GENE EXPRESSION PATTERNS OF CHEEK, GUM AND TONGUE
SQUAMOUS CELL CARCINOMA

AMYZA MOHAMMED SALEH

THESIS SUBMITTED IN FULFILMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

DEPARTMENT OF ORAL PATHOLOGY,
ORAL MEDICINE AND PERIODONTOLOGY
FACULTY OF DENTISTRY
UNIVERSITY OF MALAYA
KUALA LUMPUR
2012
ORIGINAL LITERARY WORK DECLARATION

Name of candidate: Amyza Mohammed Saleh
Registration /Matrix Number: DHA060002
Name of Degree: Doctor of Philosophy
Title of Thesis (“this Work”): Gene Expression Patterns of Oral Squamous Cell Carcinoma from Different Sites of the Oral Cavity
Field of study: Oral Medicine/Oral Oncology

I do solemnly and sincerely declare that:

1) I am the sole author/writer of this Work;
2) This Work is original;
3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract form, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship has been acknowledged in this Work;
4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
5) I hereby assign all and every rights in the copyright to this work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s signature

Date

Subscribed and solemnly declared before

Witness’ signature

Name: Date
Designation
ABSTRACT

Clinical evidence suggested that biological behavior as well as response to treatment is different in OSCC arising from the different anatomical locations of the mouth and could be influenced by the activation or/and inactivation of different genes and pathways. **Objective:** Gene expression analysis of OSCC from different sites of the oral cavity was conducted to determine if there were significant differences in the expression pattern that could be associated with clinical observations. **Materials and Methods:** Formalin-fixed paraffin-embedded tissues from OSCC from cheek, gum, tongue and non-cancerous oral mucosal from the matching sites were used in microarray experiments (DASL, Illumina) to determine the gene expression patterns. Microarray data were analysed using Genespring to identify differentially expressed genes and these changes were validated using quantitative polymerase chain reaction and immunohistochemistry. The role of specific genes in driving OSCC were determined using cell lines genetically modified to exogenously express these genes. **Results:** This study demonstrated that FFPE tissues can be used for microarray experiments. Differentially expressed genes in OSCC were identified and their expressions were validated in independent samples. Principal Component Analysis demonstrated that different sites of OSCC have distinct gene expression profiles. Genes that were commonly altered in all sites and those that were distinct to a particular site were identified. Focusing on a gene *FOLR1* that was found to be enriched in OSCC of the tongue, exogenous expression of this gene was shown to promote migration and invasion. **Conclusion:** This study suggests that the genetic progression of OSCC in the different sites is distinct, thus cautioning the generalization of OSCC when identifying biomarkers for diagnosis, prognosis and therapy. Furthermore, specific genes may confer different cancer traits that may explain the clinical differences seen in the different sites of OSCC.
ABSTRAK

Bukti klinikal mencadangkan tingkah laku biologi serta respons kepada rawatan berbeza di kalangan OSCC dari lokasi berbeza di mulut. Ia berkemungkinan dipengaruhi oleh pengaktifan atau/dan penyahaktifan gen serta tapak jalan gen yang berbeza. **Objektif:** Analisis ekspresi gen OSCC dari lokasi berbeza di mulut dijalankan untuk menentukan jika ada perbezaan signifikan dalam pola ekpresi berkaitan dengan pemerhatian klinikal.

Bahan dan Kaedah: “Formalin-fixed paraffin-embedded tissue” dari OSCC daripada bahagian pipi, gusi, lidah serta juga tisu bukan-kanser oral mukosa dari bahagian yang sama digunakan di dalam eksperimen mikroatur gen (DASL, Illumina) untuk menentukan pola ekpresinya. Gen-gen yang mengalami perubahan ekpresi yang signifikan pada OSCC dikenalpasti dengan Genespring dan disahkan melalui tindak balas rantai polimerase kuantitatif dan immunohistokimia. Peranan gen yang spesifik dalam memacu OSCC ditentukan dengan mengubahsuai sel OSCC secara genetik untuk meluahkan gen secara eksogenous. **Keputusan:** Kajian ini menunjukkan yang tisu FFPE boleh digunakan untuk eksperimen mikroatur gen. Gen yang mengalami perubahan pengekpresan yang signifikan di dalam OSCC dikenalpasti dan disahkan menggunakan sampel OSCC yang berlainan. “Principal Component Analysis” menunjukkan OSCC dari lokasi berbeza di mulut mempunyai pola pengekpresan gen yang berbeza. Ekspresi gen yang berubah dalam ketiga-tiga lokasi dan yang hanya berubah di lokasi tertentu dikenalpasti. Bertumpu kepada gen *FOLR1* yang diperkayai dalam OSCC lidah, luahan eksogenous menunjukkan yang ianya menggalakkan ciri-ciri migrasi dan invasi.

