CHROMOSOMAL ALTERATIONS AND GENE PATHWAYS OF TONGUE AND CHEEK SQUAMOUS CELL CARCINOMA

VINCENT CHONG VUI KING

THIS DISSERTATION IS SUBMITTED TO THE FACULTY OF DENTISTRY IN FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN DENTAL SCIENCE

DEPARTMENT OF ORAL AND MAXILLOFACIAL SURGERY
FACULTY OF DENTISTRY
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Vincent Chong Vui King (I.C/Passport No: 841014-13-5229)
Registration/Matric No: DGC 090007
Name of Degree: Master of Dental Science

Chromosomal Alterations And Gene Pathways Of Tongue And Cheek Squamous Cell Carcinoma

Field of Study: Oral Oncology

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature Date

Subscribed and solemnly declared before,

Witness’s Signature Date

Name: Prof Dr Zainal Ariff Bin Abdul Rahman
Designation:
ABSTRACT

Introduction:
Tongue and cheek squamous cell carcinoma (SCC) have different behaviours. In order to understand these behaviours, there is a need to look into the chromosomal alterations and gene pathways that maybe associated with oral cancer at these sites. Therefore, the objective of this study is to determine the chromosomal aberrations and gene pathways involved in tongue and cheek SCC using high resolution array based comparative genomic hybridization (aCGH).

Methodology:
A genome wide screening with array CGH (SurePrint G3 CGH 1x1M microarray) was performed using gDNA from 20 snap frozen fresh tissues consisting of 12 tongue and 8 cheek SCC (samples from the Malaysian Oral Cancer Database and Tumour Bank System [MOCDTBS] coordinated by OCRCC-UM). Cytosure Software was used to detect the chromosomal aberrations and candidate genes related to the selected regions. Pathway analysis was done using MetaCore™ software for selected genes.

Results:
The mean number of chromosomal aberrations per tumour for tongue SCC (22.75±26.58) was higher than cheek SCC (8.63±11.89). The most common amplified regions in tongue SCC were 8q24.22 (33.33%), 8q24.3 (33.33%), 11q13.2 (33.33%), 12q13.13 (33.33%), 14q32.33 (33.33%) and for cheek SCC the most common amplified region was 22q12.3 (25%). For the deleted regions, the most common for tongue SCC were 2q21.1 (16.67%), 6q21 (16.67%) and for cheek SCC were 2q22.1 (25%), 7q35
(25%), 19q13.33 (25%). The most significant pathway involved in tongue SCC was cell adhesion extracellular matrix (ECM) remodelling pathway, while for cheek SCC; it was cadherin-mediated cell adhesion pathway.

Conclusion:

This study showed that the sites of oral cancer origin have a great influence over the variations in chromosomal aberrations and gene pathways. Nevertheless, the identified chromosomal aberrations genes and their interactive pathways revealed from the present research are worth for further investigations on oral carcinogenesis. (Acknowledgment: Grant of UMRG085/09HTM and PS017/2010A)
ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for his blessings, grace and wisdom that have enabled me to complete this thesis successfully. Apart from the blessings from God the Almighty there is a lot of people who was involved in helping me complete this project.

I would like to convey my most heartfelt gratitude to my supervisors, Prof. Dr. Zainal Ariff Abdul Rahman and my advisor, Dr. Zubaidah Zakaria for giving me the opportunity to learn and gain invaluable experiences in carrying out this research. Their endless kindness, guidance, support and patience towards me during times of jubilation and melancholy have been a source of encouragement for me for the whole course of this project.

Many thanks and gratitude to my Director of Oral Cancer Research and Coordinating Center (OCRCC), Prof. Dr. Rosnah Binti Mohd Zain, for the endless support and encouragement that they have showered upon me throughout the whole duration of the course. I shall forever cherish all the laughter and tears that we have shared together. Thank you also to all my other OCRCC contemporaries for the help and support that they have lent over the years.

My gratitude also goes out to staffs from Diagnostic lab of Oral Pathology, Faculty of Dentistry, University Malaya for all their help and assistance through my difficult times. I would like to thank Dr. Pradeep Padmaja Jayaprasad for his help in proofreading the thesis. Finally, I would like to thank my mother and my siblings for their patience and understanding throughout these years. My deepest gratitude is dedicated to all who had helped and supported me directly or indirectly in this research. Without all of you, this research would not come into being.
Table of Contents

Title Page i
Original Literary Work Declaration ii
Abstract iii
Acknowledgements v
Table of Contents vi
List of Appendices ix
List of Figures ix
List of Tables ix
List of Abbreviations x
List of Symbol xi

