ISOLATION AND PURIFICATION OF GLUTATHIONE S-TRANSFERASES FROM Donax sp.

NORFARHAN MOHD ASSA'AD

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011

UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: NORFARHAN BINTI MOHD ASSA'AD (I.C/Passport No: 850730-10-5586

Registration/Matric No: SGF 090006

Name of Degree: MASTER OF BIOTECHNOLOGY

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"): ISOLATION AND PURIFICATION OF GLUTATHIONE S-TRANSFERASES FROM Donax sp.

Field of Study: BIOCHEMISTRY

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

)

Subscribed and solemnly declared before,

Witness's Signature

Name: Designation: Date

ABSTRACT

Glutathione S-transferases (GSTs) are among the enzymes involved in the phase II detoxification metabolism of wide range exogenous and endogenous compounds in living cells. Bivalves GSTs often proposed as biomarker for marine pollution detection for several reasons; filter feeder, sessile, wide range distribution, and not affected by some biotic factors. In this study, GSTs from remis Donax sp. was purified by using two affinity column; $GSTrap^{TM}HP$ and GSH-agarose (C₃). The total recovery of CDNB-active GSTs was 12% and 3% for GSTrapTMHP and GSH-agarose (C_3), respectively. SDS-PAGE of GSTrapTMHP purified extract revealed two subunits with apparent molecular masses (MW) of 29 and 26 kDa while GSH-agarose (C₃) showed three subunits corresponding to 29, 28, and 26 kDa. Two-dimensional electrophoresis (2-DE) of GSTs purified from GSH-agarose (C_3) discovered nine similar spots to GSTs purified using GSTrapTMHP but with additional six distinct spots. Analysis by isoelectric focusing (IEF) illustrated most GSTs purified from both column resolved at pI in between 4.5 to 6.9. Apart from this cluster, there were also GSTs appearing each at pI 4.2 and 8.3. Purified GSTs from both columns exhibited activity towards 1-chloro-2,4-dinitrobenzene 1,2-dichloro-4-nitrobenzene (CDNB). (DCNB), sulfobromophthalein (BSP) and ethacrynic acid (EA). GSH-agarose (C₃) showed less specific activity in all substrates compared to GSTrapTMHP, except for EA which count about 10- fold. However, GSTs eluted from both columns did not show any activity with *p*-nitrobenzylchloride (NBC), trans-4-phenyl-3-butene-2-one (PBO), and nitrocinnamaldehyde (NCA). However, mass spectrometry analysis did not show any match with the available database. Therefore based on the current data, GSTs obtained in this study were summarized belong to pi- and mu-class.

ABSTRAK

Glutathione S-tranasferases (GSTs) merupakan salah satu enzim yang terlibat di dalam tapak jalan fasa II metabolisme penyahtoksikan pelbagai sebatian eksogen dan endogen di dalam sel. Kumpulan bivalvia sering dicadangkan sebagai penanda biologi untuk mengesan pencemaran marin kerana faktor-faktor seperti berikut; pemakanan menapis, sesil, taburan yang luas, dan tidak dipengaruhi oleh beberapa factor biotic. Dalam kajian ini, penulenan GST daripada remis, Donax sp. telah dijalankan dengan dua jenis kolum afiniti; GSTrapTMHP and GSH-agarose (C₃). Sebanyak 12% dan 3% GST yang aktif terhadap CDNB berjava diperoleh melalui penggunaan GSTrapTMHP and GSH-agarose (C₃) ini. Analisis SDS-PAGE bagi ektrak yang ditulenkan daripada GSTrapTMHP menghasilkan dua subunit bersaiz 29 dan 26 kDa manakala GSH-agarose (C_3) menunjukkan tiga subunit dengan saiz 29, 28, dan 26 kDa. Elektroforesis dua dimensi bagi GST yang ditulenkan daripada GSH-agarose (C_3) menunjukkan sembilan tompok serupa dengan GST yang dipencilkan daripada GSTrapTMHP, tetapi dengan tambahan enam lagi tompok lain. Analisis pemfokusan isoelektrik (IEF) memberi gambaran bahawa kebanyakan GST yang ditulenkan daripada kedua-dua kolum menyerak di antara pI 4.5 - 6.9. Selain daripada kumpulan utama ini, terdapat juga GST yang muncul setiap satunya terletak di pI 4.2 dan 8.3. GST yang ditulenkan daripada kedua-dua kolum memberi aktiviti terhadap 1-kloro-2,4-dinitrobenzena (CDNB), 1,2-dikloro-4nitrobenzena (DCNB), sulfobromophtaleina (BSP), dan asid etakrinik (EA). GST daripada GSH-agarose (C₃) menunjukkan aktiviti yang lebih rendah di dalam semua substrat, kecuali EA yang memberikan aktiviti 10- kali ganda lebih banyak berbanding GST daripada GSTrapTMHP. Walau bagaimanapun, GST yang ditulenkan daripada kedua-dua kolum tidak menunjukkan sebarang aktiviti dengan p-nitrobenzilklorida (NBC), trans-4-fenil-3-butena-2-one (PBO), dan nitrocinnamaldehid (NCA). Walau bagaimanapun, analisis spektrometri jisim tidak menunjukkan sebarang padanan dengan pengkalan data yang sedia ada. Oleh itu, berdasarkan kepada data semasa, GSTs yang diperoleh di dalam kajian ini dikelaskan sebagai pi- dan mu-GST.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, I thank Allah for endowing me strength and ability to complete this work. I would like to express my deepest gratitude to my supervisor, Dr. Zazali Alias for his extensive guidance, continuous support, precious time, and inspiration. To all fellow friends who are directly and indirectly involved in this project; I really appreciate all your support. Great deals appreciated to University of Malaya for the facilities and all opportunities given to me, University Kebangsaan Malaysia for their support, and Ministry of Higher Education Malaysia (MOHE) to have financially supported me during my study.

My special thanks dedicated to both my parents and family members for their encouragement and infinity love. Last but not least, grateful acknowledgement to youknow-who for your endless support during this entire journey.

TABLE OF CONTENT

CONTENT

PAGE

PREFACE

	ABSTRACT	ii
	ABSTRAK	iii
	ACKNOWLEDGEMENT	V
	TABLE OF CONTENT	vi
	LIST OF FIGURES	ix
	LIST OF TABLES	Х
	LIST OF SYMBOLS AND ABBREVIATIONS	xi
	LIST OF APPENDICES	xii
1.0	INTRODUCTION	1
2.0	LITERATURE REVIEW	
	2.1 GSTs	5
	2.2 CLASSES OF GSTs	7
	2.3 STRUCTURE OF GSTs	8
	2.4 FUNCTION OF GSTs	13
	2.5 GSTs DISTRIBUTION AND EXPRESSION	15
	2.6 BIVALVES	17
	2.7 GSTs IN BIVALVES	18
	2.8 PURIFICATION OF GSTs	21
	2.8.1 Purification of bivalves GSTs	24
	2.9 PROTEOMIC APPROACHES	24
	2.9.1 Two-dimensional electrophoresis (2-DE)	25
	2.9.2 Peptide mass fingerprint	27
3.0	MATERIALS	
	3.1 SAMPLE	30
	3.2 REAGENTS AND APPARATUS	30
	3.3 INSTRUMENTS	34
4.0	METHODOLOGY	
	4.1 SAMPLE PREPARATION	35
	4.2 AFFINITY CHROMATOGRAPHY	35
	4.3 PROTEIN CONCENTRATION	36

4.4 QUANTITATIVE PROTEIN ESTIMATION (BRADFORD)

36

4.5 ENZYME ASSAYS FOR SUBSTRATE SPECIFICY AND	37
ACTIVITY CALCULATION	
4.6 ELECTROPHORETIC ANALYSIS	
4.6.1 Laemmli Discontinous Sodium Dodecyl Sulfate-	37
Polyacrylamide Gel Electrophoresis (SDS-PAGE)	
4.6.2 Subunit Molecular Weight Determination	37
4.6.3 Isoelectric Focusing (IEF)	38
4.7 TWO-DIMENSIONAL GEL ELECTROPHORESIS (2-DE)	
4.7.1 Sample application by in-gel rehydration	38
4.7.2 Preparation for the first dimension – isoelectric	39
4.7.3 Preparation of the second dimension (SDS PAGE)	40
4.7.5 Treparation of the second dimension (SDS-TAGE)	40
4.8 OEL STAINING 4.8.1 Silver Steining	41
4.8.1 Sliver Stanning	41
compatible)	42
4.9 MALDI-TOFF ANALYSIS	42
5.0 RESULT	
5.1 PURIFICATION OF GST USING DIFFERENT GSH-	44
AGAROSE BASED MATRICES	
5.1.1 Purification of GST using GSH-agarose (C_{12})	44
5.1.2 Purification of GST using GSH-agarose (C ₃)	45
5.2 SDS-PAGE ANALYSIS	49
5.2.1 SDS-PAGE for protein purified from GSH-agarose	49
(C ₁₂)	
5.2.2 SDS-PAGE for protein purified from GSH-agarose (C_3)	50
5.3 TWO-DIMENSIONAL ELECTROPHORESIS (2-DE)	51
5.3.1 Two-dimensional electrophoresis (2-DE) for proteins	52
purified from GSH-agarose (C ₁₂)	
5.3.2 Two-dimensional electrophoresis (2-DE) for proteins	52
purified from GSH-agarose (C ₃)	
5.4 ISOELECTRIC FOCUSING (IEF)	54
5.4.1 Isoelectric focusing on GSTs eluted from GSH-	54
agarose (C_{12})	
5.4.2. Isoelectric focusing on GSTs eluted from GSH-	54
agarose (C_5)	51
5.5 SUBSTRATE SPECIFICITY OF PURIFIED GSTs	55
5.5.1 Substrate specificity of GSTs eluted from GSH-	56
agarose (C_{12})	
5.5.2 Substrate specificity of GST eluted from GSH-	56

vii

agarose (C₃)

5.6 IDENTIFICATION OF PURIFIED GSTs USING MALDI-TOFF 57

6.0 DISCUSSION

6.1 PURIFICATION OF GSTs USING GSH-AGAROSE BASED	
MATRICES	
6.2 GEL VISUALIZATION	62
6.3 SUBSTRATE SPECIFICITY	66
6.4 IDENTIFICATION OF GSTs OBTAINED FROM GSTrap TM	69
HP MATRIX	
7.0. CONCLUSION	71
	/1
REFERENCES	
APPENDICES	84

LIST OF FIGURES

Figure 1.1	Images of <i>Donax</i> sp.	4
Figure 2.1	Glutathione conjugation to xenobiotics through GST action producing glutathione-S-conjugate.	6
Figure 2.2	Diagram of TRX proteins secondary structure.	12
Figure 2.3	Structures of different types of affinity matrix used for GST purification.	23
Figure 2.4	Outline of MALDI-TOF analyzer.	29
Figure 5.1	Chromatogram of GST purification using $\text{GSTrap}^{\text{TM}}$ HP.	46
Figure 5.2	Chromatogram of GST purification using GSH-agarose (C_3).	47
Figure 5.3	SDS-PAGE (12%) of active proteins fraction eluted from $GSTrap^{TM}$ HP matrix.	50
Figure 5.4	SDS-PAGE (12%) of GSTs purified from GSH-agarose (C_3) matrix.	51
Figure 5.5	Two dimensional gels of GST purified from affinity chromatography.	53
Figure 5.6	Separation of <i>Donax</i> sp. purified GSTs on silver stained IEF gel.	55
Figure 6.1	Effect of different linker arm on GSH-agarose (C_{12} and C_3) on their behavior to capture GST	60

LIST OF TABLES

Table 5.1	Purification of GSTs from remis by two different GSH-based affinity matrix.	48
Table 5.2	Substrate specificity of remis GSTs purified using GSH-agarose (C_{12}) and GSH-agarose (C_3) columns.	57

LIST OF SYMBOLS AND ABBREVIATIONS

GST	Glutathione S-transferase
РАН	Polycyclic aromatic hydrocarbons
GSH	Glutathione
ROS	Reactive oxygen species
cGST	Cytosolic GST
MAPEG	Membrane associated protein
TRX	Thioredoxin
RP-HPLC	Reverse-phase HPLC
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
pI	Isoelectric point
2-DE	Two dimensional electrophoresis
IPG	Immobilized pH gradients
IEF	Isoelectric focusing
PMF	Peptide mass fingerprinting
ESI	Electrospray ionization
MALDI	Matrix-assisted laser desorption ionization
TOF	Time-of-flight

LIST OF APPENDICES

APPENDIX A	Buffer solution preparation	84
APPENDIX B	Laemmli Discontinous SDS Polyacrylamide Gel Electrophoresis	85
APPENDIX C	Electrophoresis in Tris-Glicine Buffer System	86
APPENDIX D	Coomasie Blue Reagent for Protein Determination	87
APPENDIX E	Substrate preparation and Enzyme Assay conditions	88
APPENDIX F	Reagent for Proteomic Analysis	90
APPENDIX G	Standard Curve of BSA	91
APPENDIX H	Standard Curve of Molecular Weight Protein Marker	92
APPENDIX I	Peptide masses for GSTs purified from GSTrap TM HP	93

CHAPTER 1

INTRODUCTION

It is beyond doubt all creatures constantly exposed to toxic compounds from either external environment or naturally produced in their cells. With current increase in worldwide production of waste, it is not a surprise many compounds are found to be a major threat to human health and environment. Therefore, species must possess highly effective system to respond to challenges from continuous contact with unhealthy environment in order to ensure their survival. The systems are crucial to keep the toxic residue and the activity towards detoxification well balanced. Disruption to the system would affect biological cells activities which in worst case scenario would lead to cell death (Sheehan & McDonagh, 2008).

One of cell detoxification remarkable adaptations is through collective enzymes activity known as glutathione *S*-transferases (GSTs) (Frova, 2006; Masella et al., 2005; Towsend & Tew, 2003). This superfamily of multifunctional proteins can be detected in broad range kingdom, from a single cell organism i.e. bacteria to higher living organisms including human, plants, and animals. Salinas and Wong (1999) reported that GSTs are identified in most aerobic eukaryotes and some prokaryotes which account about 1% of total cellular protein. Many studies reported GSTs fundamental role in detoxification of wide range exogenous and endogenous compounds, including numerous environmental carcinogens such as benzo [a]-pyrene and other polycyclic hydrocarbons (Deng et al., 2009; Frova, 2006; Habig et al., 1974; Wang et al., 2008; Ye et al., 2006; Zablotowicz et al., 1999). This significant task of GSTs might be the main reason why GSTs are found across various organisms.

As GSTs respond specifically towards toxic substances, GSTs offer an enormous potential to be used as biomarker for environmental pollution detection. Park et al. (2009) portray GSTs as the most interesting biomarkers of exposure to environmental pollutant. Similar to most proteins, expressions of GSTs are induced under a defined condition. The respond of GSTs are correlated with existing number of substrates thus substrate accumulation will enhance GSTs expression to the optimum level. In a study conducted by Gowland et al. (2002), they reported that GSTs activity from reference site mussel was considerably lower by 30-60 times compared to mussel collected from the field containing high concentration of parent polycyclic aromatic hydrocarbons (PAHs). Buhler and Williams (1988, as cited in Kaaya et al., 1999) also mentioned that GSTs expressions are influenced by exposure to various foreign compounds. These reports showed that GSTs have a very good prospective to be used as an alarm when selected organism is exposed to over polluted environment.