Kesimpulan: Kajian ini menunjukkan yang perkembangan genetik OSCC berbeza mengikut lokasi berlainan di mulut. Oleh itu, perhatian perlu diberi kepada faktor ini apabila menyamaratakan OSCC dalam pencarian biopenanda diagnosis, prognosis dan terapi. Gen tertentu juga boleh memberikan ciri kanser yang berlainan, seterusnya menjelaskan perbezaan klinikal yang dilihat pada OSCC dari lokasi yang berbeza.
AKNOWLEDGEMENTS

First and foremost, I would like to thank God for giving me the strength, patience and perseverance to conduct and complete this study. I am extremely grateful to my supervisors Prof. Rosnah Mohd. Zain & Prof Cheong Sok Ching for their generous guidance, constant encouragement and unflagging support. Many thanks also to the CEO of Cancer Research Initiatives Foundation (CARIF), Prof. Teo Soo-Hwang for supporting this project and for invaluable discussions.

I would like to thank Puan Rusnani Kamal, Mrs Khoo Guat Sim & the rest of the team at the Diagnostic Laboratory, Dental Faculty, University of Malaya; Dr. Haizal Hussaini & Ms Zeti Saiful Bahry from Oral Pathology Department, Universiti Kebangsaan Malaysia for their technical assistance, help in finding tissue specimens and tissue processing as well as helpful discussions. Thank you to the OCRCC team for their support, especially Nabillah Wan Abd Ghani & Karen Ng- despite their hectic schedule they still made time to provide valuable assistance. I am grateful to Dr. Vivek Tanavde & Ms Felicia Ng from Bioinformatics Institute, Singapore for the bioinformatics training session and invaluable input. I would like to acknowledge Malaysia Genome Institute for the use of the microarray data analysis tool for this project. I am indebted to my colleagues especially those in the Oral Cancer Research team (past and present)- Sharifah Hamid, Hor Seen Yii, Dr. Lim Kue Peng, Gan Chai Phei, Sharifah Nurain Zanaruddin, Sam Kin Kit, Yee Pei San & Kong Yink Heay for their generosity in their friendship and knowledge. My thanks also to the other members of the CARIF team.

My deepest gratitude and special heartfelt thanks to my husband Kamal Khalid & my wonderful kids Maryam & Imran for their love, encouragement and welcome (as well as unwelcome!) distractions that kept me sane through this roller coaster ride. This thesis is dedicated to them. My thanks to Mak, Abah, Mama, Baba & other family members for their understanding and support. Finally, I would like to express my gratitude to the following institutes. This study would not be possible without the financial support of CARIF, University of Malaya and Ministry of Science Technology & Innovation (E-Science #02-04-03-SF0001, E-Science #02-04-03-SF0002).
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVER PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 PURPOSE OF STUDY</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 3 LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>3.1. Oral Cancer</td>
<td>4</td>
</tr>
<tr>
<td>3.2. Epidemiology</td>
<td>4</td>
</tr>
<tr>
<td>3.2.1. World Wide</td>
<td>4</td>
</tr>
<tr>
<td>3.2.2. Malaysia</td>
<td>8</td>
</tr>
<tr>
<td>3.3. Risk Factors for Oral Cancer</td>
<td>8</td>
</tr>
<tr>
<td>3.3.1. Smoking</td>
<td>9</td>
</tr>
<tr>
<td>3.3.2. Alcohol Consumption</td>
<td>9</td>
</tr>
<tr>
<td>3.3.3. Betel Quid Use</td>
<td>10</td>
</tr>
</tbody>
</table>
3.3.4. HPV Infection 12
3.3.5. Others 12
3.4. Geographical Variation in Risk Factors 13
3.5. Geographical Variation in the Prevalence of Oral Cancer Subsites 17
3.6. Challenges in Oral Cancer Management 19
3.7. Global Gene Expression Studies in Cancer 20
3.7.1. Challenges in Conducting Microarray Experiment 22
3.8. Types of Biological Specimens for Gene Expression Microarray Studies 25
3.9. Gene Expression Studies in Oral Squamous Cell Carcinoma (OSCC) 27
3.9.1. Evidence of Molecular Differences in OSCC Subsites 29
3.9.2. Clinical Differences in OSCC Subsites 30
3.10. Importance in Addressing the Heterogeneity in the Different Oral Subsites in OSCC 32

