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ABSTRACT 

 

 
The characteristic of the plasma focus device as efficient source of ion beam 

generation as well as X-ray source is particularly an appealing subject of study. In this 

work, we optimized a plasma focus to work at low pressure as an ion beam source. The 

plasma focus used is of Mather type which is powered by a low inductance capacitor 

(15 kV, 30 F). At the discharge voltage of 15 kV, maximum energy supplied to the 

system is 3.3 kJ.  

 

The primary objective of the current project is to to find an optimum condition 

for ion beam production in deuterium filling. The geometry of the electrodes employed 

is meant for low pressure operation. Experiments are conducted with deuterium as the 

working gas at pressure of less than 1 mbar. Operation at this low pressure regime is 

found to produce much more significant ion beam than at normal pressure of several 

mbar. The axial current sheath velocity of up to 10 cm/s is achieved, which is near to 

the speed limit recommended for good focusing discharge. Intense focusing discharge 

with good reproducibility has been obtained at operating pressure in the range of 0.05 – 

0.5 mbar.  

 

The energy of the ion beam has been determined using time of flight technique 

by employing three biased ion collectors installed at the end on direction. Intense ion 

beam emissions with good reproducibility have been obtained. Optimum operating 

pressure for the ion beam production is around 0.1 mbar, where the average ion beam 

energy registered was 80 keV. The average total deuteron flux per shot is estimated to 

be 2.1 x 10
18

 cm
-2

 at 0.1 mbar. The deuteron beam with average energy for the pressure 

of 0.05 – 0.5 mbar was determined to be in the range of 25 – 80 keV. Correlation of ion 
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beam and X-ray emission as well as other discharge parameters with operating 

pressures has been investigated. 

 

X-ray emission was measured by a filtered 5-channel windowless BPX-65 

photodiode array. Soft X-ray production from the plasma focus was also found to be 

pressure dependent and exhibit similar trend to the ion beam emission. The highest X-

ray emission is also observed at pressure of 0.1 mbar which implies that high 

temperature plasma column has been formed. A reliable plasma focus device with 

consistent high production of ion beam or X-ray emission could be used as ion beam 

source or light source in various technological fields. 
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ABSTRAK 

 

 
Ciri-ciri peranti plasma fokus untuk digunakan sebagai sumber alur ion atau 

sinar-X merupakan subjek penyelidikan yang menarik. Dalam projek ini, plasma fokus 

dioptimumkan untuk beroperasi pada tekanan rendah sebagai sumber aruh ion. Peranti 

plasma fokus jenis-Mather dicaskan dengan menggunakan satu kapasitor (15 kV,        

30 F) yang beraruhan rendah. Nyahcas pada voltan 15 kV, membekalkan tenaga 

maksimum sistem sebanyak 3.3 kJ. 

  

Objektif utama projek ini adalah untuk menentukan keadaan optimum untuk 

pengeluaran aruh ion bagi deuterium gas. Geometri elektrod yang digunakan bertujuan 

untuk operasi pada tekanan rendah. Eksperimen dijalankan dengan menggunakan 

deuterium gas pada tekanan kurang dari 1 mbar. Operasi pada tekanan yang rendah 

menghasilkan aruh ion yang lebih ketara berbanding dengan tekanan biasa pada 

beberapa mbar. Halaju paksi arus keratan sehingga 10 cm/s boleh dicapai dimana 

masih di dalam lingkungan had laju lebih tinggi untuk nyahcas fokus yang baik. 

Nyahcas fokus yang amat kuat dan boleh berulang telah diperolehi pada tekanan 

operasi dalam julat 0.05 - 0.5 mbar.  

 

Tenaga aruh ion ditentukan dengan menggunakan teknik masa penerbangan 

yang dikesan oleh tiga pengesan ion dipincang yang diletakan pada hala tuju hujung. 

Pengeluaran aruh ion yang beramat dengan kebolehulangan semula yang baik telah 

diperolehi. Tekanan operasi yang optimum untuk penghasilan aruh ion didapati pada 

0.1 mbar di mana tenaga purata aruh ion yang diperolehi ialah 80 keV. Jumlah purata 

fluks deuteron per nyahcas yang dianggarkan adalah 2.1 x 10
18

 cm
-2

 pada 0.1 mbar. 

Tenaga purata aruh ion pada tekanan antara 0.05 – 0.5 mbar telah dianggarkan dalam 
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julat 25 – 80 keV. Korelasi antara aruh ion dan pancaran sinar-X serta parameter 

nyahcas yang lain dengan tekanan operasi telah dikaji. 

 

Pancaran sinar-X telah dikaji-selidik dengan menggunakan 5 saluran fotodiod 

BPX-65 bertapis. Pengeluaran sinar-X lembut juga didapati bergantung kepada tekanan 

dan menunjukan aliran yang serupa dengan pengeluaran aruh ion. Pengeluaran 

pancaran sinar-X tertinggi juga diperhatikan pada tekanan 0.1 mbar menandakan suhu 

plasma yang tinggi telah dicapai. Peranti plasma fokus yang boleh menghasilkan aruh 

ion dan sinar-X yang tinggi dan tekal dipercayai boleh digunakan sebagai sumber aruh 

ion atau sumber cahaya dalam pelbagai bidang teknologi. 
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