One of the major pollutions gaining more and more attention is marine contamination. Marine pollution becomes a massive threat ever because marine serve as habitat for innumerable species and human are highly dependent on marine ecosystem. For that reason, it is vital to identify level of marine pollution therefore; biomarker can serve as an early warning tool in environmental quality assessment (Cajaraville et al., 2000). Consequently, to obtain optimum result from biomarker application, appropriate organism should be chosen carefully. At present, bivalves are used widely as sentinel species in environmental toxicology due to its major importance in aquatic ecology as well as aquaculture and are proven to have notable plasticity towards molecular oxygen (Sheehan & McDonagh, 2008). Bivalves appear to show considerable flexibility in various conditions resulting a wide-range distribution in aquatic environment. Sheehan and Power (1999) characterized bivalves as filter-feeding organisms which fed on

anything pass through, thus expose them to large amount of pollutants. Bivalves are also capable to endure the baseline level of pollution and can be found abundantly in estuaries area (Sheehan et al., 1995). Furthermore, bivalves are sessile and this behavior becomes a great advantage for biomonitoring purpose because they are likely to reflect the quality status of a particular study area. Therefore, accumulated contaminants detected within bivalves could represent the actual contaminants in the specific area (da Silva et al., 2005). More importantly, the expressions of bivalve GSTs are not affected by temperature thus make the enzyme suitable to be used in biomonitoring program (Huang et al., 2008). As bivalves survive in continuous toxic exposure, it can be assumed that bivalves have a very effective detoxification system, where GSTs are most likely take part in this process. Therefore, GSTs activity in bivalves could be a good starting point for marine quality assessment bioindicator. By combining a sentinel species with a specific biomarker, it can provide information on the overall impact of xenobiotics on the health of ecosystems (Won et al., 2005). In fact, a 'mussel watch' programs are being carried out in the United States to monitor the levels of pollutants in coastal environment (Cajaraville et al., 2000).

Implementation of local bivalves GSTs as biomarker is expected to be very attractive but more detailed research must be carried out to get better comprehension, especially on interaction between pollutants and GSTs expression. Many species of bivalves can be found around Malaysian waters, including one of them, an edible *Donax* sp. or known as remis by local people (Figure 1.1). This study will be emphasized on GSTs expressed in local bivalve species, *Donax* sp. as an attempt to understand them for future application.

Therefore, objectives of this study are:

- 1. To isolate and purify glutathione *S*-transferases from *Donax* sp.
- 2. Determination of substrate specificity for purified glutathione *S*-transferases in a series of assay study.
- 3. To identify glutathione *S*-transferases purified from *Donax* sp.

Figure 1.1 Images of *Donax* sp.

CHAPTER 2

LITERATURE REVIEW

2.1 GSTs

Glutathione S-transferases (GSTs) (EC 2.5.1.18) are a superfamily of multifunctional proteins which play an important role in detoxification of a wide range of exogenous and endogenous compounds. GSTs received much attention and many studies have been conducted since its first discovery in 1961. They are known to be a part of Phase II enzymic detoxification metabolism which converts toxins to a more water soluble molecule hence become biologically inactive by the addition of hydrophilic moieties (Knapen et al., 1999; Sheehan et al., 2001). The deactivation process is achieved when GSTs catalyze the transfer of a tripeptide glutathione (GSH : $L-\gamma$ -Glu-L-Cys-Gly) with electrophilic centre of a compound, thereby neutralizing their electrophilic sites with the thiol group (-SH) from GSH to form a polar S-glutathionylated reaction product (R-SG) (Dixon et al., 2002; Habig et al., 1974). This process involves either nucleophilic substitution or addition, depending on the hydrophobic substrate (Amstrong, 1991). The conjugation between GSH and xenobiotics are illustrated in Figure 2.1.

GSH plays a pivotal role to protect cells against oxidative and electrophilic stress through their action as a cofactor for several enzymes that catalyze the inactivation and removal of toxic compounds, including GSTs (Antognelli et al., 2006; Jia et al., 2008). The conjugation of GSH and GSTs directly deactivates reactive molecules thus eliminate further damaging effects in cells. An oxidative stress is referring to a situation where homeostasis process is altered and the balancing mechanism tilts in favor of reactive oxygen species (ROS) accumulation (Halliwell, 1999 as cited in Masella et al., 2005; Sheehan & McDonagh, 2008). In other word, it happens when the rate of ROS production is higher in comparison to the rate of neutralization process. Electrophilic stress refers to the reaction of a compound towards nucleophilic centres present in biomolecules resulted in the formation of new chemical bonds (Knapen et al., 1999).

Glutathione-S-Conjugate

Adopted from Townsend and Tew, (2003)

Figure 2.1 Glutathione conjugations to xenobiotics through GST action producing glutathione-*S*-conjugate

2.2 CLASSES OF GSTs

An early attempt to classify different forms of GST was made by Boyland and Chasseaud (1969, as cited in Mannervik and Danielson, 1988), introduced the terms aryltransferase, epoxide transferase, alkyltransferase, arakyltransferase, and alkenetransferase. During that period, existing evidence suggested that GSTs could be discriminated based on their specificities toward electrophilic substrates. However, subsequent studies proposed that this classification method was no longer relevant. Separation and extensive purification of several forms of GST clearly demonstrated that they exhibited overlapping substrate specificities and their reactions were not restricted to a single functional group of the second substrate (Mannervik & Danielson, 1988; Sheehan at al., 2001). As an example, Pabst et al. (1973) in their paper revealed that the protein isolated as 'epoxide transferase' was also active with alkyl and aralkyl halogenides. Some more, even if they are included in the same family, their reactions towards various substrates are quite diverse; consistent with their physiological role (Wigger et al., 1997).

Currently, GSTs are divided into classes based on their amino acid sequence, immunological, kinetic, and structural properties (Alias & Clark, 2007). In general, GSTs with at least 40% identity (Sheehan et al., 2001 reported 60% identity) are belongs to the same family while less than 30% will be assigned into different family (Knapen et al., 1999; Yang et al., 2004). Generally, they are recognized as three main subfamilies which are; 1) the soluble or cytosolic GST (cGST), also known as canonical that can further be divided into subclasses depending on several criteria, 2) the microsomal GSTs or termed as MAPEG (membrane associated protein involved in eicosanoid and glutathione metabolism), and 3) the plasmid-encoded bacterial forfomycin resistance GST (Frova, 2006). Within a particular subfamily, they may have diverged classes that share as much or greater than 90% identity (Hayes and Pulford, 1995 as cited in Sheehan et al., 2001). Apart of these three classes, Hayes et al. (2005) added another class of GST; mitochondrial GST which comprise soluble enzymes that make the whole group of four subfamilies. Mitochondrial GST, sometime termed as Kappa GST was previously misguided as Theta-class GST due to the basis of limited N-terminal sequence analysis before their cDNA and protein sequence were found to have major differences with other known mammalian GSTs (Frova, 2006). In addition to that, many other novel GSTs have been found currently with exclusive characteristics that do not suit in any classes described earlier (Frova et al., 2006).

Since GSTs are found in almost all living organism, there is a probability that the existence number of GSTs classes is actually larger than so far thought. As their presence is ranging from an aerobic single cell organism to higher organisms, it is thought they might have evolved over period of time thus producing a complex super family tree. Hansson et al. (1999) came out with of a hypothesis i.e. GST classes arose during DNA replication followed by divergence, perhaps involving a mechanism similar to DNA shuffling, resulting in novel catalytic activities. Up till this point, only a small number of GSTs have yet been described and it is possible that other classes actually exist which require more effort to be discovered. This literature, however, will be focused more on the soluble class of GSTs.

2.3 STRUCTURE OF GSTs

Each of GST family has their own unique structural design which thought to represent exclusive abilities that they carry. To be classified in the same subfamily, they must share common features no matter how far their family trees are. For example; plant, animal, and bacterial cGSTs crystal structures show high level of structural conservation with common 3-D fold (Frova, 2006). They are found in dimer forms; either homodimers (identical subunits) or heterodimers (different subunits) (Frova, 2006). For a dimerization to take place, both subunits must be from the same gene class because it is accepted that different classes of monomers are incompatible (Dirr et al., 1994; Frova et al., 2006). Each of subunits commonly counts for 23-30 kDa with an average length of 200-250 amino acids (Frova et al., 2006).

The folding pattern of cGSTs is identical; each subunit consists of two spatially distinct domains that are N-terminal domain (domain I – comprise of β strands and α helices) and C-helical domain (domain II – all helices) (Frova et al., 2006; Sheehan et al., 2001). Each subunit contains about 48-59% α helix and 8-10% β strands (Dirr et al., 1994). Arrangement of Domain I is analogous to thioredoxin (TRX) fold in glutaredoxin ($\beta\alpha\beta\alpha$ domain $\beta\beta\alpha$), which consist of N-Ter $\beta_1\alpha_1\beta_2$ and C-ter $\beta_3\beta_4\alpha_3$, linked by a long loop of α_2 (Frova, 2006). Structural design of TRX is illustrated in Figure 2.2 (a). Those N- and C-terminal regions form a β -sheet of three parallel and an antiparallel of β chain, squeezed in between α_2 and α_1 as well as α_3 on the other side. A loop containing highly conserved cis-Proline act as a connector between α_2 and β_3 strands, where this cis-Pro is important to maintain the protein in a catalytically competent structure (Frova, 2006 & Sheehan et al., 2001). Domain I is attached to Domain II (on downstream region) by a short linker sequence consist of ~10 amino acids (Frova, 2006). Domain II is predominantly an all- α -type core structure composed of five amphipathic α -helices (Dirr et al., 1994). Figure 2.2 (b) shows the organization of Domain II and its connection to adjacent Domain I. However, total numbers of a-helix strands may vary; depending on which GST class they are in (Sheehan, et al., 2001).

Intersubunit interaction between Domain I and Domain II that essential for dimerization and stability of quaternary structure can be either hydrophilic or hydrophobic interaction (Axarli et al., 2009; Board et al., 2000; Frova, 2006).

In each GST subunit, there are two distinct functional regions; 1) a hydrophilic G-site for glutathione association and 2) H-site that is important for electrophilic substrates binding (Chronopolou & Labrou, 2009; Dirr et al., 1994; Frova, 2006). Although they are catalytically independent, it is crucial to maintain the stability of dimeric form. Similar to other enzymes, any disruption in quarternary structure will affect substrate accessibility thus demolish the real function of GSTs. Dirr et al. (1994) reported that GSTs active sites will only be functioning when structural elements from both subunits are present, where the major structural framework is contribute by the conserved core of Domain I.

Binding of glutathione or its analogues at G-site is achieved through a specific polar interaction between the tripeptide and a number of protein moieties in Domain I of one subunit and one or two amino acid residues (depending on the GST classes) in Domain II of the other subunit. A molecule called G-site ligand is responsible in assisting glutathione binding to G-site which some of the residues are conserved within a class while some are either conserved or conservatively replaced between classes (Dirr et al., 1994). Involvement of these two subunits in G-site activation clarifies the necessity of GSTs dimeric form.

Clusters of non-polar amino acid side chains are found in the H-site structure which provides the hydrophobic surface that is accessible to bulk solvent in the absence of xenobiotic substrate or product (Dirr et al., 1994). The constitution of this site involve elements from both Domain I and II of the same subunit, including the loop connecting $\beta 1$ to $\alpha 1$, the C-terminal terminal region of $\alpha 4$, and the C-terminal of segment of the polypeptide chain (Dirr et al., 1994). Since GSTs are highly specific toward substrate electrophiles and this interaction occur in the H-site, they must have some modification in the site structure that causes variation in substrate susceptibility. Dirr et al. (1994) reported the existence of different H-site topologies is due to sequence variability between gene classes explain the reasonably distinct xenobiotic-substrate specifities among various gene classes.

Figure 2.2 Diagram of TRX proteins secondary structure. Arrows indicate β strands, rectangles indicate α helices. Dotted squares in (a) indicate the N-terminal and the C-terminal motifs of the thioredoxin fold, connected by the α 2 helix. In (b and c), ovals mark the position of the second domain, while dashed lines indicate extra domains in some of the proteins listed below the diagrams. The grey thick line in (b) indicates the short linker between domains I and II of GSTs. The nature of the second domain is indicated in parenthesis near the proteins.

2.4 FUNCTION OF GSTs

At a glance, GSTs participate in the survival route of an organism when the organism is exposed to both exogenous and endogenously derived toxic compounds. Lee et al. (2007) reported that GSTs expression in most organisms is modulated in response to prooxidant xenobitics, which was also reported by Masella et al. (2005). In that condition, cells will sense the hazard and confer corrective signals by stimulate GSTs production that later will convert toxic compound into a harmless substance.

As mentioned earlier, detoxification process is completed by the addition of thiol group (–SH) from glutathione thus neutralize the electrophilic sites of the toxic compound and rendering the products more water-soluble. It is then further metabolized by cleavage of the glutamate and glysine residues, followed by acetylation of the resultant free amino group of the glutamate and glysine residues to produce the final product; mercapturic acid (Habig et al., 1974). The mercapturic acids, i.e. S-alkylated derivatives of N-acetylcysteine, are then excreted by another enzyme (Habig et al., 1974). This mechanism shows the important function of GSTs in converting reactive molecules into a molecule that can be tolerated by the cells which indicates the ability of GSTs as a bioconversion agent in a living organism. Therefore, this mechanism enables cells to endure the stress and keep living in hazardous environment to maximal limit.

A part of their function in neutralizing exogenous toxic compound, GSTs also known to play a pivotal role as an endogenous antioxidant defense (Masella et al., 2005; Leiers et al., 2003). One popular example is through their action towards ROS which occur in abundant amount as many oxidative reactions take place within cells. Even though ROS acts in different positive roles *in vivo*, it may also create damage at high oxidative level as ROS could attack the biological macromolecules; induce oxidation, cause in membrane and DNA damage, also enzyme inactivation (Halliwell, 1999 as cited in Masella et al., 2005). As a response to cope with the stressful condition, an organism would develop a sophisticated mechanism to maintain the level of ROS they could resist with, that is by GST involvement. A study conducted by Leiers et al. (2003) demonstrated an increase resistance level towards intracellular induced oxidative stress was achieved in transgenic BL1 *Caenorhabditis elegans*, with overexpression of *Ce-GST-p24*. When *Ce-GST-p24* gene was knocked out by RNAi manner, they found a decrease level of tolerance in RNAi-treated BL1 as compared to the untreated ones. However, RNAi-treated BL1 showed a better reaction in comparison to the wild type *C.elegans*. This study showed the direct correlation between those two variables thus indicates the function of GSTs in protecting cells from ROS negative effects. In this study, GSTs shows their capacity to normalize and balance the overproduction of ROS to keep the cell viability.

The original view of GSTs as solely detoxification enzymes has gradually changed with various findings in other functions it carries within the body system. It is now become assimilated that the roles of GSTs has extended from detoxification and antioxidant to non-stress metabolism, such as leukotrienes and prostglandins biosynthesis (Jakobsson et al., 1999; Knapen et al., 1999; Lee et al., 2007) and the catabolism of aromatic aminoacids (Thom et al., 2001). GSTs can serve as peroxidases, isomerases, and thiol transferases (Board et al., 2000), or have non-catalytic functions among which binding of non-substrate ligands and modulation of signaling processes (Axarli et al., 2004; Blanchette et al., 2007). These discoveries provide a strong foundation on their competency to work in several pathways thus show the importance

of this enzyme in the whole body systems, not only limited to their main function as detoxifying agent.

2.5 GSTs DISTRIBUTION AND EXPRESSION

GSTs are ancient protein with multiple roles found in all eukaryotic organisms and some prokaryotes, suggesting a wide-range distribution of GSTs in various kingdoms. For instance, cGST can be found ubiquitously in all aerobic organisms and often counting tens of members in each species; 15-20 different cGST genes have been identified in human and other mammalian species (Hayes et al., 2005), 40-60 in plants, 10-15 in bacteria, and over 10 in insects (Frova et al., 2006). The high occurrence of cGSTs found in wider taxonomic distribution suggest the importance of this enzyme hence indicates dependency of living organisms towards them in maintaining basic cell functions.

Depending on several criterias, cGSTs is further divided into numerous classes which some of them can be found throughout taxa and even kingdoms, while others are organism-specific (Frova et al., 2006). Till these very seconds, seven classes of cGSTs are recognized in mammals; Alpha, Mu, Pi, Sigma, Theta, Zeta, and Omega where the first three mentioned are unique to mammals only (Board et al., 2000; Robinson et al., 2004; Frova et al., 2006). On the other hands, plants consist of four specific GSTs; Lambda, Phi, Tau and DHAR (dehyroascorbate reductases), together with another two common GSTs; Theta and Zeta (Frova et al., 2006). In bacteria, the overall knowledge is still ambiguous but it is reported that they might posses a specific class named Beta, in addition to other enzymes mostly related to the common Theta GSTs (Frova et al., 2006). Classes of Sigma, Theta, Zeta and Omega are the common GSTs can be found within the insects with addition of Delta and Epsilon classes that are unique to insect (Frova et al., 2006; Wang et al., 2008; Deng et al., 2009). It can be concluded that each species is more likely to comprise of two types of cGST which are; 1) unique to their taxa that function exclusively according to their physiological activities and 2) universal cGSTs that are shared among distinct taxa which probably functions in basal cell activities.

