EVALUATION OF OBTURATION QUALITY USING GUTTA-PERCHA AND A RESIN-BASED MATERIAL WITH DIFFERENT TECHNIQUES

DR. NASHWAN ABDULLAH ABDO AL-AFIFI

Dissertation submitted in fulfillment of the requirements for

the degree of Master of Science

Department of Conservative Dentistry

Faculty of Dentistry

University of Malaya

Kuala Lumpur

Malaysia

2011

ABSTRACT

Introduction: Gutta-percha (GP) has been accepted as the "gold standard" root filling material. It is the material against which most others are compared. The adhesive potential of GP to radicular dentine has been shown to be far from satisfactory. Therefore, resin-based materials that address many of the limitations of the GP/sealer combinations have been introduced. They are claimed to produce the so-called "monoblock" that is a gap-free union between core material and sealer, which adheres and penetrates into dentinal tubules. Examples of these resin-based filling materials include Resilon, EndoREZ and Guttaflow.

Objectives: The objectives of this study were to evaluate and compare the obturation quality in canals obturated with a GP/AH Plus[®] and a resin-based material, EndoREZ[®] (ER) through assessments of: apical extrusion of obturation materials; percentage of canal area occupied by core filling materials versus sealer + voids; and adaptation of obturation materials to the canal walls.

Materials and methods: Ninety-six mandibular premolars were randomly divided into two groups (n=48 each): GP and ER groups. Each group was further divided into 3 subgroups (n=16) according to different obturation techniques: Cold lateral compaction (CLC), warm lateral compaction (WLC) and single cone (SC). Apical extrusion was compared with Chi-square test for any association with the type of filling materials and techniques used. The teeth were subsequently embedded in resin, with one sample being selected randomly and sectioned longitudinally for scanning electron microscopy (SEM). All other samples were sectioned horizontally at 1, 3, 6 and 9 mm from the obturated canal terminus. All sections were viewed under a stereomicroscope (OLYMPUS szx7, Olympus Corp., Tokyo, Japan) at $40 \times$ magnification and micrographs were obtained. The area occupied by core filling material was determined using Cell^ D software (OLYMPUS Soft Imaging Solutions GmbH, 2008, Munster). Then, for each section, the ratio of combined area of sealer + voids to cross-sectional area of root canal was calculated. Data were analyzed using two-way repeated measure, Wilcoxon and Mann-Whitney tests.

Results: There was no statistically significant difference in the incidence of material extrusion between materials and compaction techniques used. The SC group was not analysed because no extrusion was found for both materials. In CLC, the percentage of ER core filling material was significantly higher than the percentage of GP core filling material at 1 mm (P=0.005) and 3 mm (P=0.023) levels. In WLC, the percentage of ER core filling material was significantly higher than the percentage of GP core filling material at the 1 mm (P=0.029), 3 mm (P=0.006) and 9 mm (P=0.007) levels. In SC, the percentage of ER core filling materials at all levels: 1 mm (P=0.001), 3 mm (P=0.000), 6 mm (P=0.000) and 9 mm (P=0.000). SEM observation at different magnification showed that ER points/ER sealer seemed to suggest a better adaptation to dentine as compared to gutta-percha/AH Plus⁻

Conclusions: The resin-based material was superior to the gutta-percha in the percentage of core filling material that occupied the canal filled area.

ACKNOWLEDGMENTS

Above of all, I thank "Allah" for giving me strength, patience, willingness and courage to perform and complete this project.

I wish to express my sincere gratitude and appreciation to my supervisor **Dr**. **Mariam Abdullah** for her invaluable guidance and support. It was an honour to be able to learn from her. I thank her and am deeply indebted to her for her patience and understanding. Without her constant guidance, invaluable advice, discussions and encouragement none of this would have been possible.

I would like to express my appreciation and deepest gratitude to **Dr**. **Marhazlinda Jamaludin** for her help and guidance during the statistical analysis phase.

I owe special obligation to all my colleagues and friends for their kind cooperation and support that helped me in my dissertation.

I whole-heartedly wish to thank **my parents** and **my family** for their patience, constant support and encouragement in every step of my dissertation.

I feel an immense pleasure in thanking **my wife** and **daughters** (Aya and Ala). I am grateful to them for their invaluable support, patience and encouragement that boosted my morale throughout my dissertation.

DECLARATION

I hereby declare that this dissertation/thesis entitled "EVALUATION OF OBTURATION QUALITY USING GUTTA-PERCHA AND A RESIN-BASED MATERIAL WITH DIFFERENT TECHNIQUES." is a genuine research carried out by my own independent work except where acknowledged in the text or by reference.

No part of this work has been submitted for a degree or diploma to this or any other university.

