STUDY ON THE EFFECTS OF EXOGENOUS HORMONE AND HAIRY ROOTS INDUCTION IN <u>BOESENBERGIA</u> <u>ROTUNDA</u> FOR COMPOUNDS PRODUCTION

SUZILAWATI ABDULLAH SANI

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

STUDY ON THE EFFECTS OF EXOGENOUS HORMONE AND HAIRY ROOTS INDUCTION IN <u>BOESENBERGIA</u> <u>ROTUNDA</u> FOR COMPOUNDS PRODUCTION

SUZILAWATI ABDULLAH SANI

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: SUZILAWATI BINTI ABDULLAH SANI (I.C/Passport No: 770421-10-5240)

Registration/Matric No: SGF090004

Name of Degree: MASTER OF BIOTECHNOLOGY

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

STUDY ON THE EFFECTS OF EXOGENOUS HORMONE AND HAIRY ROOTS INDUCTION IN <u>BOESENBERGIA</u> ROTUNDA FOR COMPOUNDS PRODUCTION

Field of Study:

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature

Date

Name: PROF. DR. NORZULAANI KHALID

Designation:

ABSTRACT

Boesenbergia rotunda is a medicinal plant belongs to the family of Zingiberaceae which contains major compounds that exhibits pharmaceutical activities. In this study, the methods of plant growth regulators and hairy roots transformation for in-vitro root culture induction in B. rotunda were established. Regenerated roots morphology and compounds accumulation in *in-vitro* roots and hairy roots induced were also analyzed. Media containing either NAA alone or in combinations with BAP at different concentrations (0, 0.5, 1.0, 2.0 mg/ mL and 0, 0.5, 1.0, 1.5, 2.0 mg/ mL of NAA and BAP, respectively) were used to initiate *in-vitro* roots. The highest number of roots was 16.5 ± 3.4 per explant, when 0.5 mg/ mL NAA was used. For hairy roots transformation, B. rotunda apical meristem was infected using A. rhizogenes strain A4. The effects of infection times (20 mins and 1 hr), co-cultivation periods (1, 2, 3 days) and acetosyringone (AS) on the transformation were investigated. Based on PCR, amplification of *rolC* gene analysis, infection times of 20 mins to 1 hr followed by 2 days of co-cultivation period in the presence of 10 µM AS in the cultivation media resulted in 33.3% of transformation efficiency. The profile and content of compounds in *in-vitro* and hairy roots were evaluated using HPLC analysis. HPLC peaks of alpinetin, pinocembrin, cardamonin, pinostrobin and panduratin A were identified and quantified. In-vitro roots induced from plant growth regulators exhibited higher bioactive compounds content as compared to controls and hairy roots induced via transformation. Supplementation of 0.5 mg/ mL NAA in MS media showed higher accumulation of alpinetin, pinocembrin, cardamonin and panduratin A, while combination of BAP and NAA with similar concentration (0.5 mg/ mL) showed higher pinostrobin content as compared to control. It is also found that exogenous PGR, enhanced the production of cardamonin contents as compared to natural rhizome.