The distribution is not only take place between species but the isoenzymes are also distribute diversely within the organism i.e. tissue specific (Desmots et al., 2001; Knapen et al., 1999). Meister (1988, as cited in Knapen et al., 1999) reported that the highest GSTs activity appears to be in kidney and liver, probably related to the main function of these two organs in removing toxins produced from the body. Similar to the idea of their presence in different life forms, they might present in several organs or some might only expressed in a particular body part. For instance, Alpha class of GSTs that comprise at least four genes encoding hGSTA1, A2, A3, and A4 including several pseudogenes were found to be expressed in most human organs (Desmots et al., 2001). In other example, only a single GST was found to be appeared in the pollen while five distinct isozymes were found in the scutellum (Dixon et al., 2002). Their positioning is most likely due to the occurrence of their specific substrate at that specific site. Knapen et al. (1999) propose that variation of specific substrates between organs become the reason for specific expression of GST isozymes. However, this differential tissue profile is also correlated to other factors such as sex, age, and to physiopathological and genetic factor (Desmots at al., 2001).

2.6 **BIVALVES**

Similar to chitons (chain shells), gastropods (abalones) and cephalopods (squid and octopus), bivalves are included in the Phylum Mollusca and are one of six members of Class Bivalvia (Helm et al., 2004; Prado et al., 2010). They are said to first appear in the late Cambrian explosion which took ~530 million years ago and eventually dominate over brachiopods in the Palezoic era (Gould & Calloway, 1980 as cited in Sheehan & McDonagh, 2008).

They are described by a shell which is divided from front to back producing two hinged valves that completely or partially cover the soft body parts (Prado et al., 2010; Sheehan & McDonagh, 2008). Their gills are very structured and not only function as a respiratory organ, but also serve as a filter-feeding apparatus (Helm et al., 2004; Prado et al., 2010; Sheehan & McDonagh, 2008; Sheehan & Power, 1999). When they are in substrate, water will drawn through the inhalant opening, through the gills before returning back to the surrounding water through the exhalant opening (Helm et al., 2004).

Bivalve molluscs posses' high commercial values as they are integrated in human food chain thus form a significant part of the world's fisheries production. In 2000, landings of bivalves from captured fisheries aquaculture operations sums up 14 204 152 tonnes (Helm et al. 2004). During 1991 to 2000, bivalves show continuing increase in production, and landings more than doubled from 6.3 million tonnes to 14 million during that decade (Helm et al., 2004). These figures explain that there is a high demand of bivalve in fishery industries hence shows that they are important for human consumption. They are harvested as food consumption or for other reasons such as pearl oysters (Tanguy et al., 2008). In addition to that, many culture operations are developed to keep up with the increase of market demand towards bivalves. Helm et al. (2004) reported the growth of market operations which indicated from double amount of landings from culture operations compared to the wild landing during 1991 to 2000.

2.7 GSTs IN BIVALVES

Bivalves are capable to bioaccumulate environmental pollutants since they filter large amounts of water in order to meet their nutritional and respiratory need, therefore this activity could reflect the degree of pollution in their surrounding environment (Vidal et al., 2002; Yang et al., 2003). Their ability is extended to concentrate xenobiotics to many thousands times of the background which can facilitate a better chemical analysis (Sheehan & Power, 1999). Due to that reason, bivalves have been proposed to be used in biomonitoring programme. However, the capability possessed by bivalves to withstand stress condition alone could not provide adequate information about the level of contamination hence a complementary approach is needed.

Even though there are many other components related to the detoxification metabolism are available, GSTs always become the preferred module as a biomarker in environmental assessment (Vidal et al., 2002). Bivalves GSTs are gaining more popularity to be chosen as biomarker in marine pollution for several reasons. One of the remarkable findings in mussel shows that response of mussel GSTs towards environmental pollutants are unaffected by several biotic factors such as temperature, season, or age (Sheehan & Power, 1999; Vidal & Narbonne, 2000). The expression of mussel GSTs is different in fish which the activity of fish GSTs are found to be dependent on environment temperature (Huang et al., 2008). It is assumed that GSTs from other molluscs species generally would retain this character thus, the use of bivalve GSTs become a great advantage to get a more consistent data in marine quality evaluation.

Until this very moment, purification and characterization of GST from vertebrate species is well developed but is less documented for invertebrates' species (Yang et al., 2003). Lack of information on GSTs from marine organisms was also reported thus result in ambiguous criteria in GSTs classification since current classification is based on the characterization of mammalian GSTs (Blanchette et al. 2007). However, recent evidence showed studies of marine organisms GSTs as well as GSTs induction in molluscs are increasing (Bebianno et al., 2007; Fitzpatrick et al., 1995; Looise et al., 1996; Vidal & Narbonne, 2000). So far, research evidence showed that there are different pattern in expression and distribution of GSTs observed within mussels, depending on their species. For example, Vidal and Narbonne (2000) reported that bulk of GST activity towards 1-chloro-2,4-dinitrobenzene (CDNB) were found to be localized in visceral mass of Corbicula fluminea and to a lesser extent in gill while Fitzpatrick and Sheehan (1993) reported the other way around in blue mussel, Mytilus edulis. This discrepancy may be caused by several factors while dissimilarities in physiological state may also contribute to the unique expression of GSTs among bivalve species.

To date, there is not many information available about overall classes of GSTs collected from bivalve molluscs. However, existing studies involving bivalves showed that most found GSTs were included in the pi-class (Fitzpatrick et al., 1995; Hoarau et al., 2002, Vidal et al., 2002) and only small amount are belongs to alpha-, mu-, and

sigma- class (Hoarau et al., 2002; Yang et al., 2002; Vidal et al., 2002). In a paper reported by Yang et al., (2004), they found that N-terminal domain of *Me*GST from *Mytilus edulis* possesses a thioredoxin fold, and the six helices of the C-terminal domain make a helical bundle which indicates this *Me*GST belongs to pi-class GST. Apart of that, blast analysis of *Me*GST protein sequence enclosed 40% identity with the pi class GSTs isolated from different organism, but less than 30% identity with other classes. This bioinformatics analysis provides a strong support to the first discovery about *Me*GST structure thus reaffirm the relation of *Me*GST and pi- class GST.

In other study conducted by Vidal et al., (2002), immunoblot analysis revealed all GST subunits obtained from visceral mass of Corbicula fluminea were related to piclass GSTs while minor subunit were slightly related to mu-class. In a different study, Hoarau et al. (2002) investigated the immunological properties of each purified Ruditapes decussates GSTs using antisera anti-pi, anti-mu, and anti-alpha mammalian GST. Their study revealed that three isoforms showed similarity with pi-class, two isoforms reacted with antisera pi- and alpha-, one isoform reacted with antisera mu- and pi- and another one isoform recognized to show high identity (53%) with an alpha/mu/pi- GST from Fasciola hepatica. In a study conducted by Park et al. (2009), they managed to characterize the complete cDNA sequence of two GSTs from Laternula elliptica in the northern Antartic peninsular that belongs to rho- and sigmaclass of GST. This is such an interesting breakthrough since rho- class GST was previously found only in teleost fish (Liang et al., 2007). It further suggests that there is likely more extensive knowledge about bivalves GSTs have not been explored yet and remains a mystery. Therefore, more knowledge about the possible novel GSTs in bivalve will be a lot more than meaningful while possibility to discover new classes is available as long as long operations are conducted.

2.8 PURIFICATION OF GSTs

Jack bean urease became the first enzyme isolated ever in 1926 and since then, interest in protein purification began to grow rapidly. During the first half of twentieth century, the protein purification method were incredibly crude compared to current protocols, but there was increase since the first isolation where ~20 enzymes was successfully purified by 1940 (Voet & Voet, 2004). In general, proteins are purified using fractionation procedures by exploiting knowledge about physicochemical properties of selected proteins to separate them from undesired substances. The main idea of purification is not necessarily limited only to minimize the loss of desired protein, but to selectively eliminate the other components of the mixture thus leaving only the proteins of interest.

Many different strategies can be employed to purify GSTs and one of those ways is by applying affinity chromatography technique using various types of affinity matrices. This technique exploits the biochemical properties that are unique to the desired protein which brings huge advantage over the utilization of knowledge on physicochemical properties between proteins (Voet & Voet, 2004). The principle lies behind this technology is the ability of desired protein to bind tightly but noncovalently to specific molecules called ligand (Voet & Voet, 2004). In this method, a ligand that is covalently attached to an inert and porous matrix will bind specifically to the protein of interest. This specific interaction causes other protein to be washed through the column, thus allow elimination of undesired protein. Later, the ability to exploit sustainably the non-covalent interaction of proteins and ligand become a great advantage to recover protein of interest by changing the elution conditions such that the protein is discharged from the matrix.

21

widely used GSTs purification Among many matrices for are sulfobromophthalein-glutathione (BSP) conjugate immobilized to agarose matrix, GSHagarose matrix (C_3 and C_{12}), and immobilized S-hexylglutathione (Figure 2.3). All the columns are different in such behavior they capture GSTs molecules. Therefore, it is assumed that application of different individual column or combination of columns in GSTs purification will produce variation results which allow the researchers to strategize their purification scheme. As an example, Alias and Clark (2007) used three different types of affinity matrix to isolate GSTs from Drosopila melanogaster and they had produced various results. In their study, the use of GSH-agarose (C₃) matrix results in purification of Sigma and Delta classes of GST, GSH-agarose (C₁₂) matrix results in purification of the same Sigma and Delta classes of GST with additional single putative Epsilon class (CG16936). The third matrix, BSP-GSH-Sepharose matrix were reported to isolate the widest spectrum of GSTs among all matrices used in their study.

Adapted from Alias (2006)

Figure 2.3 Structures of different types of affinity matrix used for GST purification. (a) Sulfobromophthalein-glutathione linked to agarose (Clark et al., 1977) (b) Glutathione with C_3 spacer linked to agarose by Clark et al. (1990) (c) Glutathione with C_{12} spacer linked to agarose developed by Simons and van der Jagt (1977) and (d) S-hexylglutathione with C_{12} spacer linked to agarose (Mannervik & Guthenberg, 1981)
2.8.1 Purification of bivalves GSTs

Most of the documented studies since have involved affinity chromatography to purify bivalves GSTs, particularly glutathione-sepharose affinity matrix and many scholar used more than one purification strategy. Yang et al. (2004) successfully recovered a recombinant protein of MeGST expressed in Eschericia coli by using GSH-Sepharose 4B affinity column. In a separate work conducted by Hoarau et al. (2002), they applied two affinity columns; GSH-agarose and S-hexyl GSH-agarose in the first step of purification, followed by purification using anion exchange chromatography. By using this approach, they collected seven fractions which present a GST activity with CDNB before analyzed the enzymes by using reverse-phase HPLC (RP-HPLC). Vidal et al. (2002) also used a similar approach; GSH-sepharose affinity chromatography and anion-exchange chromatography to purify cytosolic GSTs from freshwater clam, Corbicula fluminea. Yang et al. (2002) purified an isozyme of GST from liver intestine of Asaphis dichotoma using sepharose 4B affinity chromatography followed by RP-HPLC analysis. Therefore, despite the use of many available methods it can be assumed that affinity chromatography is still being a method of choice in purification strategy of bivalves GSTs.

2.9 PROTEOMIC APPROACH

Every biological sample expresses a set of proteins encoded in their genome and their expression either can be induced or suppressed by certain specific condition. Proteins are vital parts of living organism which constitute a huge portion of the mass of all organisms, and have significant role in the physiological metabolic pathways of biological systems. The term proteome was first coined in 1995 as an analogy term of 'genome' and was defined as the total protein complement to genome (Wasinger et al., 1995). Later, the term of proteomics were used in the study of proteome which is now defined as the aggregate of all proteins expressed by a cell or organism, but with emphasis on their quantitation, localization, modifications, interactions and activities, as well as their identification (Voet & Voet, 2004). Apart of this definition, Sheehan and McDonagh (2008) specifies the meaning by defining this term as total proteins expressed in a given sample under a defined set of conditions.

The idea of proteome is actually parallel to the central dogma of molecular biology principle that correlates DNA, RNA, and protein in the same frame. Unlike genome, proteome is highly dynamic; their expression is diverse depending on the cell type and their response to variables such as diet intake and exposure to environmental factors (Sheehan & McDonagh, 2008). Therefore, combination of techniques used in proteomic study can be a powerful tool to enhance our understanding in a biological system because proteomics can provide a rich source of information since proteins are involved in almost all metabolic activities. They could provide detail descriptions of the structure, function, and control of biological systems in health and disease by systematic study of the many and diverse properties proteins in a parallel manner (Patterson & Aebersold, 2003).

2.9.1 Two dimensional electrophoresis (2-DE)

Each protein molecule possesses charged groups of both polarities therefore has an isoelectric point, pI that is the pH at which proteins are static in an electric field. Hence, if a mixture of proteins runs through a solution in which the pH gradually increases

from anode to cathode, each protein will be separated according to their isoelectric point (Voet & Voet, 2004).

By combining isoelectric focusing (IEF) principle together with polyacrylamide gel electrophoresis, O'Farrell (1975) introduced a powerful technique named 2dimensional electrophoresis (2-DE) that is able to separate protein according to their isoelectric point in the first dimension, followed by molecular weight separation using SDS-PAGE electrophoresis. This technology has evolved over time to improve the original version of 2-DE from a problem called 'cathodic drift'; a condition where the entire gradient tend to migrate towards the cathode area (Lognonné, 1994). Consequently immobilized pH gradients (IPGs) were developed with incorporation of ampholytes that works strips as a protein carrier along the plastic (Görg et al., 2004). After IEF step, the strips were laid on the SDS-PAGE gel and in this second dimension part; protein will further be resolved according to their molecular weight producing distinct and sharply defined spots when gel is stained.

This technology is mainly used as a protein expression profiling tool. They can separate complex protein mixtures from paired (or multiple) samples thus allow comparison of their relative abundance using image analysis tools (Patterson & Aebersold, 2003). The smallest gels used in 2-DE are able to isolate several hundred spots and up to thousands of spots may be resolved in the bigger size of gels (Sheehan & McDonagh, 2008). The great thing about this technique is proteins separated via 2-DE can be extracted from the gel matrix for subsequent analysis (Patterson & Aebersold, 2003). Due to that reason, regardless the presence of much more sophisticated technology in proteomic analysis, currently 2-DE become the only

technique that can be routinely applied for parallel quantitative expression profiling of large sets of complex protein mixture (Görg et al., 2004).

2.9.2 Peptide mass fingerprinting

Similar to DNA sequencing, peptide mass fingerprinting (PMF) was developed as an analytical means for protein identification by matching their fragment masses to the peptide masses in the established database. This technique becomes an effective way for identification of proteins provided the proteins has a relatively high purity since PMF often fails to identify a protein mixture (Thiede et al., 2005). Therefore, separations of complex protein samples are crucial before PMF could be applied. In PMF, proteins of interest are first cleaved using sequence-specific endoproteases, most notably trypsin to produce several fragments. Afterward, the digested products are investigated by determination of molecular masses, which resulted masses are compared with the protein peptide masses in database for protein identification.

Since many years ago, mass spectrometry has been the method of choice for analytical chemist's to analyze small molecules due to their ability to distinguish closely related species (Patterson & Aebersold, 2003). However, to measure mass-to-charge ratio (m/z) of molecule in a mass spectrometer, the analyte need to be ionized and transferred into the high vacuum system of the instrument, in which peptides and protein do not favor the condition that could destroy the molecule. During late 1980s, two methods that allowed ionization of peptides and proteins at high sensitivity without excessive fragmentation were developed; electrospray ionization (ESI) and matrixassisted laser desorption ionization (MALDI) (Patterson & Aebersold, 2003). Both two methods were first introduced by Fenn et al. (1990) and Tanaka et al (1988) respectively.