CHAPTER 4 MATERIALS & METHODS 34
4.1. Study Design 34
4.2. Study Specimens 34
4.3. Specimen Selection and Processing 36
4.3.1. Formalin-Fixed Paraffin-Embedded (FFPE) Specimens 36
4.3.2. Fresh Frozen Specimens

4.3.3. Cell Lines

4.4. RNA Extraction

4.5. RNA Quantitation and Quality Control

4.5.1. RNA Quality Control for FFPE Specimens

4.6. cDNA Synthesis from Extracted RNA

4.7. Microarray Experiments

4.8. Microarray Data Analysis

4.8.1. Identification of Genes Differentially Expressed Between OSCC and Non-cancerous Oral Mucosa

4.8.2. Identification of Differentially Expressed Genes in OSCC and Non-cancerous Oral Mucosa of Specific Sites

4.8.3. Identification of Significantly Altered Pathways in OSCC

4.8.4. Comparison of Significant Pathways Commonly Changed and Those That Are Site Specific to OSCC

4.9. Validation of Microarray Results

4.9.1. Quantitative Polymerase Chain Reaction (qPCR)

4.9.2. Immunohistochemistry (IHC)

4.10. Developing an In Vitro Model to Study the Function of the FOLR1 in OSCC
4.11. Using an *In Vitro* Model to Perform Functional Assays to Determine the Role of FOLR1 in OSCC

4.11.1. Cell Proliferation Assay

4.11.2. Cell Migration Assay

4.11.3. Cell Invasion Assay

CHAPTER 5 RESULTS

5.1. Quantity and Quality of RNA extracted from FFPE Specimens

5.1.1. RNA Extraction

5.1.2. RNA Quality Control

5.1.3. Factors Associated with the Quality of RNA Extracted from FFPE Specimens

5.2. Quality of Microarray Data Generated from RNA Extracted from FFPE Specimens

5.2.1. Gene Expression Pattern of OSCC and Non-cancerous Oral Mucosa

5.3. Identification and Validation of Differentially Expressed Pathways and Genes Implicated in OSCC

5.3.1. Validation of the Expression of Genes Implicated in OSCC

5.4. Analysis of Gene Expression Variation in OSCC from the Different Sites of the Oral Cavity
5.5. Identification of Differentially Expressed Pathways and Genes Important in OSCC from Distinct Sites

5.5.1. Validation of Site Enriched Pathways and Genes Identified among the Different Sites of OSCC

5.6. Development of Oral Cancer Cell Lines That Over-Expresses Putative Oral Cancer Gene FOLR1

5.7. Determining the Role of Putative Oral Cancer Gene FOLR1 in OSCC using Genetically Modified Cell Lines

5.7.1. The Role of FOLR1 in Cell Proliferation

5.7.2. The Role of FOLR1 in Cell Migration

5.7.3. The Role of FOLR1 in Cell Invasion

CHAPTER 6 DISCUSSION

6.1. Quantity of RNA Obtained from FFPE Specimens

6.2. Quality of Microarray Data Generated from RNA Extracted from FFPE Specimens

6.3. Identification and Validation of Differentially Expressed Pathways and Genes Implicated in OSCC

6.4. Gene Expression Variation in OSCC from Cheek, Gum and Tongue

6.5. Identification and Validation of Differentially Expressed Pathways and Genes Implicated in OSCC from Distinct Sites

6.5.1. Common Pathways and Genes in OSCC Derived from Cheek, Gum and Tongue.
6.5.2. Site Specific Enriched Pathways and Genes in OSCC Derived from the Cheek, Gum and Tongue 102

6.6. Determining the Role of FOLR1 in OSCC using Genetically Modified Cell Line 109

6.6.1. The Role of FOLR1 in Cell Proliferation 109

6.6.2. The Role of FOLR1 in Cell Migration and Invasion 111

6.7. Limitation of Study 113

CHAPTER 7 CONCLUSION AND RECOMMENDATIONS 117

7.1. Conclusion 117

7.2. Recommendations for Future Work 118

BIBLIOGRAPHY 121
LIST OF FIGURES

Figure 3.1 Cancer incidence worldwide based on ASR (W) rate per 100,000 estimated by GLOBOCAN 2008 in (a) both gender and (b) among males and females respectively (data obtained from GLOBOCAN.iarc.fr). .. 5

Figure 3.2 Number of oral cancer case by subsites reported in government hospital in Malaysia in 2003-2005. ... 19

