and encouragement I will never forget. He has been my inspiration as I tried to overcome all the obstacles in the completion of this research work;

Dr. Marhazlinda Binti Jamaludin for her inputs especially in the statistical part of this study. She has shared valuable insights, knowledge and experience.

Professor Zainal Arrif Bin Abdul Rahman, the former Head of Department of Oral and Maxillofacial, for his kind concern and consideration regarding my academic requirements.

Dr. Siti Mazlipah Ismail, Head of Department of Oral and Maxillofacial, for the moral support despite being newly appointed;

Professor Dr. Rosnah Bt. Mohd Zain, Dean of the College of Dentistry, for the insights she had shared;

I also would like to thank and appreciate the efforts and moral support provided by the lecturers, my colleagues and the staff of the Department of Oral and Maxillofacial surgery, and all the staff in the Division of Oral radiology were an invaluable asset to my work.

I would like to express my gratitude to FnjanCom Sdn Bhd (867118-D) company and their programmers who helped us in coding the MC-SIM application mentioned in Chapter 7.

I offer my regards and blessings to all of those who supported me in any respect during the

completion of the project.

Most of all, I would like to express my deepest gratitude to;

My father, Dr. Yousif Alsewaidi for making me what I am today.

My mother, Madam Na'met for her eternal love and care.

My wonderful, understanding and lovely wife, Maryam, for being a pillar of moral support

and patience throughout this period. Thank you for your cooperation, collaboration and

coordination.

My loving and precious children, Yousif and Teeba for all of their energizing, galvanizing

and vitalizing acts which kept me going through this period.

My brother Aws, sister Mays, my cousin Ayhaab Mustafa, and my friends Khatab Omar,

Haider Ahmed, Dr.Hesham Ismail, Noor haithem, Alaaeddin Alweish, Marwan Khalil,

Kamal Aldosarry for their immense support in easing my burden and commitments during

the period of my study.

Saif Yousif Abdullah

1st of July 2011

Х

DECLARATION

I certify that this research report is based on my own independent work, except where acknowledged in the text or by reference. No part of this work has been submitted for degree or diploma to this or any other university.

Dr. Saif Yousif Abdullah

Signature:

Date:

Supervisor. Associated Prof. Dr.	
Palasuntharam Shanmuhasuntharam	K N Nambiar
Signature	Signature
Date	Date
Department of Oral and Maxillofacial	Department of General Practice and Oral
Surgery	and Maxillofacial Imaging
Faculty of Dentistry	Faculty of Dentistry
University of Malaya	University of Malaya
Kuala Lumpur	Kuala Lumpur
Malaysia	Malaysia

ABSTRACT

Introduction: The increased neurosensory disturbances and hemorrhage after surgical intervention in the mandibular canal region increased the demand for presurgical planning and proper assessment to avoid those complications.

Aims: Determine the path and course of the mandibular canal of dentate Malaysian patients, mandibular canal diameter, mandibular foramen diameter and the incidence of bifid canal using the Cone Beam Computed Tomography (CBCT).

Materials and Methods: The subjects for this study included imaging of 60 patients (30 males and 30 females) from the Division of Oral radiology, with ages ranging from 20 to 60 years (mean age, 47 years). The samples were selected according to gender, race and age groups. The position of the mandibular canal and mandibular canal diameter were measured at five different locations. Linear measurements were done in the coronal view just posterior to the mental foramen at 10 mm interval (D1, D2, D3, D4 and D5). Mandibular foramen diameter and incidence of bifid mandibular canal were also recorded. The samples were imaged using CBCT and SimPlant software and data analyzed through SPSS (v.12).

Results: In this study the mandibular canal was identified in all samples with 100% good visibility. The measured data were expressed as minimum, maximum, median, K-S value and mean \pm standard deviation. The results showed that the position of the right mandibular canal is similar to the position on the left side of the jaw.

Apicocoronal position of the mandibular canal showed that the superior measurements were 14.85 ± 3.64 mm at D1, 13.94 ± 3.85 mm at D2, 12.99 ± 4.08 mm at D3 and 14.22 ± 1.52 mm at D4. The inferior measurements of the canal was 9.37 ± 1.69 mm at D1, 8.24 ± 1.52 mm at D4.

1.69 mm at D2, 7.96 ± 1.93 mm at D3, 9.65 ± 2.54 at D4 and 15.21 ± 4.18 mm at D5. The buccolingual position were 3.89 ± 1.00 mm (buccal) and 4.33 ± 1.25 mm (lingual), 5.59 ± 1.20 mm (buccal) and 3.35 ± 1.20 mm (lingual), 6.71 ± 1.34 mm (buccal) and 3.25 ± 1.32 mm (lingual), 5.68 ± 1.63 mm (buccal) and 3.08 ± 1.46 mm (lingual), 4.24 ± 1.59 mm (buccal) and 2.12 ± 1.40 mm (lingual) at D1,D2,D3,D4 and D5 respectively.