Among those two methods, MALDI is the most frequenly used technique in conjunction with a 'time-of-flight' (TOF) detector to perform PMF (Sheehan & McDonagh, 2008). Combination of these two principles produce a platform namely MALDI-TOF. By using this platform, sample is mixed with a 'matrix' that have the ability to absorb some of the laser energy used to ionize the protein and then placed on a target for laser-induced ionization. Figure 2.4 shows the schematic diagram of MALDI-TOF system. This technology is known to give rapid detection, easy to perform, sensitive, able to produce accurate result, tolerant to a certain level of contaminants and can be automated (Thiede et al., 2005).

Courtesy of Sheehan and McDonagh (2008)

Figure 2.4 Outline of MALDI-TOF analyzer. Sample is mixed with matrix (e.g. sinapinic acid) on a target. A laser beam impacts on this imparting sufficient energy to peptides or proteins to propel them through the TOF analyser. From the estimation time required by each peptide to reach the detector, an accurate m/z value can be calculated and by aligning masses of tryptic peptides to masses predicted from sequence databases could identify proteins of origin by Peptide mass fingerprint.

CHAPTER 3

MATERIALS

3.1 SAMPLE

Remis (*Donax* sp.) used in this study was kindly provided by Dr. Zazali Alias, Senior Lecturer of Universiti Malaya and was collected from Pantai Remis, Jeram, Selangor. The nomenclature of the species was based on guidance taken from www.fishdepat.sabah.gov.my/download/redtideInfo.doc.

3.2 REAGENTS AND APPARATUS

Biorad Laboratories, Richmond, USA

30% Acrylamide/Bis Solution, 29:1 (3.3% C)

1.5 M Tris, HCl, pH 8.8

1.5 M Tris, HCl, pH 8.8

N,N,N',N'-methylethylenediamine (TEMED)

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)

Invitrogen[™], California, USA

BENCHMARKTM Protein Ladder

Pre-cast Novex® IEF Gel

Novex® IEF Anode (Lower) Buffer (50X)

Novex® IEF Cathode (Upper) Buffer (10X)

Novex® Tris-Glycine SDS Running Buffer (10X)

ZOOM® Carrier Ampholyte (3-10)

Merck KGaA. Darmstadt, Germany

Iodoacetamide (IA)

Natrium hydroxide (NaOH)

Dithiothreitol (DTT)

Sartorius Stedim Biotech, Germany

Minisart® syringe filter (20 µm)

Vivaspin concentrator (10000 MWCO; 20 ml)

Sigma-Aldrich, St. Louis, USA

Ethylenediaminetetraacetic acid (EDTA)

Proteinase inhibitor cocktail

N-phenylthiourea (PTU)

Sodium dodecyl sulphate (SDS)

Coomasie brilliant blue (CBB)

4-nitrocinnamaldehyde (NCA)

Brilliant Blue G (Coomassie Blue G-250)

Thiourea

1-chloro-2,4-dinitrobenzene (CDNB)

1,2-dichloro-4-nitrobenzene (DCNB)

p-nitrobenzylchloride (NBC)

Sulfobromophtalein (BSP)

Ethacrynic acid (EA)

Trans-4-phenyl-3-butene-2-one (PBO)

Albumin bovine serum (BSA)

R & M Chemicals, Malaysia

Sodium dihidrogen phosphate

Ammonium persulfate (APS)

Trichloroacetic acid (TCA)

Urea

Sodium carbonate

Systerm, Malaysia

Glycerol

Methanol

Acetic acid

Formaldehyde

Ethyl alcohol 95%

Sodium thiosulfate

Silver nitrate

Ortho-phosphoric acid-85%

Ammonium sulfate

Promega, Madison, USA

Tris base

Agarose

BDH Laboratory Supplies Poole, England

Bromophenol blue

Fisher Scientific (M) Sdn. Bhd.

Absolute ethyl alcohol

GE Healthcare, Uppsala, Sweeden

ImmobilineTM DryStrip, pH 3-10, 7 cm

PlusOne DryStrip Cover Fluid

GSTrapTM HP Columns (5 ml)

SERVA Electrophoresis GmbH, Heidelberg, Germany

SERVALYTTM PRECOTESTM (pH 3-10)

3.3 INSTRUMENTS

WiseTis® homogenizer (Witeg, Germany)

Mini-PROTEAN® Tetra Cell electrophoresis (Biorad Laboratories, Richmond, USA)

PowerPacTM Basic power supply (Biorad Laboratories, Richmond, USA)

XCell SureLock TM Mini-Cell (InvitrogenTM, California, USA)

PowerEase[®] 500 power supply (Invitrogen[™], California, USA)

ÄKTAprimeTM Plus (GE Healthcare, Uppsala, Sweeden)

Image Scanner III (GE Healthcare, Uppsala, Sweeden)

Multiphor™ II Electrophoresis System (GE Healthcare, Uppsala, Sweeden)

Weighing balance (Mettler-Toledo Internation Inc., Columbus, USA)

Centrifuge 5810 R (Eppendorf, Hamburg, Germany)

CHAPTER 4

METHODOLOGY

4.1 SAMPLE PREPARATION

Sodium phosphate buffer was used to prepare sample for chromatography analysis. The total of 5 g of *Donax* sp. (remis) whole flesh was homogenized in 40 ml buffer by using a WiseTis® homogenizer. Homogenizing buffer in this study was a 25 mM phosphate buffer (pH 7.4) containing 500 μ l protease inhibitor cocktail (prepared as instructed in manual), 1.0 mM EDTA, 0.1 mM DTT, and a half spatula of PTU. The homogenate then centrifuged for 60 minutes at 10 000 rpm. Pellet was discarded and supernatant collected was filtered using syringe filter. This filtered supernatant was designated as 'crude enzyme'. All preparation was performed at all times 4°C. Details can be acquired in Appendix A.

4.2 AFFINITY CHROMATOGRAPHY

In this study, two different types of matrices were used; 1) GSTrapTM HP column (bed volume : 5 ml ; binding capacity of 10 mM/ml) and 2) GSH-agarose (C₃) column (bed volume : 1 ml; binding capacity of 10 mM/ml) supplied by Dr. Zazali Alias. Affinity chromatography was carried out using an automated sytem (ÄKTAprime PlusTM) equipped with PrimeView 5.0 software. Both columns were equilibrated with 20 ml of 25 mM sodium phosphate buffer, pH 7.4 prior usages (Appendix A). The flow rate was set at 18 ml/hour during sample application and protein profile was monitored during the whole process. Proteins bound to the column were eluted using 10 mM glutathione in 25 mM sodium phosphate buffer, pH 7.4.

4.3 PROTEIN CONCENTRATION

Protein was concentrated by using Vivaspin concentrator (10000 MWCO; 20 ml). Sample was centrifuged at 10 000 rpm for 5-10 minutes. The temperature was set at 4°C.

4.4 QUANTITATIVE PROTEIN ESTIMATION (BRADFORD)

The Bradford assay procedure was carried out as outlined by Spector (1978) to estimate protein concentration. Bradford reagent was prepared as in Appendix D. The absorbance readings were taken by using a spectrophotometer and protein standard was prepared in duplicate. Aliquots of BSA stock (2 μ g/ μ l) were pipette into test tubes (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 μ l corresponded to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 μ g of BSA). Distilled water was added to each test tube making the final volume as 100 μ l while reagent blank was prepared by addition of 100 μ l distilled water. Unknown samples were prepared in dilutions of 2 to 10-fold. To every samples and standard, 5 ml of Coomasie blue reagent was added, pursued by vortexing. Samples were left for at least 5 minutes (but less than 1 hour) before the absorbance was read at 595 nm. A standard graph was prepared by plotting average absorbance reading against BSA content. Protein content of unknown samples was estimated through the standard. The standard curve is shown in Appendix G.

4.5 ENZYME ASSAYS FOR SUBSTRATE SPECIFICITY AND ACTIVITY CALCULATION

Enzyme activities were determined at 25°C in a spectrophotometer. Each assay was run in triplicate together with a control that was a complete assay mixture without sample. Total volume of each assay was 3 ml. Procedures of all assays are similar; buffer, enzyme, and GSH were added in that order into the cuvette followed by incubation in the cuvette compartment. After 10 minutes, substrate was added to initiate the reaction. Details for each assay conditions are included in Appendix E.

4.6 ELECTROPHORETIC ANALYSIS

4.6.1 Laemmli Discontinous Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE analysis was performed according to the procedure set by Laemmli (1970) using a Mini-PROTEAN® Tetra Cell electrophoresis unit with a PowerPacTM Basic power supply. The apparatus was prepared according to the instruction set by the manufacturer. Gel was prepared in two layers which the pH of resolving gel is usually much higher with more polyacrylamide content contrast to stacking gel. Gel preparation was as set out in Appendix B. The electrophoresis was run at 120 V for about 2 hours.

4.6.2 Subunit Molecular Weight (MW) Determination

SDS-PAGE allows dissociation and separation of GST dimers. For the purpose of MW estimation, a protein standard (BENCHMARKTM Protein Ladder) was applied

alongside the samples. A linear graph of relative mobility against \log_{10} MW of protein standard was plotted and used to determine the subunit molecular weight. Bands of 20, 25, 30, 40, 50, 60, 70, and 80 kDa obtained from the protein standard were used to construct the calibration plot (Appendix H).

4.6.3 Isoelectric Focusing (IEF)

The IEF method was carried out by using XCell *SureLock*TM Mini-Cell apparatus connected to PowerEase® 500 power supply. Gel used was a pre-cast Novex® IEF Gel containing 5% polyacrylamide with pH 3-10. Two different buffers were prepared before the experiment was run; anode and cathode buffer where both were pre-chilled to 4^{0} C prior use. Samples were prepared by addition to sample buffer in the ratio of 1:1. A protein marker for IEF (SERVALYTTM PRECOTESTM, pH 3-10) was applied alongside the samples. The electrophoresis unit was assembled according to the manual instruction. A constant voltage of 100V was first applied at room temperature for one hour and then increased to 200V for another hour. The last stage required a constant power of 500V for 30 minutes. Then, the gel was removed from the cassette and fix in 12% TCA containing 3.5% sulfosalicyclic acid for 30 minutes before silver stained. Preparation of all buffers can be obtained in Appendix C.

4.7 TWO-DIMENSIONAL GEL ELECTROPHORESIS (2-DE)

4.7.1 Sample application by in-gel rehydration

As sample was already dissolved in water, they were directly applied to the rehydration solution containing 8 M urea, 2% (w/v) CHAPS, 0.15% (w/v) DTT, 30 mM thiourea,

and 2% ampholyte (pH 3.0 – 10.0). The 70 mm strips used (Ammersham ImmobilineTM DryStrips, pH 3.0 - 10.0, 7cm) required 125 μ l of rehydration buffer. Therefore concentrated GST was added with rehydration buffer to a total volume of 125 μ l in an eppendorf tube. The immobiline drystrip was put into the plastic pipette that served as a rehydration tray in the position gel-side down. One end of the pipette was sealed with parafilm. Then, rehydration solution containing samples was distributed evenly under the strip. During this step, precautions were taken to ensure no bubbles trap between solution and gel. The gel was allowed to rehydrate for 10 to 24 hours at room temperature, preferably overnight rehydration. Details preparation of rehydration buffer can be seen in Appendix F (i).

4.7.2 Preparation for the first dimension – isoelectric focusing (IEF)

Approximately 5-10 ml of DryStrip Cover Fluid was pipette on to the cooling plate placed in Multiphor II Electrophoresis unit. Then, an Immobiline DryStrip tray was positioned slowly on the cooling trap to avoid formation of large bubbles between the tray and cooling plate thus create good contact between those two parts. An immobiline strip aligner was placed on top of the tray with its groove side up. Then, two IEF electrode strips was cut to a length of 110 mm each and placed onto a clean flat surface. The electrode strips were evenly soaked with 0.5 ml dH₂O. Excess water was removed by blotting with paper towel gently.

Next, rehydrated strips was pulled out by using clean forceps, rinsed with dH_2O and put on a sheet of damp filter paper; gel side up. Then, strip was transferred onto the groove of immobiline strip aligner with gel side up in the position where acidic end placed near the anode and vice versa. If several IPG strips were aligned in the grooves, it is important to ensure that the anodic gel edges were lined up. Then, moistened IEF Electrode Strips was placed on top of the aligned strips at both cathode and anode side. The IEF Electrode Strips was put at least partially on top of the gel surface. Afterward, the electrodes was positioned on top of IEF electrode Strips.

Approximately 5 ml of DryStrip Cover Fluid was poured onto the tray to completely cover the strips. In this experiment, Ammersham immobilized pH gradient strips at 70 mm length were used and the IEF was run using EPS 3501 XL power supply (GE Healthcare). Three stages were programmed in gradient mode that are; (1) first stage : 200 V : 5 mA : 2 W : 0:01 hour, (2) second stage : 3500 V : 5 mA : 2 W : 1:30 hour, (3) third stage : 3500 V : 5 mA : 2 W : 1:30 hour. Once the first dimension completed, IPG strips were immediately prepared for second dimension.

4.7.3 Preparation of the second dimension (SDS-PAGE)

All strips from the first dimension need to be equilibrated twice, 10 minute for every step. Each 70 mm IPG strip require 2.5 ml equilibration buffer containing 50 mM Tris-HCl (pH 8.8), 6 M urea, 35% (v/v) glycerol, and 2% (w/v) SDS. For first equilibration, 0.25% (w/v) of DTT was dissolved in equilibration buffer prior use. This equilibration solution, namely equilibration solution I was poured into a centrifuge tube and strip was placed into individual tubes with gel side up. The tube was capped and put on a shaker for 10 minutes. In the mean time, the second equilibration solution (equilibration solution II) was prepared by the addition of 4.5 % (w/v) of iodoacetamide (IA) and traces of bromophenol blue. Similar to first step of equilibration, strip was soaked in equilibration solution II for 10 minutes. Preparation of equilibration buffer can be seen in Appendix F (ii).

Once both equilibrations accomplished, the second dimension was performed. The equilibrated strip was positioned in between the plates with the gel edge touching the surface of the SDS-PAGE gel. At this step, extra precautions were taken to avoid bubbles between the two gels. The molecular weight marker was applied at one end (acidic) of the strip. Then, agarose sealing solution containing 0.5 % (w/v) agarose in SDS electrophoresis buffer was pipette onto the strip to stabilize them during electrophoresis. Details for agarose sealing solution preparation can be acquired in Appendix F (iii). Electrophoresis was run at a constant 120 V, similar to SDS-PAGE protocol.

4.8 GEL STAINING

4.8.1 Silver Staining

Silver stain used for staining the IEF native gel was adopted from Vorum and Blum (2000). In this procedure, the gel was fixed in a solution containing 50% (v/v) methanol, 12% (v/v) acetic acid, and 0.05% formaldehyde for 2 hours or overnight. It was subsequently washed three times in 35% (v/v) ethanol, 20 minutes each followed by soaking in sensitizing solution containing 0.025% (w/v) sodium thiosulphate for 2-3 minutes. Later, the gel was washed in water tree times, 5 minutes each. It was then submerged in fresh silver nitrate solution containing 0.2% (w/v) silver nitrate and 0.072% (v/v) formaldehyde. The gel was rinsed with water for 5-10 seconds, 2 times before soaked into developing solution containing 6% (w/v) sodium carbonate, 0.05% (w/v) formaldehyde and 0.0005% (w/v) sodium thiosulphate. The gel was left in the solution until dark enough before the reaction was stopped using 50% (v/v) methanol and 12% (v/v) acetic acid. The gel was stored in 1% (v/v) acetic acid in 4°C.