ABSTRAK

Boesenbergia rotunda adalah tumbuhan tradisional Malaysia yang mengandungi bioaktif komposisi yang boleh dijadikan bahan campuran di dalam farmasi perubatan. Dalam kajian ini, pelbagai situasi untuk mengkultur *B. rotunda* akar bagi penghasilan bioaktif komposisi telah diselidik. Kesan terhadap penghasilan bioaktif komposisi ini telah dikaji dengan menggunakan kaedah akar induksi melalui penggunaan hormon secara luaran dan 'hairy root' transfomasi. Bilangan akar yang terhasil dan kandungan bioaktif komposisi telah dinilai bagi setiap kaedah yang digunakan. Pertumbuhan akar B. rotunda telah diuji kesannya melalui penggunaan NAA sahaja atau pelbagai kepekatan kombinasi BAP dan NAA. Kepekatan 0, 0.5, 1.0, 2.0 mg/ mL dan 0, 0.5, 1.0, 1.5, 2.0 mg/ mL bagi NAA dan BAP telah digunakan untuk induksi pertumbuhan akar. Bilangan akar tertinggi (16.5 ± 3.4 per explan) telah diperolehi apabila explan dikultur di dalam media mengandungi 0.5 mg/ mL NAA sahaja. Sebaliknya dalam kaedah 'hairy root' transformasi, bacteria A. rhizogenes jenis A4 telah digunakan. Kesan masa jangkitan yang berbeza (20 minit and 1 jam), dan kala ko-kultivasi (1, 2, 3 hari) termasuk kehadiran acetosyringone terhadap transformasi telah dinilai. Berdasarkan keputusan positif terhadap amplifikasi *rolC* gene dalam PCR analisis, telah mendedahkan, untuk tumbuhan species ini, jangkitan 20 minit hingga 1 jam diikuti oleh dua hari kala ko-kultivasi dengan kehadiran 10 µM AS di dalam kultur media diperlukan untuk menghasilkan 33.3% kecekapan transformasi. Butiran bioactive dan kandungannya dalam kedua-dua kaedah telah dinilai melalui HPLC analisis. Puncak alpinetin, pinocembrin, cardamonin, pinostrobin dan panduratin A dikenalpasti dan dinilai. Penggunaan hormon luaran mempamerkan kandungan bioaktif komposisi yang tinggi berbanding *in-vitro* normal akar dan 'hairy root' transformasi akar. Penggunaan 0.5 mg/ mL NAA di dalam MS kultur media menunjukkan kandungan alpinetin, pinocembrin, cardamonin dan panduratin A yang tinggi, manakala, kandungan pinostrobin di dapati tinggi apabila kombinasi BAP dan NAA pada kepekatan sama (0.5 mg/ mL) digunakan di dalam kultur media. Kaedah penggunaan hormon secara luaran didapati menambahbaik kandungan cardamonin berbanding dengan rhizome semula jadi.

ACKNOWLEDGEMENTS

First and foremost, thanks to Allah SWT for the guidance and giving me the strength to complete this thesis. The past two years have consisted of wonderful experiences and opportunities that I shall gladly take with me for the rest of my life. I was fortunate enough to meet and collaborate with some extraordinary people. So first, I would like to take this opportunity to express my utmost gratitude to my supervisor, Prof. Dr. Norzulaani Khalid for her valuable guidance and advice throughout this incredible journey. Thank you for being so kind to offer me a place in your lab and also for making it possible for me to finish the study.

Appreciation is also dedicated to Ms. Wong Sher Ming for her kindness in supporting this study. Your guidance has been invaluable. You are a truly good friend and I wish you the best in your life. A word of thanks also goes to all past and present members of the Plant Biotechnology Research Laboratory, University Malaya due to their full support in my research experiments especially to Kak Lina, Kak Azma, Tamil, Wan Sin, Diana, Wendy, Ain, Teck Kai and Fong. You all were there for me not only on an educational level, but as friends as well.

I am also forever indebted to my beloved husband, Mohd Nadzrin Saaban for his continuous encouragement and sacrifices. To all my children, you are my strength in order to complete my bench work.

Last but not least, financial support from the Ministry of Higher Education, Government of Malaysia Special Sponsorship under Second Economic Stimulus Package was gratefully appreciated.

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
ABBREVIATIONS	xii
1.0 INTRODUCTION	1
2.0 LITERATURE REVIEW	4
2.1 Medicinal Plants	4
2.2 Boesenbergia rotunda Species	5
2.2.1 Cultivation and Tissue Culture	6
2.3 Regulators For Root Induction	8
2.3.1 Auxin	9
2.3.2 Cytokinin	10
2.3.3 Combination of Auxin and Cytokinin	11
2.4 Plant Transformation	12
2.4.1 <i>Agrobacterium rhizogenes</i> -mediated Transformation	12
2.4.2 Ri-plasmid And T-DNA Transfer Mechanism	15
2.5 Hairy Root Transformation	18
2.6 Molecular Assessment	20
2.6.1 Polymerase Chain Reaction	20
2.7 Compounds Analysis	21
2.7.1 HPLC	22