1.0 Introduction 1
2.0 Literature Review 7
2.1 Epidemiology of oral cancer 7
 2.1.1 Incidence 7
 2.1.2 Gender, Ethnic and Age distribution 8
2.2 Clinical and Histological characteristics of oral cancer 10
 2.2.1 Subsites of oral cancer (ICD-10) 10
 2.2.2 Clinical appearance 11
 2.2.3 Histological appearance 11
2.3 Etiological factors 12
 2.3.1 Tobacco smoking 12
 2.3.2 Excessive alcohol consumption 13
 2.3.3 Betel quid chewing 14
 2.3.4 Human Papillomaviruses Virus (HPV) 15
 2.3.5 Genetic Susceptibility 16
 2.3.6 Diet and Nutrition 17
 2.3.7 Mouthwash 18
2.4 Genetic Alteration 19
2.5 Chromosomal Instability (CIN) 20
2.6 Oncogene and Tumor Suppressor Gene
 2.6.1 Oncogenes 22
 2.6.2 Tumor Suppressor Genes 24
2.7 Carcinogenesis 26
2.8 Hallmarks of Cancer
 2.8.1 Self-sufficiency of growth signals 28
 2.8.2 Insensitivity to growth-inhibitory signals 29
 2.8.3 Evasion of programmed cell death 29
 2.8.4 Immortality or unlimited replicative potential 30
 2.8.5 Sustained angiogenesis 30
 2.8.6 Tissue Invasion and Metastasis 31
2.9 Model of oral squamous cell carcinoma (OSCC) 33
2.10 Conventional Cytogenetic 36
2.11 Molecular Cytogenetic 36
 2.11.1 Comparative genomic hybridization (CGH) 36
 2.11.2 Florescent in situ hybridization (FISH) 43
2.12 Omic Profiling 45
 2.12.1 Array CGH 46
3.0 Methodology 52
3.1 Study Design 52
3.2 Sample selection 52
 3.2.1 Demographic characteristics of the samples 52
 3.2.2 Sample Criteria 53
3.3 Sample Preparation of DNA 53
 3.3.1 Cryosection on Frozen tissue 53
 3.3.2 DNA Extraction 53
 3.3.3 Quantification of DNA measurement 54
3.4 Technique to be employed for Array CGH. 54
 3.4.1 Sample Preparation (Defragmentation Method) for aCGH 55
 3.4.2 Sample Labeling for aCGH 55
 3.4.3 Probe Purification for aCGH 56
 3.4.4 Microarray Hybridization 56
 3.4.5 Washing Preparation for aCGH 57
 3.4.6 Microarray Scanning using Agilent Scanner Control 57
and Feature Extraction (FE)

3.5 Analysis

3.5.1 Data Analysis 58
3.5.2 Population analysis 58
3.5.3 Pathway Analysis 59

4.0 Result 61

4.1 Demographic characteristic of the study samples 61
4.2 Chromosomal alterations (aberrations) detected using array CGH and genes involved 62

4.2.1 Chromosomal aberrations detected genes involved in tongue SCC 62
4.2.2 Chromosomal aberrations detected genes involved in cheek SCC 67

4.3 Significant signaling pathways analysis from data sets of chromosomal aberrations in tongue SCC and cheek SCC 70

4.3.1 Significant signaling pathways of tongue SCC 70
4.3.2 Significant signaling pathways of cheek SCC 73

5.0 Discussion 76

5.1 Chromosomal aberrations (alterations) in tongue and cheek SCC using array CGH 78
5.2 Significant pathways involved in tongue and cheek SCC using pathway analysis software 84

5.3 Study Limitation 89

6.0 Conclusion and recommendations 90
References 93
Appendices 128
LIST OF APPENDICES

Appendix 2.1: Reprinted from Argiris et al. (2008) with permission. 128

List of figures:
Figure 1: Hypothetical model of oral carcinogenesis. 34

List of Tables:
Table 4.1: Demographic characteristics of study samples. 61
Table 4.2: Details of the amplified regions for each chromosome in 12 tongue SCC. 63
Table 4.3: Details of the deleted regions for each chromosome in 12 tongue SCC cases. 67
Table 4.4: Details of the amplified regions for each chromosome in 8 cheek SCC cases. 68
Table 4.5: Details of the deleted regions for each chromosome in 8 cheek SCC cases. 69
Table 4.6: Significant biological pathway associated with amplified genes from tongue SCC. 71
Table 4.7: Significant biological pathway associated with deleted genes from tongue SCC. 73
Table 4.8: Significant biological pathway associated with amplified genes from cheek SCC. 74
Table 4.9: Significant biological pathway associated with deleted genes from cheek SCC. 75
List of Abbreviations

aCGH: Array Comparative Genomic Hybridization
AJCC: American Joint Committee on Cancer
ASR: Age-Standardized rate
AURKA: Aurora kinase A
BM: Buccal Mucosa
BRCA1: Breast Cancer 1
CAMs: Cell adhesion molecules
CDKN2A: Cyclin-Dependent Kinase Inhibitor 2A
CGH: Comparative Genomic Hybridization
CHK1: Checkpoint kinase 1
CHK2: Checkpoint kinase 1
CIN: Chromosomal Instability
Cy3: Cyanine 3
Cy5: Cyanine 5
DNA: Deoxyribonucleic acid
ECM: Extracellular matrix
EGFR: Epidermal Growth Factor Receptor
EMT: Epithelial-mesenchymal transition
F: Female
FHIT: Fragile Histidine Triad
FISH: Fluorescent in situ hybridization
gDNA: Genomic Deoxyribonucleic acid
GLOBACAN: Global Burden of Cancer
H&E: Hematoxylin and Eosin
hTERT: human Telomerase
IACR: International Agency for Research on Cancer
ICD: International Classification of Disease
IFN: Interferon
M: Male
MAPK: Mitogen activated protein kinase
Mb: Million basepairs
MIN: Microsatellite Instability
MMPs: Matrix metalloproteinases
MNCR: Malaysian National Cancer Registry
NNK: 4-(methylnitrosoamino)-1-(3-pyridyl)-1 butanone
NNN: Nitroso-nor-nicotine
OCT: Optimal Cutting Temperature
OSCC: Oral squamous cell carcinoma
PAH: Polycyclic aromatic hydrocarbons
PDGFR: Platelet-Derived Growth Factor Receptors
PI3K: Phosphatidylinositol 3-kinase
RB1: Retinoblastoma 1
ROS: Reactive Oxygen Species
T: Tongue
TSG: Tumor suppressor gene
VEFG: Vascular Endothelial Growth Factor
List of Symbols:

µl: Microliter
ng: nanogram
bp: Basepairs
α: Alpha
β: Beta