The minimum mandibular canal diameter recorded was 2.00 mm and the maximum was 3.40 mm. In this study the average mean was 2.16 ± 0.30 mm with the least mean diameter at D2 location (2.01 ± 0.42 mm) and the largest mean diameter at D1 (2.25 ± 0.47 mm) and D5 (2.25 ± 0.43 mm). The average mandibular formamen diameter was measured to be 2.55 ± 0.43 mm.

The incidence of bifid mandibular canal was greatest in Malays (n=18), followed by Indians (n=9), while no bifid canal was noticed in the Chinese.

Conclusion: Position of the canal changes due to changes in the mandibular bone. Measurements showed that the mandibular canal curves toward the lingual side the more distal it is away from the mental foramen. Apicocoronal assessment of the canal reveals that it is curving downward towards the inferior mandibular border until D3 and then it curves upwards. This CBCT study reveals there are variations in the position of the mandibular canal. It is highly recommended that careful assessment and planning using computed tomographic imaging is done prior to any surgical intervention in the mandibular canal region to avoid untoward complications.

Keywords: Cone Beam Computed Tomography (CBCT), Mandibular Canal, Inferior Alveolar Nerve (IAN), Simplant Software, Malaysian Population, Indian, Chinese, Malays

LIST OF TABLES

Table	Description	Page
Table 3.1	Selection of cases based on the gender and ethnicity (race)	48
Table 3.2	Age group distribution of samples	49
Table 3.3	Landmarks and base lines record	53
Table 4.1	Comparison of length measurements for all Ds locations on the right and left sides	60
Table 4.2	Descriptive statistics of D1 length measurements	61
Table 4.3	Comparison of D1 mean measurements by ethnicity (race)	62
Table 4.4	Comparison of D1 mean measurements between males and females	63
Table 4.5	Comparison of D1 mean measurements between gender among Malays	64
Table 4.6	Comparison of D1 mean measurements between gender among Chinese	65
Table 4.7	Comparison of D1 mean measurements between gender among Indians	66
Table 4.8	Comparison of D1 mean measurements between age groups	67
Table 4.9	Descriptive statistics of D2 length measurements	68
Table 4.10	Comparison of D2 mean measurements by ethnicity (race)	69
Table 4.11	Comparison of D2 mean measurements between males and females	70
Table 4.12	Comparison of D2 mean measurements between gender among Malays	71
Table 4.13	Comparison of D2 mean measurements between gender among Chinese	72
Table 4.14	Comparison of D2 mean measurements between gender among Indians	73
Table 4.15	Comparison of D2 mean measurements between age groups	74
Table 4.16	Descriptive statistics of D3 length measurements	75
Table 4.17	Comparison of D3 mean measurements by ethnicity (race)	76
Table 4.18	Comparison of D3 mean measurements between males and females	77
Table 4.19	Comparison of D3 mean measurements between gender among Malays	78
Table 4.20	Comparison of D3 mean measurements between gender among Chinese	79
Table 4.21	Comparison of D3 mean measurements between gender among Indians	80

Table 4.22	Comparison of D3 mean measurements between age groups	81
Table 4.23	Descriptive statistics of D4 length measurements	82
Table 4.24	Comparison of D4 mean measurements by ethnicity (race)	83
Table 4.25	Comparison of D4 mean measurements between males and females	84
Table 4.26	Comparison of D4 mean measurements between gender among Malays	85
Table 4.27	Comparison of D4 mean measurements between gender among Chinese	86
Table 4.28	Comparison of D4 mean measurements between gender among Indians	86
Table 4.29	Comparison of D4 mean measurements between age groups	87
Table 4.30	Descriptive statistics of D5 length measurements	88
Table 4.31	Comparison of D5 mean measurements by ethnicity (race)	89
Table 4.32	Comparison of D5 mean measurements between males and females	90
Table 4.33	Comparison of D5 mean measurements between gender among Malays	91
Table 4.34	Comparison of D5 mean measurements between gender among Chinese	92
Table 4.35	Comparison of D5 mean measurements between gender among Indians	93
Table 4.36	Comparison of D5 mean measurements between age groups	94
Table 4.37	Descriptive statistics of the mandibular canal diameter measurements	95
Table 4.38	Comparison of the MC diameter measurements by ethnicity (race)	96
Table 4.39	Comparison of the MC diameter measurements between gender	96
Table 4.40	Comparison of the MC mean measurements between gender among races	97
Table 4.41	Comparison of the MC diameter measurements between age groups	99
Table 4.42	Descriptive statistics of mandibular foramen diameter measurements	99
Table 4.43	Comparison of mandibular foramen diameter mean measurements by ethnicity (race)	100
Table 4.44	Comparison of mandibular foramen diameter mean measurements between males and females	100
Table 4.45	Comparison of the MF diameter mean measurements between gender among races	101
Table 4.46	Comparison of mandibular foramen diameter mean measurements between age groups	102