		Page
3.0 MAT	TERIALS AND METHODS	23
3.1 Pla	ant tissue Culture	23
3.1.1	Sprouting Initiation From Rhizomes	23
3.1.2	Rhizome-bud Surface Sterilization	23
3.1.3	Shoot Apical Meristem Disc culture	25
3.2 Ex	ogenous PGR Study	25
3.2.1	Effect of Combinations NAA and BAP on Roots Induction	25
3.2.2	Roots Proliferation	27
3.2.3	Multiple Shoot Initiation	27
3.3 Ag	probacterium rhizogenes Strain A4 Preparation	28
3.3.1	Bacteria Culture	28
3.3.2	Determination of Agrobacterium rhizogenes A4 strain Growth Curve	28
3.3.3	Agrobacterium Glycerol Stock Preparation	29
3.3.4	Agrobacterium Plasmid Extraction Method	29
3.4 Ha	iry root Transformation	30
3.4.1	Nicotiana tabacum Transformation	30
3.4.2	B. rotunda Transformation with Optimization Parameters	31
3.4.3	Root Formation and Characterization	31
3.5 M	olecular Assessment and Confirmation of Transformants	32
3.5.1	Plant Roots DNA Extraction	32
3.5.2	Agarose Gel Electrophoresis	33
3.5.3	Polymerase Chain Reaction (PCR)	35
3.5.3	.1 Primer Design	35
3.5.3	.2 PCR Condition and Optimization	35
3.6 Rc	oots Compound Analysis	36

vii

Page

3.6.1 Roots Extraction	36
3.6.1.1 Methanol Extraction	37
3.6.1.2 Crude Partition Using Ethyl Acetate-Water	37
3.6.2 HPLC Analysis For Bioactive Compounds	37
4.0 RESULTS AND DISCUSSION	39
4.1 Effect of Combinations of NAA and BAP on Root Induction	39
4.2 Agrobacterium rhizogenes Strain A4 harbouring pRiA4 plasmid	44
4.2.1 Growth Curve	44
4.3 Hairy root Transformation	47
4.3.1 Transformation of <i>Nicotiana tabacum</i>	47
4.3.2 Transformation of <i>B. rotunda</i>	49
4.3.3 Root Formation and Characterization After Infection Process	49
4.3.4 Effect of The Infection Time, Co-Cultivation And Acetosyringone	54
4.4 Molecular Assessment	58
4.4.1 Agrobacterium rhizogenes Strain A4 Plasmid DNA	58
4.4.2 PCR Analysis on Transformed Plants	63
4.4.2.1 Nicotiana tabacum	63
4.4.2.2 <i>B. rotunda</i>	65
4.4.2.3 Molecular Assessment for <i>Vird1</i> Gene In Transformed Plants	67
4.5 Bioactive Compound Analysis	69
4.5.1 Bioactive Compounds Analysis	70
4.5.2 Quantification of Bioactive Compounds	74
5.0 CONCLUSIONS	81
APPENDICES	

REFERENCES

LIST OF FIGURES

		Page
Figure 1.0	Structure of bioactive compounds extracted from <i>Boesenbergia</i> rotunda	2
Figure 2.1	Whole plant of Boesenbergia rotunda	5
Figure 2.2	Map of Ri plasmid of Agrobacterium rhizogenes	15
Figure 2.3	Important events in T-DNA transfer of <i>Agrobacterium</i> -mediated transformation	17
Figure 3.1	Boesenbergia rotunda rhizome buds	24
Figure 4.1	Effect of different concentrations and combination NAA range from 0.5 mg/L to 2.0 mg/ L and BAP range from 0.5 mg/L to 2.0 mg/L respectively on roots induction for 2 months culture period of <i>B. rotunda</i>	39
Figure 4.2	Thin and thick roots regenerated from different concentration of combination NAA and BAP	41
Figure 4.3	Growth curve of A. rhizogenes strain A4 harbouring pRiA4 plasmid	45
Figure 4.4	Hairy root formation from transformed leaf explants of N. tabacum	48
Figure 4.5	Root morphology of putative transformed and non-transformed plantlet	51
Figure 4.6	Comparison in the number of putative transformed roots in different transformation parameters after 8 weeks of infection process	53
Figure 4.7	Gel electrophoresis showing of extracted plasmid DNA from <i>Agrobacterium rhizogenes</i> strain A4 harboring pRiA4	59
Figure 4.8	Gel electrophoresis showing of <i>Agrobacterium rhizogenes</i> strain A4 harboring pRiA4 extracted plasmid DNA PCR products	61
Figure 4.9	Gel electrophoresis showing of <i>Agrobacterium rhizogenes</i> strain A4 harboring pRiA4 extracted plasmid DNA PCR products	62
Figure 4.10	PCR confirmation of the presence <i>rolC</i> genes in transformed tobacco leaves explants	64
Figure 4.11	PCR confirmation of the presence <i>rolC</i> genes in transformed roots of <i>B. rotunda</i>	66
Figure 4.12	PCR confirmation of the presence <i>virD1</i> genes in transformed roots of <i>B. rotunda</i> and tobacco leaves	68