Figure 3.3 Kaplan Meier survival curve of oral cancer demonstrating the different survival rates of patients with OSCC from different sites. 31

Figure 4.1 Project workflow. ... 35

Figure 4.2 Images depicting how a specific area in a specimen was selected. 38

Figure 5.1 Percentage of genes with significant intensity generated from microarray compared to a) Ct difference b) age of FFPE specimens.55

Figure 5.2 Unsupervised clustering of OSCC and non-cancerous oral mucosa through (a)Principal Component Analysis and (b) Hierarchical Clustering. ... 57

Figure 5.3 Differentially expressed genes validated through qPCR using independent samples of fresh frozen OSCC. 61

Figure 5.4 Representative images of OSCC and non-cancerous oral mucosa immunohistochemically stained with BCL2A1, ITGB4 and MMP1........ 63

Figure 5.5 PCA demonstrating the clustering pattern of OSCC from different sites of the oral cavity .. 64
Figure 5.6 The percentage of OSCC from the different sites having the highest standard deviation across the 51 gene chosen at random.........................65

Figure 5.7 Using Venn Diagram to compare genes and pathways among the different sites of OSCC..........................67

Figure 5.8 Venn diagram showing (a) number of genes and (b) number of de-regulated pathways which are site enriched and common in different sites of OSCC...74

Figure 5.9 Representative images of OSCC and non-cancerous oral mucosa immunohistochemically stained with CD3 and FOXP3.......................84

Figure 5.10 Validation of FOLR1 expression was determined by qPCR in 31 fresh frozen OSCC samples from cheek, gum and tongue.86

Figure 5.11 Development of OSCC cell line overexpressing FOLR1..................87

Figure 5.12 Determining the role of FOLR1 in cell proliferation and migration...88

Figure 5.13 Determining the role of FOLR1 in cell invasion.90
LIST OF TABLES

Table 3.1 Incidence and mortality in oral cancer including the lips in 2008
(adapted from GLOBOCAN.iarc.fr) ... 6

Table 3.2 Estimated Age-Standardized Incidence Rates of Oral Cancer Per
100,000 by World Area based on GLOBOCAN 2008
(http://GLOBOCAN.iarc.fr/) .. 7

Table 3.3 Composition of different chewing substance (IARC, 2004) 11

Table 5.1 Factors associated with RNA concentration in FFPE specimens 53

Table 5.2 Genes differentially expressed in OSCC compared to non-cancerous
oral mucosa. ... 59

Table 5.3 Significant de-regulated pathways in OSCC generated by comparing
the T vs. N list to the pathways database in DAVID 60

Table 5.4 Differentially expressed genes validated at mRNA level through qPCR.
.. 62

Table 5.5 IHC scoring for BCL2A1, ITGB4 and MMP1 in OSCC and non-
cancerous oral mucosa. .. 62

Table 5.6 Standard deviation of 51 genes randomly chosen for OSCC from cheek
(B), gum (G) and tongue (T). ... 66

Table 5.7 B vs. NB gene list. Differentially expressed genes in cheek OSCC
compared to non-cancerous oral mucosal samples from the cheek 68

Table 5.8 De-regulated pathways in cheek OSCC generated by comparing the B
vs. NB list to the pathways database in DAVID 69
Table 5.9 AM vs. NG gene list. Differentially expressed genes in gum OSCC compared to non-cancerous oral mucosal samples from gum. 70

Table 5.10 De-regulated pathways in gum OSCC, generated by comparing AM vs. NG list to the pathways database in DAVID 71

Table 5.11 T vs. NT gene list. Differentially expressed genes in tongue OSCC compared to non-cancerous oral mucosal samples. 73

Table 5.12 De-regulated pathways in tongue OSCC, generated by comparing the T vs. NT list to the pathways database in DAVID 73

Table 5.13 Differentially expressed genes and pathways which were enriched all 3 sites of OSCC – cheek, gum and tongue .. 75

Table 5.14 De-regulated genes and pathways that were enriched in cheek and gum OSCC. .. 76

Table 5.15 Differentially expressed genes which were enriched in a. OSCC from the cheek and tongue b. OSCC from gum and tongue. 79

Table 5.16 Differentially expressed genes and pathways which were enriched in OSCC from cheek only. ... 80

Table 5.17 Differentially expressed genes and pathways which were enriched in OSCC from the gum only ... 81

Table 5.18 Differentially expressed gene which were enriched in OSCC from the tongue only. ... 82

Table 5.19 Mean per high power field of CD3, FOXP3 and percentage of FOXP3 in OSCC from cheek, gum and tongue and non-cancerous oral mucosa ... 85
ABBREVIATIONS