4.8.2 Coomasie Colloidal blue-staining (MALDI-TOFF compatible)

Colloidal Coomasie Blue was used to stain SDS-PAGE and 2D gel owing to its sensitivity and compatibility with subsequent mass spectrometric analysis. The procedure was adopted from Neuhoff et al. (1988). To prepare a liter stock solution, 100 g of ammonium sulfate was dissolved in approximately 500 ml mili-Q water. In a separate beaker, 2% (w/v) of *ortho*-phosphoric acid (85%) was poured into 20 ml of aqueous 5% (w/v) Coomasie Brilliant Blue G-250 (CBB). Then, mixture of CBB and phosphoric acid was poured slowly into the beaker containing ammonium sulfate and the volume was made up to 1000 ml. This solution was shaken vigorously before use for even distribution of colloidal particles. The actual staining solution was prepared by mixing 20 ml of methanol with 80 ml of stock solution. The staining solution was prepared fresh and discarded after use. During staining, the container was sealed properly and shaken gently overnight. After staining, the gel was immersed in a 20% (v/v) methanol to wash off the undissolved colloidal particles.

4.9 MALDI-TOF ANALYSIS

Protein spots (approximately 1 mm³) were excised from the GSTrapTM HP matrix gel using a clean scalpel and were transferred into individual Eppendorf tubes. Samples were dried and sent to Proteomics International (Perth, Australia) for mass spectrometry analysis. A standard technique of Bringans et al. (2008) was applied to the protein samples during the process and peptides generated were analyzed by MALDI TOF-TOF mass spectrometer using a 5800 Proteomics Analyzer (AB Sciex). Bovine serum albumin was used as a standard. Peptides generated were analyzed by the company using Mascot, a search engine that uses mass spectrometry data to identify proteins from primary sequence databases (www.matrixscience.com)

Generated mass spectra of the peptides were also analyzed using ProFound software, a tool for searching a protein sequence collections with peptide mass maps (http://prowl.rockefeller.edu/prowl-cgi/profound.exe). ProFound was developed based on Bayesian algorithm to rank the protein sequences in the database according to their probability of producing the peptide map. The Z score was calculated for each candidate sequence indicating the probability of that candidate belongs to a random match population which value of 1.65 or lower signifies that the candidate is likely to be random match with 95 % confidence. ProFound included several informations, such as the type of digestion, links to the appropriate database and taxa, and range of *p*I and molecular masses of the samples. One missed cleavage *per* peptide was allowed and an initial mass tolerance of 0.05 Dalton was set up in all searches. Partial carbamidomethylation of cysteine and partial modification of methionine (methionine oxidation) were assumed.

CHAPTER 5

RESULTS

5.1 PURIFICATION OF GST USING DIFFERENT GSH-AGAROSE BASED MATRICES

The purification of GSTs expressed in *Donax* sp. was carried out using an automated system of chromatography ($\ddot{A}KTAprime Plus^{TM}$). In this study, two different GSH-agarose based matrices were used; GSTrapTM HP Matrix and GSH-agarose (C₃) matrix. These two matrixs are differed by the length of spacer arm between GSH and agarose hence result in variation of GSTs attachment behavior. In this report, term void is used to define collected fractions containing proteins that do not bind to the matrices.

5.1.1 Purification of GSTs using GSTrapTM HP matrix

Crude homogenate obtained from 5 gram of *Donax* sp. was loaded through a commercial GSH-agarose (C_{12}) matrix (GSTrapTM HP) and run at 18 ml/hour. The bound GSTs were eluted with 10 mM glutathione at pH 7.4 after all sample through the matrix. Chromatogram scheme for GST purification from GSTrapTM HP matrix is shown in Figure 5.1.

Results obtained for the purification of the conjugating activity with the $GSTrap^{TM}$ HP matrix are shown in Table 5.1 (a). By using Bradford assay, material eluted with GSH at pH 7.4 was known to contain 0.344 ± 0.146 mg of protein. In the enzymatic assay using CDNB, activity was detected not only in eluate fraction but was also detected in the void fraction. Of the enzyme activity, 12% was retained on the

affinity matrix and gave purification factor of 90- fold. Specific activity of 23.378 µmol/min/mg was measured in eluate fraction.

5.1.2 Purification of GSTs using GSH-agarose (C₃)

Similar to section 5.1.1, crude homogenate obtained from 5 gram of *Donax* sp. flesh was run through a GSH-agarose (C_3) matrix and run at 18 ml/hour followed by elution with 10 mM glutathione at pH 7.4. Chromatogram scheme for GST purification from GSH-agarose (C_3) is shown in Figure 5.2.

Results obtained from this purification scheme are shown in the Table 5.1 (b). Total protein attained from eluate was 0.126 ± 0.061 mg, which was only about one third of protein eluted from GSTrapTM HP matrix. In CDNB assay, activities were detected not only in eluate fraction, but also in void volume which was similar to result in Table 5.1 (a). In this scheme, the yield percentage of eluate was 3% with purification factor of 60- fold. The specific activity of eluate was 9.054 ± 0.420 µmol/min/mg, which was lower than GSTs obtained from GSTrapTMHP matrix.

Figure 5.1 Chromatogram of GST purification using $GSTrap^{TM}$ HP. The crude extract obtained from 5 g of *Donax* sp. was charged on to the matrix (bed volume : 5 ml). The conditions of sample application and elution were programmed using ÄKTA PrimePlus. Area outline as () was fraction eluted with 10 mM GSH in 25 mM phosphate buffer, pH 7.4. (a) Unbound protein peak (void). (b) Enlarged image of affinity peak eluted with 10 mM GSH at pH 7.4.

Figure 5.2 Chromatogram of GST purification using GSH-agarose (C_3). The crude extract obtained from 5 g of *Donax* sp. was charged on to the matrix. (bed volume : 1 ml). The conditions of sample application and elution were programmed using ÄKTA PrimePlus. Area outline as () was fraction eluted with 10 mM GSH in 25 mM phosphate buffer, pH 7.4. (a) Unbound protein peak (void). (b) Enlarged image of affinity peak eluted with 10 mM GSH at pH 7.4.

	Total protein (mg)	Total activity (μmol/min) (CDNB)	Specific activity (µmol/min/mg) (CDNB)	Purification fold (X) (CDNB)	Yield (%) (CDNB)
(a) GSTrap TM HP					
Crude homogenate	244.246 ± 0.051	63.266 ± 1.831	0.259 ± 0.007	1	100
Void	240.758 ± 26.104	53.788 ± 3.902	0.224 ± 0.019	0.846	83.43 ± 0.062
Affinity Eluate	0.344 ± 0.146	9.048 ± 0.344	23.378 ± 5.697	90.253	12.72 ± 0.031
(b) GSH-sepharose (C ₃	3)				
Crude homogenate	226.762 ± 27.544	33.582 ± 2.094	0.148 ± 0.009	1	100
				1 271	06.06 ± 0.12
Void	171.356 ± 0.147	32.26 ± 4.08	0.188 ± 0.024	1.2/1	90.00 ± 0.12

TM IID 1.00 Table - -D 10 ~ ~ ~ ~ ~~~ 1 0 0 1 1 (C₃) . _ . . .

*Values are means \pm SD taken from three independent replications

5.2 SDS-PAGE ANALYSIS

Purified GSTs in the eluate was concentrated prior protein analysis. In this study, SDS-PAGE was used to determine molecular weight of protein and as a preliminary means to illustrate the purity of protein gained during the whole process.

5.2.1 SDS-PAGE for protein purified from GSTrapTM HP matrix

Figure 5.3 shows gel visualization of proteins eluted from GSTrapTM HP matrix using 10 mM glutathione at pH 7.4. After the purification of *Donax* sp. GSTs by this GSH-based affinity matrix, SDS-PAGE revealed two distinct protein bands corresponding to the 26 and 29 kDa GST subunits. In addition to that, the smaller monomer subunit of GST shows considerable band intensity compared to the 29 kDa subunit.

Figure 5.3 SDS-PAGE (12%) of active proteins fraction eluted from $GSTrap^{TM}$ HP matrix. A total of 8.6 µg protein was loaded into each Lane 1, 2, and 3. The gel is stained using Coomasie Blue G-250. (a) Lane M1-M3 : Protein marker (BENCHMARKTM Protein Ladder). (b) Lane 1-3 : Concentrated eluate.

5.2.2 SDS-PAGE for protein purified from GSH-agarose (C₃)

Figure 5.4 shows SDS-PAGE of GST purified using GSH-agarose (C₃) matrix. Unlike result in section 5.2.1, three bands were visualized on the gel equivalent to 26, 28, and 29 kDa GST subunits. Even so, the smaller mononer subunit of GST shows remarkable intensity compared to the same protein purified using $GSTrap^{TM}$ HP matrix (Figure 5.3).

Figure 5.4 SDS-PAGE (12%) of GSTs purified from GSH-agarose (C₃) matrix. Approximately 8.4 μ g protein was loaded into each Lane 1, 2, and 3. The gel is stained using Coomasie Blue G-250. (a) Lane M1-M3 : Protein marker (BENCHMARKTM Protein Ladder). (b) Lane 1-3 : Concentrated eluate.

5.3 TWO-DIMENSIONAL ELECTROPHORESIS (2-DE)

In this study, the two-dimensional electrophoresis (2-DE) technique was applied to separate GSTs from eluate fractions according to their isoelectric points (*p*I) and molecular weight (MW). The use of immobilize pH gradient enables separation of a complex protein mixture into single protein species represent by series of spot on the SDS-PAGE gel. Therefore, this method is able to separate different isoforms of GSTs that is useful for the collection of highly specific protein database.

5.3.1 Two-dimensional electrophoresis (2-DE) for proteins purified from GSTrapTM HP matrix

According to Figure 5.5 (a), nine different spots labeled as 1-9 were detected after 3 days of staining with Colloidal Coomasie Blue G-250. By using this method, protein spots were separated into three different MW during second dimension of gel instead of two MW in one-dimensional electrophoresis (Figure 5.3).

5.3.2 Two-dimensional electrophoresis (2-DE) for proteins purified from GSHagarose (C₃) matrix

Referring to Figure 5.5 (b), the 2-DE gel of GSTs purified from GSH-agarose (C₃) showed the presence of 9 similar spots as obtained from $GSTrap^{TM}$ HP matrix, labeled as 1-9. However, the gel was observed to detain six additional spots marked as i, ii, iii, iv, v and vi compared to those in 5.5 (a) bringing the total number of spots 15.

Figure 5.5 Two dimensional gels of GST purified from affinity chromatography. The gel (12%) was stained with Colloidal Coomasie Blue G-250. Approximately 8.6 μ g and 16.8 μ g protein purified from GSTrapTM HP matrix and GSH-agarose (C₃) respectively was loaded into ImmobilineTM DryStrip during rehydration. (a) GSTrapTM HP matrix (b) GSH-agarose (C₃). (c) Enlarged images from (a) and (b). GSH-agarose (C₃) captured extra spots labeled as i, ii, iii, iv, v, and vi.

5.4 ISOELECTRIC FOCUSING (IEF)

Isoelectric focusing (IEF) is a technique that separates proteins based on their isoelectric point (pI), i.e. the pH at which a particular protein carries no net electrical charge thus become static in an electric field. IEF gels can effectively create a pH gradient when an electric pulse is applied thus enable protein separation according to their unique pI. In this study, this method had been carried out to determine pI value of GST isoforms observed in 2-DE gel.

5.4.1 Isoelectric focusing on GSTs eluted from GSTrapTM HP matrix

GSTrapTM HP matrix was previously shown to bind different GST isoforms during 2-DE, mostly resolved at the middle part of the gel. To confirm their *p*I values, IEF was performed and the result showed that most GSTs were resolved at *p*I in between 4.5 to 6.9 (Figure 5.6). Apart of that cluster, there is one weakly focused band labeled as 8 at the basic part of the gel which was near to *p*I 8.3 and one separated at the acidic part of the gel, labeled as 9 which was at *p*I 4.2.

5.4.2 Isoelectric focusing on GSTs eluted from GSH-agarose (C₃)

GSTs collected from GSH-agarose (C₃) showed similar pattern of resolution with $GSTrap^{TM}$ HP in IEF gel. Most GSTs are migrated at p*I* between 4.5 and 6.9 with additional bands seen in the group designated as i, ii, iii, iv, v, and vi (Figure 5.6). These extra bands are seen to be in line with result observed in Figure 5.5 (c). There were also two similar bands as observed in GSTrapTM HP located near to *p*I 8.3 and at 4.2, designated as 8 and 9 respectively.

Figure 5.6 Separation of *Donax* sp. purified GSTs on silver stained IEF gel. Approximately 8.6µg of protein purified from GSTrapTM HP matrix and 16.8 µg of extract from GSH-agarose (C₃) were loaded into Pre-cast Novex® IEF Gel. (a) Lane M : IEF marker (SERVALYTTM PRECOTESTM, pH 3-10). (b) Lane 1 : GSTs purified from GSTrapTM HP matrix. (c) Lane 2 : GSTs purified from GSH-agarose (C₃). (c) i, ii, iii, iv, v and vi : extra GSTs observed in GSH-agarose (C₃) as in Figure 5.5.

5.5 SUBSTRATE SPECIFICITY OF PURIFIED GSTs

Information about GST affinities towards specific substrate is very useful for initial recognition in classifying GSTs. It is also important to determine the range of substrate specificity to assess their physiological roles in biological systems. In this study, a set of substrates were used to identify the catalytic reaction of GSTs purified from $GSTrap^{TM}$ HP matrix and GSH-agarose (C₃) matrices.

5.5.1 Substrate specificity of GSTs eluted from GSTrapTM HP matrix

Result in Table 5.2 showed that GSTs eluted from GSTrapTM HP matrix was observed to have highest activity towards 1-chloro-2,4-dinitrobenzene (CDNB) with the value 23.378 \pm 5.697 µmol/min/mg followed by ethacrynic acid (EA) (1.281 \pm 0.063 µmol/min/mg). Low activities were detected when GSTs were assayed with sulfobromophthalein (BSP) (0.726 \pm 0.275 µmol/min/mg) and 1,2-dichloro-4nitrobenzene (DCNB) (0.033 \pm 0.002 µmol/min/mg). There was no activity observed during GSTs assay with *p*-nitrobenzylchloride (PBO), trans-4-phenyl-3-butene-2-one (PBO), and nitrocinnamaldehyde (NCA).

5.5.2 Substrate specificity of GST eluted from GSH-agarose (C₃)

As seen in Table 5.2, GSTs collected from GSH-agarose (C₃) matrix showed higher activity towards EA (11.353 \pm 0.620 µmol/min/mg) which gave almost 10 times higher than that observed in GSTrapTM HP matrix. Similar to those obtained from GSTrapTM HP, GSTs eluted from GSH-agarose (C₃) was also active towards CDNB, however, with slightly lower activity (9.054 \pm 0.420 µmol/min/mg). Their activity towards DCNB, and BSP were shown to be low that are 0.024 \pm 0.002 µmol/min/mg and 0.081 \pm 0.011 µmol/min/mg, respectively. All these three values are lower compared to activity detected in GSTrapTM HP matrix. Similar pattern with GSTrapTM HP was observed when GSTs purified from this matrix were assayed with NBC, PBO, and NCA; no activity was detected.

	Specific activity (µmol/min/mg)			
Substrates	$\operatorname{GSTrap}^{\operatorname{TM}}\operatorname{HP}$	GSH-agarose (C ₃)		
1-chloro-2,4-dinitrobenzene (CDNB)	23.378 ± 5.697	9.054 ± 0.420		
1,2-dichloro-4-nitrobenzene (DCNB)	0.033 ± 0.002	0.024 ± 0.002		
Sulfobromophthalein (BSP)	0.726 ± 0.275	0.081 ± 0.011		
Ethacrynic acid (EA)	1.281 ± 0.063	11.353 ± 0.620		
<i>p</i> -nitrobenzylchloride (NBC)	ND	ND		
Trans-4-phenyl-3-butene-2-one (PBO)	ND	ND		
Nitrocinnamaldehyde (NCA)	ND	ND		

Table 5.2 Substrate specificity of *Donax* sp. GSTs purified using $GSTrap^{TM}$ HP and GSH-agarose (C₃) matrices.

*Values are means \pm SD taken from three independent replications.