Dr. Nashwan Abdullah Abdo Al-afifi

Supervised by: Dr. Mariam Abdullah BDS (Otago), MClinDent (London) Department of Conservative Dentistry Faculty of dentistry University of Malaya Kuala Lumpur Malaysia

CONTENTS	PAGE
Title	i
Abstract	ii
Acknowledgments	iv
Declaration	V
contents	vi
List of fingers	Х
List of tables	xii
Chapter one: INTRODUCTION, AIM AND OBJECTIVES OF THE STU	DY 1
1.1. Introduction	2
1.2. Aim of study	4
1.3. Objectives of the study	4
Chapter two: LITERATURE REVIEW	5
2.1. Root canal treatment	6
2.1.1. Phases of RCT	6
2.1.2. Rationale of RCT	7
2.2. Preparation of the root canal	7
2.2.1. Root canal preparation techniques	8
a. Standardized technique	8
b. Step-back technique	8
c. Step-down technique	9
d. Balanced force technique	10
e. Crown-down technique	11
2.3. Obturation of root canal	13
2.3.1. Materials for root canal obturation	13
(1) The core materials	13
a. Gutta-percha	13
b. Resin-based core filling materials	15
(2) Root canal sealers or sealing materials	17
a. Zinc oxide and eugenol-based sealers	17

b. Calcium hydroxide-based sealers	18
c. Epoxy-based sealers	19
d. Glass ionomer-based sealers	20
e. Methacrylates resin based sealers	20
2.3.2. Methods of filling root canal	
a. Single cone technique	23
b. Lateral compaction technique	24
c. Warm lateral compaction technique	24
d. Vertical compaction technique	25
e. Injection technique	26
f. Core carrier technique	28
2.4. Evaluation of quality of root canal obturation	29
1. Dyes penetration	29
2. Fluid filtration or transportation	30
3. Bacterial leakage methodology	31
4. Radiographic evaluation	
5. Scanning electron microscopy	
2.5. Assessment of quality of root canal obturation	33
1. Sectioning of the tooth	33
a. Horizontal section	33
b. Longitudinal section	35
2. Tooth clearing technique	35
Chapter three: MATERIALS AND METHODS	37
3.1. Teeth collection and storage	38
3.2. Selection of specimens	38
3.3. Preparation of root canal	40
3.4. Compatibility between finger spreader and accessory points (GP and ER)	42
3.5. Obturation of root canal	43
3.5.1. Cold lateral compaction/gutta-percha subgroup (CLC/GP)	45
3.5.2. Cold lateral compaction/EndoREZ [®] subgroup (CLC/ER)	47
3.5.3. Warm lateral compaction/gutta-percha subgroup (WLC/GP)	48

3.5.4. Warm lateral compaction/EndoREZ [®] subgroup (WLC/ER)	49
3.5.5. Single cone technique/gutta-percha subgroup (SC/GP)	50
3.5.6. Single cone technique/EndoREZ [®] subgroup (SC/ER)	51
3.6. Evaluation of obturation quality of GP and ER	52
3.6.1. Assessment of extrusion of filling materials	52
3.6.2. Assessment of percentage of core filling material and sealer + voids	52
3.6.3. Reliability test	55
3.6.4. Assessment of adaptation	55
3.7. Data analysis	56
3.7.1. Extrusion of core filling material through the apical foramen	56
3.7.2. Percentage of canal area occupied by core filling material (GP or ER) and sealer (AH Plus [®] or EndoREZ [®]) + voids	56
Chapter four: RESULTS	58
4.1. Compatibility between finger spreaders and accessory points (GP and ER)	59
4.2. Post-obturation radiographic evaluation	59
4.3. Assessment of extrusion of core filling material (GP or ER) through the apical foramen	60
4.3.1. Assessment of extrusion of filling material in CLC technique	60
4.3.2. Assessment of extrusion of filling material in WLC technique	60
4.3.3. Assessment of extrusion of filling material in SC technique	61
4.4. Percentage of canal area occupied by core material (GP or ER) and sealer (AH Plus [®] or ER sealer) + voids using different obturation techniques	62
4.4.1. Percentage of the core filling material in CLC technique	62
4.4.2. Percentage of the core filling material in WLC technique	64
4.4.3. Percentage of the core filling material in SC technique	66
4.4.4. Percentage of sealer + voids in CLC, WLC and SC techniques	69
4.5. Quality of obturation	70
4.5.1. Cold lateral compaction of gutta-percha (CLC/GP)	70
4.5.2. Cold lateral compaction of EndoREZ [®] (CLC/ER)	71
4.5.3. Warm lateral compaction of gutta-percha (WLC/GP)	72
4.5.4. Warm lateral compaction of EndoREZ [®] (WLC/ER)	73
4.5.5. Single cone technique of gutta-percha (SC/GP)	74