ALL Acute Lymphocytic Leukemia
AM Gum
AML Acute Myelogenous Leukemia
APS Ammonium Persulphate
ASR Age Standardised Ratio
B Cheek
BSA Bovine Serum Albumin
cDNA Complementary Deoxyribonucleic Acid
CO₂ Carbon Dioxide
Ct Cycle Threshold
DAB Diaminobenzidine
DASL cDNA Mediated Annealing, Selection, Extension And Ligation Assay
DAVID Database for Annotation, Visualization And Integrated Discovery
dH₂O Distilled Water
DMEM:F12 Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12
DMSO Dimethyl Sulfoxide
DNA Deoxyribonucleic Acid
dNTP Deoxyribonucleotide Triphosphate
EDTA Ethylenediaminetetraacetic Acid
FBS Fetal Bovine Serum
FC Fold Change
FDR False Discovery Rate
FFPE Formalin Fixed Paraffin Embedded
FOM OSCC originating from Floor of Mouth
G OSCC Originating from Gum
g Relative Centrifugal Force
g/L Gram per Liter
GEO Gene Expression Omnibus
gm Gram
GO Gene Ontology
HC Hierarchical Clustering
HPF High Power Field
HPV Human Papilloma Virus
I8 Gingival Tissues Obtained During the Surgical Removal of Impacted Wisdom Tooth
IARC International Agency for Research on Cancer
ICD International Classification Of Disease
IHC Immunohistochemistry
kD Kilodalton
KEGG Pathways Kyoto Encyclopedia of Genes and Genomes
M Molar
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>Milliamp</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium Chloride</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>ml/100 ml</td>
<td>Milliliter per 100 Milliliter of Solution</td>
</tr>
<tr>
<td>ml/cm³</td>
<td>Milliliter per Centimeter Cubed</td>
</tr>
<tr>
<td>mM</td>
<td>Milli Molar</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>mm²</td>
<td>Millimeter Squared</td>
</tr>
<tr>
<td>µM</td>
<td>Micro Molar</td>
</tr>
<tr>
<td>µg/ml</td>
<td>Microgram per Milliliter</td>
</tr>
<tr>
<td>µl</td>
<td>Microliter</td>
</tr>
<tr>
<td>µl/L</td>
<td>Microliter per Liter</td>
</tr>
<tr>
<td>µm</td>
<td>Micron</td>
</tr>
<tr>
<td>NB</td>
<td>Non-cancerous Oral Mucosa Originating from Cheek</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center For Biotechnology Information</td>
</tr>
<tr>
<td>NCOM</td>
<td>Non-cancerous Oral Mucosa</td>
</tr>
<tr>
<td>NG</td>
<td>Non-cancerous Oral Mucosa Originating from Gum</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram</td>
</tr>
<tr>
<td>ng/µl</td>
<td>Nanogram per Microliter</td>
</tr>
<tr>
<td>NK</td>
<td>Natural Killer Cells</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NT</td>
<td>Non-cancerous Oral Mucosa Originating From Tongue</td>
</tr>
<tr>
<td>OSCC</td>
<td>Oral Squamous Cell Carcinoma</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>pg</td>
<td>Pictogram</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative Polymerase Chain Reaction</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RT buffer</td>
<td>Reverse Transcriptase Buffer</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>SOC</td>
<td>Super Optimal Broth with Cabolite Repression</td>
</tr>
<tr>
<td>Std dev</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>T</td>
<td>Tongue</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Saline</td>
</tr>
<tr>
<td>T-cell</td>
<td>T-Lymphocytes</td>
</tr>
<tr>
<td>TMaA</td>
<td>Tissue Macroarray</td>
</tr>
<tr>
<td>Tregs</td>
<td>T Regulatory Lymphocytes</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

Appendix A Sociodemographics of OSCC patients where FFPE specimens were obtained and details of the RNA quality and quantity .. 142

Appendix B Sociodemographics of OSCC patients where the fresh frozen samples were obtained and qPCR results of the genes selected for validation ... 146

Appendix C Sociodemographics of OSCC patients where the TMaA samples were obtained and immunohistochemistry results of proteins selected for validation .. 149

Appendix D Experimental protocols used in the study .. 154

Appendix E Preparation of buffers and solutions .. 166

Appendix F List of primers and antibodies used in the study ... 172

Appendix G Formula for calculation of cell doubling and proliferation ratio ... 173

Appendix H OSCC risk habits data from OSCC patients included in the gene expression analysis .. 174