Table 4.47	Frequency and Percentage of the bifid canal in sample studied	103
Table 4.48	Frequency and Percentage of the bifid canal among races	104
Table 4.49	Comparison of the bifid canal among gender	105
Table 5.1	Comparison of studies locating the mandibular canal vertically	114
Table 5.2	Comparison of studies locating the mandibular canal horizontally	117
Table 5.3	Comparison of the MC diameter among different research studies	124
Table 5.4	Comparison of the bifid mandibular canal occurrence in different studies	126

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	A reconstructed panoramic image displayed in a thin section to show the bilateral course of the mandibular canals	6
Figure 2.2	Variations of the vertical position of the inferior alveolar nerve	9
Figure 2.3	Bifid MC	13
Figure 2.4	Illustrated diagram of the anatomy of trigeminal nerve	14
Figure 2.5	Neurovascular bundle	15
Figure 2.6	Illustrated diagrams for inferior alveolar nerve injury by implant drill	19
Figure 2.7	Illustrated diagrams for inferior alveolar nerve injury by dental implant	21
Figure 2.8	The orthopantomograph shows the disrupted superior border of mandibular canal and cancellous bone which has few and thin trabecullae	26
Figure 2.9	Computed tomographic images	34
Figure 2.10	Cone beam computed tomography system showing the x-ray source and the receptor	38
Figure 2.11	Illustrated diagrams for x-ray cone beam emission and detection	38
Figure 2.15	SimPlant Workstation	49
Figure 3.1	Illustrated diagram for the measurements at the coronal view of the jaw	52
Figure 3.2	Illustrating locations of measurements at every 1cm interval starting from the distal aspect of mental foramen backwards (D1-D5).	53
Figure 3.3	Flow Chart showing the methodology of the study	55
Figure 4.1	Mandibular canal position at each location considered in this study (D1-D5) -coronal view of CBCT image improved with SimPlant software	58
Figure 4.2	A.Mandibular canal diameter measurements, B.Mandibular foramen diameter measurements – coronal view of CBCT image improved with Simplant software.	102

Figure 4.3	Bifid mandibular canal frequencies among gender	103
Figure 4.4	Bifid mandibular canal frequencies among Malays and Indians	104
Figure 4.5	Bifid mandibular canal – panoramic view of CBCT image improved with Simplant software	105
Figure 5.1	Illustrated diagram of the mandibular canal path – axial view	118
Figure 5.2	Illustrated diagram of the mandibular canal path – coronal view	118
Figure 5.3	Illustrated diagram of the mandibular canal path among race – axial view	119
Figure 5.4	Illustrated diagram of the mandibular canal path among race – coronal view	120
Figure 5.5	Illustrated diagram of the mandibular canal path among age groups – axial view	122
Figure 5.6	Illustrated diagram of the mandibular canal path among age groups – coronal view	123
Figure 7.1	Illustrated diagram showing positions included in the application	131
Figure 7.2	Screenshot from the developed software	132

LIST OF SYMBOLS AND ABBREVIATIONS

IAN Inferior alveolar nerve

CBCT Cone Beam Computed Tomography

MC Mandibular canal

MF Mandibular foramen

B Buccal

L Lingual

I Inferior

S Superior

BSSO Bilateral sagital split osteotomy

CT Computed Tomography

MPR Multiplanar Reconstruction

D1 The location of the mandibular canal at the distal aspect of mental foramen

D2 The location of the mandibular canal at 10 mm away from D1 distally

D3 The location of the mandibular canal at 10 mm away from D2 distally

D4 The location of the mandibular canal at 10 mm away from D3 distally

D5 The location of the mandibular canal at 10 mm away from D4 distally

MCd The mandibular canal diameter measurements

ManFd The mandibular foramen diameter measurements

2D Two dimensional

3D Three dimensional

SCT spiral computerized tomography

HR-CT High resolution computed tomography

HR-MRI High resolution magnetic resonance imaging

IMB Inferior mandibular border

LC Virtual horizontal line touching the highest buccal point of the alveolar crest