*ND, No detected activity.

5.6 IDENTIFICATION OF PURIFIED GSTs USING MALDI-TOFF

Spots obtained from GSTrapTM HP labeled as 2 to 8 in Figure 5.5 were subjected to tryptic digestion and analyzed using MALDI-TOF. Peptides generated from each spot were used for protein identification using ProFound software. However, all peptides generated showed no significant identity or 'hits' with the current GSTs protein database. The list of tryptic peptide masses of aforementioned spots can be seen in Appendix I.

CHAPTER 6

DISCUSSION

6.1 PURIFICATION OF GSTs USING GSH-AGAROSE BASED MATRICES

GSH-agarose matrices are commonly used for GST purification in recent years. The application of these matrices is straight forward, exploiting the basic knowledge of GST-GSH interaction in *in vivo* detoxification process. Theoretically, homogenized sample will pass through the immobilized GSH and GSTs in the sample bind tightly to this GSH during the process. The bound GSTs can be recovered by changing the elution conditions which loosen the binding of GST-GSH. In this study, a 10 mM GSH solution that has higher affinity towards bound GSTs compared to the immobilized GSH was used to pull the enzymes from the matrix. The advantage of using GSH to elute GSTs is due to the fact that GSH acts as stabilizing agent rather than inhibitor thus makes them able to preserve the enzymes activity (Habig et al., 1974).

The application of 10 mM GSH in this study was sufficient to collect bound proteins from both matrices, indicated by total yield percentage of eluate and void that gave almost 100% recovery. However, Alias (2006) reported that 20 mM GSH was required to elute *Drosophila melanogaster* GSTs from GSH-agarose (C₁₂). Current study indicated that *Donax* sp. GSTs bind to GSTrapTMHP in a manner less tight than *D.melanogaster* GSTs. This dissimilarity is probably due to protein composition differences in the samples used. When GSH-agarose (C₁₂) was used, Alias (2006) had successfully isolated Delta and Sigma class of GSTs, plus one additional predicted epsilon GST enzyme. Since the previously mentioned GSTs are exclusive to insect, it is hypothesized that GSTs obtained in this experiment was totally different from those isolated by Alias (2006). Therefore, different classes of GSTs *Donax* sp. may require different concentration of GSH.

The use of GSTrapTM HP and GSH-agarose (C₃) matrix in this study produced interesting results, in fact some points are worthy of note. From the observation, it is revealed that both matrices were not capable to bind all GSTs efficiently denoted by the presence of activity towards CDNB in the void effluent (Table 5.1). The residual activity in void fractions suggested the presence of remaining GSTs that failed to bind to affinity matrix. Since *Donax* sp. flesh was used, it is anticipated that global GSTs composed of wider classes while GSH-agarose matrices were selective towards specific group of GSTs (Clark et al., 1990). Clark et al. (1990) also reported the capability of GSH-agarose (C₃) to capture CDNB-active *Musca domestica* GSTs but not to other isozymes group. Therefore, there is possibility that GSH-agarose (C₁₂ and C₃) could not retain some of *Donax* sp. GSTs and those unbound GSTs remain in the void fraction. In fact, Alias (2006) noted that activities were still detected in the flow-through fraction when GSH-agarose (C₃) and (C₁₂) were used.

This study also revealed GSTrapTMHP capability to recover more *Donax* sp. enzymes compared to GSH-agarose (C₃), which count about 3 times higher (Table 5.1). This finding is comparable to Alias (2006) who succeeded to isolate fruit fly GSTs from GSH-agarose (C₁₂) as much as 2-fold than GSH-agarose (C₃). These results indicated GSTrapTM HP capability to capture GSTs in a larger aptitude than GSH-agarose (C₃). As mentioned in earlier chapter, both matrices use the same ligand i.e GSH to capture GST molecules thus their appearance are similar, in exception to the arrangement of their linker arm. Since both matrices were attached to the same ligand (GSH), they will behave similarly thus has similar ability to trap the same active site of GST molecules
but practically that did not happen. It is hypothesized that this dissimilar result is contributed by the different length of linker arm that hold GSH. Results obtained from this study and Alias (2006) clarify the ability of GSH-agarose (C_{12}) to capture more GSTs compared to GSH-agarose (C_3) therefore being an indication that GSH-agarose (C_{12}) may have better sample exposure during the purification process. It is logical that the nature of GSH-agarose (C_{12}) longer arm contributed to this significant exposure difference to GSH-agarose (C_3) as illustrated in Figure 6.1.

Figure 6.1 Effect of different linker arm on GSH-agarose $(C_{12} \text{ and } C_3)$ on their behavior to capture GST. (a) GSH-agarose (C_{12}) (b) GSHagarose (C_3)

Enzyme activity was calculated to measure the quantity of active enzyme present per volume of solution in a specified condition or can be simplified as moles of substrates converted per unit time. The magnitude of enzyme activity that corresponds to total active enzyme recovered from the whole process can be used to determine the success of a purification strategy. In this study, total activity i.e. total number of enzyme units showed that purification of *Donax* sp. GST using GSTrapTMHP managed to get higher total activity, which was about 9-fold than what was obtained from GSH-agarose (C₃) (Table 5.1). This result is expected since total protein recovered from GSTrapTMHP was more than GSTs obtained from GSH-agarose (C₃), as mentioned in the earlier discussion. This is due to the fact that the rate of an enzymatic reaction is related to the concentration of enzyme-substrate complex (Voet & Voet, 2004). In principle, the formation of enzyme-substrate complex takes place within the active site of the enzymes which refers to the key and lock model. According to this law, if a sample contain larger amount of enzymes, the availability of active site will also be increased thus cause the increase in rate of reaction which represented by the enzymes activity.

As shown in Table 5.1, the use of $GSTrap^{TM}HP$ produced 12% yield of CDNB-active GSTs compared to 3% in GSH-agarose (C₃). This pattern is parallel to *Donax* sp. GSTs total activity which has reduced when GSH-agarose (C₃) was used to purify GSTs from the sample. This expectation is based on the principle which yield is reported as percent of total activity remaining from crude homogenate (William, 2005). The decrease of yield percentage in GSH-agarose (C₃) is related to the low amount of total protein available in the sample that was measured by total activity of the protein.

6.2 GEL VISUALIZATION

In present study, molecular weight of the purified GSTs from GSTrapTMHP were 29 and 26 kDa while GSH-agarose (C₃) revealed three subunits at 29, 28, and 26 kDa (Figure 5.3 and 5.4). The presence of two bands in GSTrapTMHP and three bands in GSH-agarose (C₃) signify high possibility of at least two and three different GST classes were successfully isolated from these purification procedures. Other bands were not detected outside 25 - 30 kDa range on both SDS-PAGE gels, means no contamination occur in GSTs purification using both matrices. It can be assumed that *Donax* sp. GSTs isolated from GSTrapTMHP and GSH-agarose (C₃) were highly pure.

GSTs obtained in this study fall within general GSTs range of 23-30 kDa. Previous study by Vidal et al. (2002) reported isolation of four subunits GSTs from Müller with apparent molecular weight between 27.2 to 30.2 kDa. Another work by Blanchette and Singh (1999) were able to purify two major and two minor subunit bands of northern quahog *Mercinaria mercinaria* ranging from 22 to 27 kDa. Supported by these data, it is highly recommended that all subunits discovered in this study were GSTs. Interestingly, result obtained in this study was inconsistent with Alias (2006) and Clark et al. (1990) where they reported less subunit was obtained when GSH-agarose (C₃) was used to purify GSTs from *D. melanogaster* and *M. domestica*. Furthermore, Figure 5.3 and 5.4 shows despite band thickness between subunits in GSTrapTMHP, the band intensity is not significant compared to GSTs obtained from GSH-agarose (C₃), meaning that the concentration of both subunits trapped by GSTrapTMHP were similar.

Assuming that substances in sample solution were evenly distributed, GSTrapTMHP have potential to capture both small and large molecules of GSTs because

it has higher exposure hence samples become more accessible. This might be the reason why GST subunits from GSTrapTMHP had similar intensity when viewed on SDS-PAGE showed that this matrix is capable to arrest small and large GSTs at similar capacity. Unlike GSTrapTMHP, GSH-agarose (C_3) contain shorter arm that make GSH become less accessible. Even so, image analysis showed that this matrix was able to trap more small molecules compared to the larger ones, indicated by the intensity of the bands in Figure 5.4. This result is consistent with result obtained by Alias (2006) which was able to isolate GSTs sized 23.5 kDa by using GSH-agarose (C₃) while GSHagarose (C_{12}) trapped GSTs sized 23.5 kDa plus 24.1 kDa. Other than that, Clark et al. (1990) reported that they managed to purify GSTs of 24 kDa using GSH-agarose (C_3) which was the smallest GST subunits trapped by BSP-GSH matrix. This phenomenon is quite interesting regardless of their limited ability to capture GSTs in larger quantity. It is known that smaller molecules in a solution possesses better distribution compared to larger molecule simply due to their size factor, these small molecules can be distributed nearer to the agarose beads compared to the larger molecules. For this reason, GSHagarose (C_3) may have advantage because of its shorter linker arm that enables binding of GSTs that cannot be reached by GSTrapTMHP.

However, analysis on SDS-PAGE is limited to the molecular mass only, means if there is more than one subunit have the same molecular mass; they will migrate at the same distance from the well and resolve at the same position on the gel. Therefore, single band is not necessarily denoting single protein but there is probability of multiple proteins present at the same size. For that reason, 2-DE was performed in order to have a better visualization of whole GSTs expressed in *Donax* sp.. The use of two different matrices in this study yielded different result with similar pattern; one spot was highly acidic, one spot appeared to be basic, and the rest resolved at the middle part of the gel (Figure 5.5).

GSTs obtained from GSTrapTMHP were distributed along the gel and produced nine spots at three different MW instead of two during SDS-PAGE (Figure 5.3 and 5.5 (a)). Therefore, it is concluded that the thicker band sized 26 kDa in Figure 5.3 actually consists of two different bands rather than one. It is assumed that they may present as the majority GSTs and joined together to form one single thick band as seen in SDS-PAGE gel. In comparison, GSTs extracted from GSH-agarose (C₃) had diverse MW distribution while the same protein showed only three bands in SDS-PAGE (Figure 5.4 and 5.5 (b)). This result is identical to those obtained from GSTrapTMHP where some of these GSTs fuse together becoming a single concentrated band in SDS-PAGE gel.

Apart of that, GSH-agarose (C₃) produced an interesting result where additional six spots which apparently invisible in the GSTrapTMHP were detected on the gel. This observation shows that despite their ability to recover lower amount of protein, GSH-agarose (C₃) was able to capture more GST isoforms compared to GSTrapTMHP which most of those extra spots were at the smaller and intermediate sizes which further support the fact that GSH-agarose (C₃) performs better for smaller molecules. However, this result is different in terms of number of classes obtained by Alias (2006). Alias (2006) managed to isolate specific group of *D.melanogaster* GSTs; GSTD1 and GSTD3 (MW=23.89) by using GSH-agarose (C₃) without the presence of CG16936 (MW=25.44) that was observed in GSH-agarose (C₁₂) and *S*-hexyl-GSH-agarose matrices. However, from the size perspective similar trend was observed. Therefore, an early assumption can be made; *Donax* sp. possesses more small classes of GSTs compared to the bigger classes of GSTs. That is the possible reason so far since GSH-

agarose (C_3) is expected to have preference in capturing smaller molecules as discussed earlier. This dissimilarity is a very attractive subject to be investigated. Moreover, Clark et al. (1990) also stated that the differences between GSH-agarose (C_{12}) and GSHagarose (C_3) is still not known whether due to the species differences or to properties of the matrix itself.

Although 2-DE can separate groups of protein according to their p*I*, this method however cannot show the actual p*I* value. Therefore, IEF was run to compare the p*I* value of samples GSTs with the commercial marker. From the Figure 5.6, it can be said that GSTs extracted from both matricess; GSTrapTMHP and GSH-agarose (C₃) showed similar pattern of resolution which was constant with the result from 2-DE. It can be seen that most isoforms resolved at the middle part of the gel (around 4.5 - 5.3) which match with the general p*I* value of soluble GSTs (Dixon et al. 2002, Kazemnejad et al., 2006). Other than that, more bands were appeared on the sample purified from GSHagarose (C₃), particularly in the area within p*I* 4.5 - 6.0 which was in line with 2-DE result where more spots were detected as seen in Figure 5.5 (c). A part of that, it is highly recommended that spots labeled as ii, iii, and 3 in Figure 5.5 (c) shared the same p*I* value thus grouped together becoming a single intense and thick band located near to p*I* 4.5.

It is inappropriate to classify GSTs only based on their p*I* value because many other factors should also be taken into consideration before GSTs can be sorted into specific group. However, *p*I value can be used as a guide to classify GSTs based on generalization made by Mannervik & Danielson (1988); basic alpha (p*I* 8-11), the neutral mu (p*I* 5-7), and acidic pi (p*I* less than 5). From this range, it is predicted that

GSTs obtained from both matrices are from pi, mu, and alpha classes. This classification is still not supported with enough data.

6.3 SUBSTRATE SPECIFICITY

Determination of GSTs substrate specificity are well worth as it can be used to assess enzymes physiological role and is useful in characterization process. It is known that structural features of GSTs have significant catalytic similarity and differences among the GSTs classes (Blanchette et al., 2007). As mentioned earlier, despite the common use of substrate enzymatic activity in GSTs classification, this approach is also known to yield highly variable result and many class-defining substrates show cross reactivity between the major classes. Even so, other than to identify the range of substrate GSTs can react with, it is appropriate to mention that substrate specificity analysis is useful to provide a clue in GST classification and support other classification approaches.

Blanchette and co-workers (2007) in their paper reviewed that GST classes share some remarkable similarities in their G-site homology and mechanisms but shows a high degree of variability in their H-site homology. As mentioned in previous chapter, H-site on the GST subunit is essential for electrophilic substrates binding thus variation of H-site structure among GST classes will directly affect the acceptance of electophiles substances. For instance, Singh et al. (2001) found that GST-2 had significant glutathione-conjugating activity towards 4-hydroxynonenal (4-HNE) despite low activity with typical GST substrates such as aryl-alkyl halides, epoxides, and nitroaromatic compounds. Later, a structural study of GST-2 conducted by Agianian et al. (2003) revealed there were significant differences in H-site structure of GST-2 compared to the other sigma GSTs as well as alpha 4-4. A part of that, their study displayed the surface of H-site GST-2 consist of a shallow largely flat surface that constitute a novel topography without a prominent hydrophobic-binding pocket due to the distinct orientation of helix α 6. In addition to that, flat topography of the H-site was also contributed by the presence of Y208 residue which was found to "filling up" the space that is usually a hydrophobic cavity which binds the hydrophobic moiety of the electrophilic co-substrate. This unique topology of GST-2 is actually consistent with the geometry and polarity of 4-HNE, in fact it fixes the carbonyl oxygen and C-3 carbon in a suitable positions for catalysis. That is the reason why GST-2 showed remarkable activity towards 4-HNE compared to the other comparable GSTs.

In this study, a set of substrates; CDNB, DCNB, BSP, EA, NBC, PBO, and NCA were used to determine the specificity range of GSTs purified from GSTrapTM HP and GSH-agarose (C_3) matrices. GSTs reaction towards substrates was measured by enzyme specific activity which in definition, specific activity is enzyme units per microgram of enzyme protein (Colowick & Kaplan, 1976; Harisha, 2006). Result in Table 5.2 shows both purified extracts were reacted towards CDNB, DCNB, BSP, and EA. GSTs extracted from GSTrapTM HP showed higher activity towards all mentioned substrates except for EA. This occurrence is expected since the total protein of GSTs purified from $GSTrap^{TM}$ HP is higher than GSTs purified from GSH-agarose (C₃) which in turn affect the total activity of enzyme and directly cause the increase in specific activity. The specific activity is then having influence in the purification factor because purification factor is measured by the change in specific activity relative to the crude homogenate (Williams, 2005). That is the reason why purification fold of GSTrapTM HP was higher than GSH-agarose (C_3) (Table 5.1). In addition to that, higher purification factor obtained in GSTrapTM HP is due to the presence of more specific GSTs purified from this matrix compared to the GSH-agarose (C_3) which was represented by less number of spots appeared on the 2-DE gel. A part of that, no activity was detected when samples were tested with NBC, PBO, and NCA for both matrices. The reason behind higher EA activity observed from GSH-agarose (C_3) will be discussed later.