Page

Figure 4.13A1	HPLC elution profiles of <i>B. rotunda</i> bioactive compounds peaks from control roots methanol extract at 330 nm	71
Figure 4.13A2	HPLC elution profiles of <i>B. rotunda</i> bioactive compounds peaks from control roots methanol extract at 285 nm	71
Figure 4.13B	HPLC elution profiles of <i>B. rotunda</i> bioactive compounds peaks from standard sample at 285 nm	72
Figure 4.13C	HPLC elution profiles of <i>B. rotunda</i> bioactive compounds peaks from methanol extract of roots induced in 0.5 mg/L BAP + 0.5 mg/mL NAA at 285 nm	72
Figure 4.13D	HPLC elution profiles of <i>B. rotunda</i> bioactive compounds peaks from methanol extract of roots induced in 0.5 mg/mL NAA at 285 nm	73
Figure 4.13E	HPLC elution profiles of <i>B. rotunda</i> bioactive compounds peaks from hairy root transformed roots methanol extract at 285 nm	73
Figure 4.14	The effect of exogenous PGR and hairy root induction on production of <i>B. rotunda</i> bioactive compounds based on HPLC analysis at wavelength 285 nm	77
Figure 4.15	The effect of exogenous PGR and hairy root induction on production of <i>B. rotunda</i> bioactive compounds based on HPLC analysis at wavelength 330 nm	78

LIST OF TABLES

		Page
Table 3.1	Combination of BAP and NAA in different concentrations (0.5 mg/L to 2.0 mg/L)	3
Table 3.2	Different concentration of agarose gel used in electrophoresis for different type of DNA samples sizes	34
Table 4.1	Effects of different concentrations of combined NAA (0.5 mg/L to 2.0 mg/L) and BAP (0.5 mg/L to 2.0 mg/L) on the number of thick and thin roots per explants for 2 months culture period of <i>B. rotunda</i>	43
Table 4.2	Hairy root induction from the transformation of <i>N. tabacum</i> leaf explants based on PCR result	48
Table 4.3	Transformed efficiency in different parameters result obtained based on PCR data	55
Table 4.4	Demonstrates the <i>B. rotunda</i> bioactive compounds concentration mean value based on HPLC analysis at wavelength 285 nm	75
Table 4.5	Demonstrates the <i>B. rotunda</i> bioactive compounds concentration mean value based on HPLC analysis at wavelength 330 nm	76

ABBREVIATIONS

μ	Micro
μl	Microliter
°C	Degree Celcius
%	Percent
ANOVA	Analysis of Variance
AS	Acetosyringone
BAP	6-Benzylaminopurine
bp	base pair
cm	centimetre
СТАВ	Cetyltrimethyammonium bromide
dH ₂ O	distilled water
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
EDTA	Ethylenediaminetetraacetic acid
EtOH	Ethanol
et al.	et alia
EtBr	Ethidium bromide
FWD	Forward
g	Gram
g/L	gram per liter
HC1	Hydrochloric acid
L	Liter
LB	Luria-Bertani media
М	Molar

mg	milligram
MgCl ₂	Magnesium chloride
Mins	Minutes
ml	Mililiter
mM	MiliMolar
MS	Murashige and Skoog
MSO	MS media without plant growth regulator
NAA	α -naphthalene acetic acid
N2	Nitrogen gas
NaOH	Sodium hydroxide
NaCl	Sodium chloride
OD	Optical density
PBIU	Plant Biotechnology Incubator Unit
PCR	Polymerase Chain Reaction
PGH	Plant Growth Hormone
PGR	Plant Growth Regulator
RAM	Root apical meristem
RNase	Ribonuclease
REV	Reverse
Ri-plasmid	Root-inducing plasmid
rpm	Rotation per minute
SD	Standard Deviation
spp	Subspecies
SAM	Shoot apical meristem
TAE	Tris acetate EDTA
T-DNA	Transferred DNA

TE	Tris EDTA
TL-DNA	T-DNA left region
TR-DNA	T-DNA right region
U	Unit
UV	Ultraviolet
V	Volt
vir	Virulence
v/v	Volume over volume
w/v	Weight over volume