4.5.6. Single cone technique of EndoREZ [®] (SC/ER)	75
4.6. Scanning electron microscopy	76
Chapter five: DISCUSSION	78
5.1. Methodology	79
5. 1.1. Collection and storage of teeth	79
5. 1.2. Selection of teeth	79
5. 1.3. Root canal preparation	80
5.1.3.1. Root canal instrumentation	80
5.1.3.2. Root canal irrigation	82
5. 1.4. Pilot study	84
5. 1.5. Evaluation method	86
5.2. Results	88
5.2.1. Evaluation of obturation quality of GP and ER	88
5.2.1.1. Extrusion of root filling material	88
5.2.1.2. Percentage of core filling material and sealer + voids	89
1. CLC technique	89
2. WLC technique	91
3. SC technique	92
5.2.1.3. Scanning electron microscopy	95
5.3. Limitation of this study	97
5.4. The significance of the study	97
Chapter six: CONCLUSIONS AND SUGGESTIONS	98
6.1. Conclusions	99
6.2. Suggestions	100
References	101
Appendix I: List of materials and instruments/equipment	126
Appendix II: Raw data and data analysis	

List of figures

Chapter three: Materials and methods		
FIGURES	DESCRIPTION	PAGE
Figure 3.1	Stereomicroscope (OLYMPUS szx7, Olympus Corp., Tokyo, Japan)	39
Figure 3.2	Sectioning machine METKON [®] - MICRACUT [®] 125 Low Speed Precision Cutter	39
Figure 3.3	Mtwo [®] NiTi rotary instrument (VDW, München/Germany) and size 15 K-file (colorinox, Dentsply Maillefer)	41
Figure 3.4	(A) Finger spreader size 30, (B) Size 25/0.02 GP accessory point, (C) Finger spreader size 25 and (D) Size 25/0.02 ER accessory point.	42
Figure 3.5	Sizes 25/0.02, 35/0.02 and 35/0.04 GP points (VDW, München. Germany)	43
Figure 3.6	AH Plus [®] sealer (Dentsply DeTrey, Konstanz, Germany)	43
Figure 3.7	Sizes 25/0.02, 35/0.02 and 35/0.04 ER points (Ultradent Products Inc., South Jordan, UT, USA)	43
Figure 3.8	ER sealer (Ultradent Products Inc., South Jordan, UT, USA)	43
Figure 3.9	Summary of groups and subgroups of canal obturation materials and techniques	44
Figure 3.10	Heat plugger standard of BeeFill [®] 2-in-1 device (VDW, München, Germany)	46
Figure 3.11	Twin Wheel Grinding/Polishing Machine, Coventry, England	52
Figure 3.12	Diagram illustrates serial sections in each specimen at 4 different levels: L1, L3, L6 and L9	53
Figure 3.13	Cross-section at L9 of CLC/GP	54
Figure 3.14	Cross-section at L9 of CLC/ER	54
Figure 3.15	Field-emission gun scanning electron microscope (FESEM)	56
Chapter fou	r: Results	
FIGURES	DESCRIPTION	PAGE
Figure 4.1	Sample no.8 section L9 CLC/GP	70
Figure 4.2	Sample no.9 section L9 CLC/GP	70
Figure 4.3	Sample no.5 section L9 CLC/ER	71
Figure 4.4	Sample no.1 section L6 CLC/ER	71

Figure 4.5	Sample no.1 section L9 WLC/GP	72
Figure 4.6	Sample no.2 section L1 WLC/GP	72
Figure 4.7	Sample no.3 section L9 WLC/ER	73
Figure 4.8	Sample no.11 section L1 WLC/ER	73
Figure 4.9	Sample no.10 section L3 SC/GP	74
Figure 4.10	Sample no.2 section L6 SC/GP	74
Figure 4.11	Sample no.7 section L9 SC/ER	75
Figure 4.12	Sample no.13 section L9 SC/ER	75
Figure 4.13	High power SEM (4000×) micrographs of a longitudinal section of root filled with GP point/AH Plus [®] and ER point/ER sealers using CLC, WLC and SC techniques	77

List of tables

TABLES	DESCRIPTION	PAGE
Table 4.1	Mean diameter of finger spreaders and accessory points	59
Table 4.2	Assessment of extrusion of filling material in CLC technique	60
Table 4.3	Assessment of extrusion of filling material in WLC technique	60
Table 4.4	Mean percentage of core filling material at different levels in CLC technique	62
Table 4.5	Multiple comparisons between percentages of core filling material at different levels in CLC/GP	63
Table 4.6	Multiple comparisons of percentage of core filling material between GP and ER groups using CLC	63
Table 4.7	Mean percentage of core filling material at different levels in WLC technique	64
Table 4.8	Multiple comparisons between percentages of core filling material at different levels in WLC/GP	65
Table 4.9	Multiple comparisons between percentages of core filling material at different levels in WLC/ER	65
Table 4.10	Multiple comparisons of percentage of core filling material between GP and ER groups using WLC	66
Table 4.11	Mean percentage of core filling material at different levels in SC technique	67
Table 4.12	Multiple comparisons between percentages of core filling material at different levels in SC/GP	67
Table 4.13	Multiple comparisons between percentages of core filling material at different levels in SC/ER	68
Table 4.14	Multiple comparisons of percentage of core filling material between GP and ER groups using SC	68