Result in Table 5.2 shows high possibility of GSTs obtained from both matrices were pi- and mu-GSTs classes. This is because GSTs from both matrices exhibit activity towards BSP and DCNB which are specific to mu-class, as well as active with EA which is specific to pi-class GSTs (Blanchette et al., 2007; Huang et al., 2008; Mannervik & Danielson, 1988; Mannervik et al., 1985; Yang et al., 2003; Yang et al., 2004; Vidal et al., 2002). Therefore, the basic GST obtained during 2-DE is probably not an alpha-class GST but is actually a mu-class GST since no activity towards NBC and NCA were observed.

A part of that, it is observed that GSTs purified from GSH-agarose (C₃) showed higher activity towards EA compared to GSTs purified from GSTrapTM HP. From the 2-D and IEF gel observation, it is inferred that this extensive reactivity is due to the presence of additional spots designated as i, ii, iii, iv, v, and vi (Figure 5.5). These aforementioned spots are predicted belong to the pi-class of GSTs since GSTs purified from GSH-agarose (C₃) exhibit significant activity towards EA and resolved at acidic part of the gel during IEF (Figure 5.6). Many studies on bivalves had reported that activity towards EA is contributed by the presence of pi-class GSTs (Vidal et al., 2002, Yang et al., 2003). In addition to that, it is no surprise that pi-class of GSTs present as majority class in *Donax* sp. since finding of pi-class GSTs of molluscs had been reported by many researchers (Yang et al., 2003). Furthermore, it appears that pi-class GSTs are encountered in most aquatic invertebrate and vertebrate species (Yang et al., 2004; Pérez-López et al., 2000).

6.4 IDENTIFICATION OF GSTs OBTAINED FROM GSTrapTM HP MATRIX

The success of protein identification using mass spectrometer-based approach depends on several factors, including most importantly the quality of mass spectrometer data and also the accuracy of the database. Previous studies on bivalve GSTs identification has been successfully done by using this simple procedure of MALDI-TOF (Feng & Singh, 2009; Yang et al., 2004) thus giving hope that this approach will bring success in the current studies. An attempt to identify GSTs obtained in this study has been made by using MALDI-TOF to support data obtained from biochemical analysis.

However, no significant 'hits' on GSTs were observed when generated peptide masses were compared to the entries in Mascot and ProFound. Even though there are many GSTs have been fully characterized from other organism but noted that the full complement of GSTs has not been studied in marine organisms (Blanchette et al., 2007). This limitation makes classification of partially characterized GSTs becomes extremely difficult since successful application of peptide mass fingerprinting is highly dependent on the closest match of unknown protein to the available protein sequence in the database. Furthermore, cross-species identification is only possible for proteins with large amounts of sequence identity; homology is not sufficient (Henzel et al., 2003). Similar to current study, Rodriguez-Ortega et al. (2003) reported that despite the good MALDI-TOF spectra obtained from *Chamaelea gallina*, only 4 proteins out of 15 analyzed spots were identified. Poor representation of bivalve sequence databases is known to be the major cause of difficulty in identifying bivalve proteins (Blanchette et al., 2007). Later evidence of fully characterized marine GSTs and the response of the partially characterized GSTs to immunochemical reactivity showed that the marine GSTs must constitute a dissimilar branch in the GST evolutionary process (Blanchette et al., 2007). Therefore, possibilities of distinct bivalves GSTs features in combination with incomplete database may be a contributing factor of failure in the protein identification.

CHAPTER 7

CONCLUSION

This study was conducted to isolate and purify GSTs from a local bivalve species, *Donax* sp. subsequently investigate the range of substrate acceptance of the purified GSTs. In addition to that, MALDI-TOF analysis was conducted as an attempt to classify proteins obtained from the purification method using GSTrapTM HP.

From data collected in this study, it can be concluded that *Donax* sp. GSTs have been successfully purified using two different GSH-agarose based matrices columns; 1) GSTrapTM HP which is the commercial column of GSH-agarose (C_{12}) and 2) GSHagarose (C_3). This study discovered remis GSTs are active towards CDNB, DCNB, BSP, and EA, but inactive with NBC, NCA, and PBO. Nevertheless, no significant 'hit' were found when tryptic digested peptide masses were compared to the existence database using Mascot and ProFound software. Even though no significant score for peptide mapping, it is assumed that GSTs obtained in this study are belong to pi- and mu-class of GSTs which have been recorded in different bivalves' species before. This assumption is made based on the current result obtained from SDS-PAGE, 2-DE, IEF gel, and substrate specificity assays study. Most probably that the six additional spots appeared on the 2-DE gel from GSTs purified from GSH-agarose (C_3) are belonged to pi-class GSTs due to an extensive EA activity compared to GSTs purified from GSTrapTM HP. However, further analysis need to be carried out in order to strengthen and validate the current findings.

Several exciting results obtained during this study are worthy of note. It is interesting that *Donax* sp. GSTs behave differently towards GSTrapTM HP and GSH-

agarose (C_3) matrices which more classes were recovered on GSH-agarose (C_3), unlike in previous studies that obtained more specific classes by using GSH-agarose (C_3). Based on the overall result, it is safe to assume that this difference is due to different linker arm length of both columns and the nature of size related molecule (protein) distribution in solution. Further studies are recommended especially to get a better understanding in the physical interaction between GSTs and immobilized GSH in the matrix.

Hopefully that current finding will be beneficial for the future study to get more comprehension on *Donax* sp. GSTs. As MALDI-TOF analysis did not give satisfactory result, more effort on characterization need to be carried out thus the nature of GSTs in *Donax* sp. can be understood in further details. The alternative approach of N-terminal amino acid sequencing should be considered as it has the benefit of providing the definitive sequence the N-terminus as protein in general are well conserved at the Ntermini part. Several aspects may need to be evaluated and considered before further research is conducted because often the results obtained in laboratory are rather conflicting with GSTs activity in the environmental studies which probably due to the fact that the expression of some bivalve GSTs are tissue-dependent. Therefore, a molecular approach may be more relevant to study the induction or inhibition of specific GST isozymes in environmental studies.

REFERENCES

- Alias, Z. (2006). The proteome of insect Glutathione S-Transferases in response to toxic challenge. Ph.D Thesis. Victoria University of Wellington.
- Alias, Z. & Clark, A.G. (2007). Studies on the Glutathione S-transferases proteome of adult Drosophila melanogaster. Responsiveness to chemical challenge. Proteomics, 7, 3618-3628.
- Agianian, B., Tucker, P.A., Schouten, A., Leonard, K., Bullard, B., & Gros, P. (2003). Structure of Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. J. Mol. Biol, 326, 151-165.
- Amstrong, R.N. (1991). Glutathione S-transferases : reaction mechanism, structure, and function. Chem. Res. Toxicol., 4, 131-140.
- Antognelli, C., Francesca, B., Andrea, P., Roberta, F., Vincenzo, T., & Elvio, G. (2006). Activity changes of glyoxalase system enzymes and glutathione-S-transferase in the bivalve mollusc Scapharca inaequivalvis exposed to the organophosphate chlorpyrifos. *Pestic. Biochem. Physiol.*, 86, 72–77.
- Axarli, I.A., Dhavala, P., Papageorgiou, A.C., & Labrou, NE. (2000). Crystallographic and functional charactrerization of the fluorodifen inducible glutathione transferase from Glycine max reveals and active site topography suited for diphenylether herbicides and a novel L-site. J. Mol. Biol., 275, 24798-24806.
- Bebianno, M.J., Lopes, B., Guerra, L., Hoarau, P., & Ferreira, A.M. (2007). Glutathione S-transferases and cytochrome P450 activities in *Mytilus galloprovincialis* from the South coast of Portugal: Effect of abiotic factors. *Environ. Int.*,33, 550-558.
- Blanchette, B., Feng, X., & Singh, B.R. (2007). Marine glutathione S-transferases. Mar. Biotechnol., 9, 513-542.

- Blanchette, B. & Singh, B.R. (1999). Purification and characterization of the glutathione-S-transferases from the northern quahoq Mercinaria mercinaria. Mar. Biotechnol., 1, 74-80.
- Board, P.G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L.S., Schulte, G.K., Danley, D.E., Hoth, L.R., Griffor, M.C., Kamath, A.V., Rosner, M.H., Chrunyk, B.A., Perregaux, D.E., Gabel, C.A., Geoghegan, K.F., & Pandit, J. (2000). Identification, characterization, and crystal structure of the Omega class Glutathione Transferases. J. Biol. Chem., 275, 24798-24806.
- Boyland, E. & Chasseaud, F. (1969). The role of glutathione and glutathione Stransferases in mercapturic acid biosynthesis. Adv. Enzymol. Relat. Areas Mol. Biol., 32, 173-219.
- Bringans, S., Eriksen, S., Kendrick, T., Gopalakrishnakone, P., Livk, A., Lock, R., & Lipscombe, R. (2008). Proteomics analyses of the venom of *Heterometrus longimanus* (Asian black scorpion). *Proteomics*, 8, 1081-1096.
- Cajaraville, M.P., Bebianno, M.J., Blascoc, J., Porte, C., Sarasquete, C., & Viarengoe,
 A. (2000). The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula : a practical approach. *Sci. Total Environ.*, 249, 295-311.
- Chronopolou, E.G. & Labrou, N.E. (2009). Glutathione Transferases: Emerging multidisciplinary tools in red and green Biotechnology. *Recent Pat. Biotechnol.*, 3, 211-223.
- Clark, A.G., Letoa, M., & Ting, W.S. (1977). The purification by affinity chromatography of a glutathione *S*-transferase from larvae *Galleria mellonella*. *Life Sci.*, 20, 141-148.
- Clark, A.G., Marshall, S.N., & Qureshi, A.R. (1990). Synthesis and use of an isoformspecific affinity matrix in the purification of glutathione S-transferases from the house fly, *Musca domestica* (L.). *Protein Express. Purif.*, 1, 121-126.

- Colowick, S.P. & Kaplan, N.O. (1976). Methods in enzymology Volume XLV. Proteolytic Enzymes. Part B (Lorand, L.). San Diego : Academic Press, Inc.
- da Silva, A.Z., Zanette, J., Ferreira, J., F., Guzenski, J., Marques, M.R.F., & Bainy,
 A.C.D. (2005). Effects of salinity on biomarker responses in *Crasssostrea rhizophorae* (Mollusca, Bivalvia) exposed to diesel oil. *Ecotox. Environ. Safe..*,
 62, 376-382
- Deng, H., Huang, Y., & Zheng, S. (2009). Two epsilon glutathione S-transferase cDNAs from the common cutworm, Spodoptera litura: Characterization and developmental and induced expression by insecticides. J. Insect Physiol., 55, 1174–1183.
- Desmots, F., Rissel, M., Loyer, P., Turlin, B., & Guillouzo, A. (2001). Immunohistological analysis of Glutathione Transferase A4 distribution in several human tissues using a specific polyclonal antibody. J. Histoch. Cytochem., 49 (12), 1573-1579.
- Dirr, H., Reinemer, P., & Huber, R. (1994). X-Ray crystal structure of cytosolic Glutathione S-Transferases implication for protein architecture, substrate recognition and catalytic function. *Eur. J. Biochem.*, 220, 645-661.
- Dixon, D.P., Lapthorn, A., & Edwards, R. (2002). Plant glutathione transferases. *Genome Biol.*, 3(3), 1-10.
- Frova, C. (2006). Glutathione transferases in the genomics era: New insights and perspective. *Biomol. Eng.*, 23, 149–169.
- Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., & Whitehouse, C.M. (1990). Electrospray ionization – principles and practice. J. Mass spectrum. Rev.,9, 37-70.
- Feng, X. & Singh, B.R. (2009). Molecular identification of glutathione S-transferase gene and cDNAs of two isotypes from northern quahog (*Mercenaria mercenaria*). Comp. Biochem. and Physiol. (C), 154 (1), 25-36.

- Fitzpatrick, P.J., Krag, T.O.G., Højrup, P., & Sheehan, D. (1995). Characterization of glutathione S-transferase and a related glutathione-binding protein from gill of the blue mussel, *Mytilus edulis. Biochem. J.*, 305, 145-150.
- Fitzpatrick, P.J. & Sheehan, D. (1993). Separation of multiple forms of glutathione *S*-transferase from the blue mussel, *Mytilus edulis. Xenobiotica.*, 23 (8), 851-861.
- Görg, A., Weiss, W., & Dunn, M.J. (2004). Review : current two-dimensional electrophoresis technology for proteomics. *Proteomics*, 4, 3665-3685.
- Gould, S.C. & Calloway, S.B. (1980). Clams and brachiopods ; ships that pass in the night. *Palaebiology*, 6, 383-396.
- Gowland, B.T.G., McIntosha, A.D., Daviesa, I.M., Moffat, C.F., & Webster, L. (2002). Implications from a field study regarding the relationship between polycyclic aromatic hydrocarbons and glutathione S-transferase activity in mussels. *Mar. Environ. Res.*, 54, 231–235.
- Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). The first enzymatic step in mercapturic acid formation. *The J. Biol. Chem.*, 249 (22), 7130-7139.
- Halliwell, B. (1999). Antioxidant defense mechanisms : from the beginning to the end. *Free Radic. Res.*, 31, 261-272.
- Hansson, L.O., Bolton-Grob, R., Massoud, T., & Mannervik, B. (1999). Evolution of differential substrate specificities in Mu class glutathione transferases probed by DNA shuffling. J. Mol. Biol., 287, 265-276.
- Harisha, S. (2006). An introduction to practical biotechnology. New Delhi : Laxmi Publications (P) Ltd.
- Hayes, J.D., Flanagan, J.U., & Jowsey, I.R. (2005). Glutathione transferases. Annu. Rev. Pharmacol. Toxicol., 45, 51–88.

- Hayes, J.D. & Pulford, D.J. (1995). The glutathione S-transferase supergene family : regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. *Crit. Rev. Biochem. Mol. Biol.*, 30 (6), 445-600.
- Helm, M.M., Bourne, N., & Lovatelli, A. (2004). Hatchery culture of bivalves. A practical manual. FAO Fisheries Technical Paper. No. 471, Rome, 177 pp.
- Henzel, W.J., Watanabe, C., & Stults, J.T. (2003). Protein Identification: The Origin of Peptide Mass Fingerprinting. J. Am. Soc. Mass Spectrom., 14, 931–942.
- Hoarau, P., Garello, G., Gnassia-Barelli, M., Romeo, M., & Girard, P. (2002). Purification and partial characterization of seven glutathione S-transferase isoforms from the clam *Ruditapes decussates. Eur. J. Biochem.*, 269, 4359– 4366.
- Huang, Q., Liang, L., Wei, T., Zhang, D., & Zeng, Q-Y. (2008). Purification and partial characterization of glutathione transferase from the teleost *Monopteruse albus*. *Comp. Biochem. and Physiol. (C)*, 147, 96-100.
- Jakobsson, P.-J., Morgenstern, R., Mancini, J., Ford-Hutchinson, A., & Persson, B. (1999). Common structural features of MAPEG—a widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolism. *Protein Sci.*, 8, 689–692.
- Jia, Z., Zhu, H., Misra, H.P., & Li, Y. (2008). Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3*H*-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: Protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2nonenal, or hydrogen peroxide. *Brain Res.*, 1197, 159-169.
- Kaaya, A., Najimi, S., Ribera, D., Narbonne, J.F., & Moukrim, A. (1999).
 Characterization of Glutathione S-Transferases (GST) activities in *Perna perna* and *Mytilus galloprovincialis* used as a biomarker of pollution in the Agadir Marine Bay (South of Morocco). *Bull. Environ. Contam. Toxicol.*, 62, 623-629.

- Kazemnejad, S., Rasmi, Y., Sharifi, R., & Allameh, A. (2006). Class-Pi of glutathione S-transferases. *Iran. J. Biotechnol.*, 4, 1-16.
- Knapen, M.F.C.M, Zusterzeel, P.L.M., Peters, W.H.M., & Steegers, E.A.P. (1999). Glutathione and glutathione-related enzymes in reproduction. A review. *Eur. J. Obstet. Gynecol. Reprod. Bio.l*, 82, 171-184.
- Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*, 227, 680-685.
- Lee, Y-M., Lee, K-W., Park, H., Park, H.G., Raisuddin, Ahn, I-Y., Lee, J-S. (2007). Sequence, biochemical characteristics and expression of a novel Sigma-class of glutathione S-transferase from the intertidal copepod, Tigriopus japonicus with a possible role in antioxidant defense. *Chemosphere*, 69, 893-902.
- Leiers, B., Kampkötter, A., Grevelding, C.G., Link, C., D., Johnson, T.E., & Henkle-Dührsen, K. (2003). A stress-responsive glutathione S-transferase confers resistance to oxidative stress in *Caenorhabdits elegans*. *Free Rad. Biol. Med.*, 34 (11), 1405-1415.
- Liang, X.F., Li, G.G., He, S., & Huang, Y. (2007). Transcriptional responses of alphaand rho-class glutathione S-transferase genes in the liver of three freshwater fishes intraperitoneally injected with microcystin-LR : relationship of inducible expression and tolerance. J. Biochem. Mol. Toxicol., 21 (5), 289-298.
- Lognonné, J.L. (1994). 2D-PAGE analysis- a practical guide to principle critical parameters. *Cell. Mol. Biol.*, 40, 41-55.
- Looise, B.A.S., Holwerda, D.A., & Foekema, E.M. (1999). Induction of Glutathione S-Transerase in the freshwater bivalve Sphaerium couneum as a biomarker for short-term toxicity tests. Comp. Biochem. Physiol, (C), 113 (1), 103-107.
- Mannervik, B., & Danielson, U.H. (1988). Glutathione Transferases Structure and catalytic activity. *Crit. Rev. Biochem. Mol. Biol.*, 23 (3), 283-337.

- Mannervik, B. & Guthenberg, C. (1981). Glutathione transferase (human placenta). *Methods Enzymol.*, 77, 231-235.
- Mannervik, B., Alin, P., Guthenberg, C., Jensson, H., Tahir, M.K., Warholm, M., & Jornvall, H. (1985). Identification of three classes of cytosolic glutathione transferase common to several mammalian species : correlation between structural data and enzymatic properties. *Proc. Natl. Acad. Sci. USA*, 82, 7202-7206.
- Masella, R., DiBenedetto, R., Varì, R., Filesi, C., Giovannini, C., (2005). Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J. Nutr. Biochem., 16, 577–586.
- Meister, A. (1988). Glutathione metabolism and its selective modification. J. Biol. Chem., 263, 17205-17208.
- Neuhoff, V., Arold, N., Taube, D., & Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomasie Brilliant Blue G-250 and R-250. *Electrophoresis*, 9, 255-262.
- O' Farrell, P.H. (1975). High resolution 2-dimensional electrophoresis of proteins. J.Biol. Chem., 250, 4007-4021.
- Pabst, M.J., Habig, W.H., & Jakoby, W.B. (1973). Mercapturic acid formation: The several glutathione transferases of rat liver. *Biochem. Biophys. Res. Commun.*, 52 (4), 1123-1128.
- Park, H., Ahn, I-Y., Kim, H., Lee, J., & Shin, S.C. (2009). Glutathione S-transferase as a biomarker in the Antarctic bivalve Laternula elliptica after exposure to the polychlorinated biphenyl mixture Aroclor 1254. Comp. Biochem. Physiol.(C), 150, 528–536.

- Patterson, S.D. (2000). Proteomics : the industrialization of protein chemistry. *Curr. Opin. Biotechnol.*, 11 (4), 413-418.
- Patterson, S.D. & Aebersold, R.H. (2003). Proteomics : the first decade and beyond. *Nat. Genet.*, 33, 311-323.
- Pérez-López, M., Anglade, P., Bec-Ferté, M.P. (2000). Characterization of hepatic and extrahepatic glutathione S-transferases in rainbow trout (*Oncorhynchus mykiss*) and their induction by 3,3', 4,4'-tetrachlorobiphenyl. *Fish Physiol. Biochem.*, 22, 21-32.
- Prado, S., Romalde, J.L., Barja, J.L. (2010). Review of probiotics for use in bivalve hatcheries. *Vet. Microbiol.*, 145, 187-197.
- Robinson, A., Huttley, G.A., Booth, H.S., & Board, P.G. (2004). Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2hydroxychromene-2-carboxylate isomerases. *Biochem. J.*, 379, 541–552.
- Rodriguez-Ortega, M.J., Grosvik, B.E., Rodriguez-Ariza, A., Goksoyr, A., & Lopez-Barea, J. (2003). Changes in protein expression profiles in bivalve mollusks (*Chamaelea gallina*) exposed to four model environmental pollutants. *Proteomics*, 3, 1535-1543.
- Salinas, A.E, Wong, M. (1999). Glutathione S-Transferases A review. Curr. Med. Chem., 6, 279-309.
- Sheehan, D., McIntosh, J., Power, A., & Fitzpatrick, P.J. (1995). Drug metabolizing enzymes of mussels as bioindicators of chemical pollution. *Biochem. Soc. Trans.*, 23, 417-420.
- Sheehan, D., Meade, G., Foley, V.M., & Dowd, A. (2001). Structure, function and evolution of glutathione transferases : implications for classification of nonmammalian members of an ancient enzyme superfamily. *Biochem. J.*, 360, 1-16.

- Sheehan, D. & McDonagh, B. (2008). Oxidative stress and bivalves : A proteomic approach. *ISJ.*, 5, 110-123.
- Sheehan, D. & Power, A. (1999). Effects of seasonability on xenobiotic and antioxidant defence mechanisms of bivalve mollusks. *Comp. Biochem. Physiol.*(*C*), 123, 193-199.
- Simon, P.C. & van der Jagt, D.L. (1977). Purification of glutathione S-transferases from human liver by glutathione-affinity chromatography. Anal. Biochem., 82, 334-341.
- Singh, S.P., Coronella, J.A., Benes, H., Cochrane, B.J., & Zimniak, P. (2001). Catalytic function of *Drosophila melanogaster* glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. *Eur. J. Biochem.* 268 : 2912-2923.
- Spector, T. (1978). Refinement of the Coomasie Blue method of protein quantitation. Anal. Biochem., 86, 142-146.
- Tanaka, K., Wahi, H., Ido, Y., Akita, S., Yoshida, Y., & Yoshida, T. (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. *Rapid Commun. Mass Sp.*, 2, 151-153.
- Tanguy, A., Bierne, N., Saavedra, C., Pina, B., Bachère, E., Kube, M., Bazin, E., Bonhomme, F., Boudry, P., Boulo, V., Boutet, I., Cancela, L., Dossat, C., Favrel, P., Huvet, A., Jarque, S., Jollivet, D., Klages, S., Lapègue, S., Leite, R., Moal, J., Moraga, D., Reinhardt, R., Samain, J-F., Zouros, E., & Canario, A. (2008). Increasing genomic information in bivalves through new EST collections in four species : Development of new genetic markers for environmental studies and genome evolution. *Gene*, 408, 27-36.
- Thiede, B., Höhenwarter, W., Krah, A., Mattow, J., Schmid, M., Schmidt, F., & Jungblut, P.R. (2005). Peptide mass fingerprinting. *Methods*, 35, 237-247.
- Thom, R., Dixon, D.P., Edwards, R., Cole, D.J., & Lapthorn, A.J. (2001). The structure of a Zeta class glutathione S-transferase from *Arabidopsis thaliana*:

characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. *J. Mol. Biol.*, 308, 949–962.

- Towsend, D.M. & Tew, K.D. (2003). The role of glutathione-S-transferase in anticancer drug resistance. *Oncogene*, 22, 7369-7375.
- Vidal, M.L. & Narbonne, J.F. (2000). Characterization of Glutathione S-Transferase Activity in the Asiatic Clam Corbicula fluminea. Bull. Environ. Contam. Toxicol., 64, 455-462.
- Vidal M-L., Roumi, P., Debrauwer, L., & Narbonne, J-F. (2002). Purification and characterisation of glutathione S-transferases from the freshwater clam *Corbicula fluminea* (Müller). Comp. Biochem.Physiol.(C), 131, 477–489.
- Voet, D. & Voet, J. (2004). Biochemistry (Third edition). Hoboken, NJ : John Wiley & Sons, Inc.
- Vorum, S.N., & Blum, H. (2000, June). Vorum and Blum Procedures. Paper presented at 48th American Society for Mass Spectrometry Conference on Mass Spectrometry. Long Beach, CA, USA.
- Wang, Y., Qiu, L., Ranson, H., Lumjuan, N., Hemingway, J., Setzer, W.N., Meehan, E.J., & Chen, L. (2008). Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high high DDT-detoxifying activity. J. Struct. Biol., 164(2), 228-235.
- Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L., Humphery-Smith, I. (1995).
 Progress with gene-product mapping of Mollicutes : Mycoplasma genitalium. *Electrophoresi.*, 16 (7), 1090-1094.
- Wigger, M., Nawrocki, J.P., Watson, C.H., Eyler, J.R., & Benner, S.A. (1997). Assessing enzyme substrate specificity using combinatorial libraries and

electrospray ionization-fourier transform ion cyclotron resonance mass spectrometry. *Rapid Comm. Mass Spectrom.*, 11, 1749-1752.

- Williams, A. (2005). Overview of conventional chromatography. In R.E. Wrostad, E.A. Decker, S.J. Schwartz, & P. Sporns (Eds), *Handbook of food analytical chemistry, water, proteins, enzymes, lipids, and carbohydrates* (pp. 279-281). Hoboken, NJ : John Wiley & Sons, Ins.
- Won, S-J., Novillo, A., Custodia, N., Rie, M.T., Fitzgerald, K., Osada, M., & Callard, I.P. (2005). The freshwater mussel (*Elliptio complanata*) as a sentinel species : vitellogenin and steroid receptors. *Integr. Comp. Biol.*, 45, 72-80.
- Yang, H-L., Nie, L-J., Zhu, S-G., & Zhou, X-W. (2002). Purification and characterization of a novel glutathione S-transferase from Asaphis dichotoma. Biochem. Biophy. Res. Commun., 403, 202–208.
- Yang, H-L., Zeng, Q-Y., Nie, L-J., Zhu, S-G., & Zhou, X-W. (2003). Purification and characterization of a novel glutathione S-transferase from Atactodea striata. Biochem. Biophy. Res. Commun., 307, 626-631.
- Yang, H-L., Zeng, Q-Y., Li, E-Q., Zhu, S-G., & Zhou, X-W. (2004). Molecular cloning, expression and characterization of glutathione S-transferases from Mytilus edulis. Comp. Biochem. Physiol.(B), 139, 175-182.
- Ye, Z., Song, H., Higgins, J.P.T., Pharoah, P., & Danesh, J. (2006). Five glutathione S-Transferase gene variants in 23,452 cases of lung cancer and 30,397 controls: meta-analysis of 130 studies. *PLoS Med.*, 3 (4), 524-534.
- Zablotowicz, R.M., Hoagland, R.E., Locke, M.A, & Hickey, W.J. (1999). Glutathione-S-Transferase Activity and Metabolism of Glutathione Conjugates by Rhizosphere Bacteria. *Appl. Environ. Microbiol.*, 61 (3), 1054-1060

APPENDICES

APPENDIX A : Buffer solution preparation

 i) Homogenizing Buffer (500 µl protease inhibitor, 1.0 mM EDTA, 0.1 mM DTT, 0.1 mM PTU in Eluting Buffer

To prepare 50 ml homogenizing buffer, 0.5 ml of protease inhibitor (or 0.5 ml of 10 mM PMSF), 0.019 g of EDTA, 0.0008 g DTT and a half spatula were added in a beaker and dissolved in 50 ml eluting buffer.

ii) Eluting Buffer – 25 mM Sodium Phosphate Buffer, pH 7.4

3 g of NaH₂PO₄ was dissolved in approximately 900 ml of dH₂O. The pH was adjusted to 7.4 at 20 $^{\circ}$ C and the volume was made up to 1000 ml.

iii) Buffer A – 0.1 M Sodium Phosphate Buffer, pH 6.5

12 g of NaH₂PO₄ was dissolved in approximately 900 ml of dH₂O. The pH was adjusted to 6.5 at 20 $^{\circ}$ C and the volume was made up to 1000 ml.

iv) Buffer B - 0.1 M Tris Buffer, pH 9.0

12.114 g Tris base was dissolved in approximately 900 ml of dH_2O . The pH was adjusted to 9.0 at 20°C and the volume was made up to 1000 ml.

v) Buffer C - 0.1 M Sodium Phosphate Buffer, pH 7.5

12 g of NaH₂PO₄ was dissolved in approximately 900 ml of dH₂O and the pH was adjusted to 7.5 at 20 $^{\circ}$ C. The volume was then made up to 1000 ml.

APPENDIX B – Laemmli Discontinous SDS Polyacrylamide Gel Electrophoresis

i) SDS sample buffer

The buffer consisted of 62.5 mM Tris-HCl (pH 6.8), 20% glycerol, 2% SDS and 5% β -mercaptoethanol. To prepare a buffer solution of 2 ml, 0.25 ml of 0.5 M Tris-HCl (pH 6.8), 0.4 ml glycerol, 0.4 ml 10% SDS, 0.1 ml β -mercaptoethanol, 0.1 ml of 0.5% (w/v) bromophenol blue and 0.75 ml of mili-Q water were mixed. To prepare sample in sample buffer, the sample was diluted at least 1:4 ratio. Then, the sample was heated at 95^oC for 4 minutes.

ii) Electrophoresis (Running) Buffer

Running buffer was diluted from Novex® Tris-Glicine SDS Running Buffer (10X). To prepare 1000 ml 1X running buffer, 100 ml of stock was added into 900 ml of distilled water.

iii) Overlay solution (1% SDS)

To prepare 10 ml of overlay solution, 1 ml of 10% (w/v) SDS was mixed with 9 ml water.

iv) Stacking gel (0.125 M Tris-HCl, pH 6.8)

To prepare 10 ml 4% gel, 1.3 ml 30% Acrylamide/Bis, 2.5 ml 0.5 M Tris-HCl, pH 6.8, 0.1 ml 10% (w/v) SDS, 6.1 ml mili-Q water, 0.01 ml TEMED and 0.05 ml 10% (w/v) APS were mixed gently and poured into the electrophoresis plate. All the ingredients except TEMED and APS were mixed up together and degassed for about 5 minutes. The polymerization was initiated by addition of TEMED and APS followed by gentle swirling.

v) Separating gel (0.375 M Tris-HCl, pH 8.8)

To prepare 10 ml 12% gel, 4.0 ml 30% Acrylamide/Bis, 2.5 ml 0.5 M Tris-HCl, pH 6.8, 0.1 ml 10% (w/v) SDS, 3.4 ml mili-Q water, 0.01 ml TEMED and 0.05 ml 10% (w/v) APS were mixed gently and poured into the electrophoresis plate. All the ingredients except TEMED and APS were mixed up together and degassed for about 5 minutes. The polymerization was initiated by addition of TEMED and APS followed by gentle swirling.

APPENDIX C – Electrophoresis in Tris-Glicine Buffer System

i) IEF Cathode Buffer, pH 3-10

The cathode buffer was prepared by addition of 20 ml of 10X Novex® IEF Cathode buffer to 180 ml deionized water.

ii) IEF Anode Buffer, pH 3-10

To prepare 1000 ml of anode buffer 20 ml of 50X Novex® IEF Anode buffer was added to 980 ml deionized water.

iii) IEF sample buffer, pH 3-10

To prepare 10 ml of 2X IEF sample buffer, 2 ml of 10X Novex®IEF cathode buffer, pH 3-10 was added with 3 ml of glycerol. Then, the volume was adjusted to 10 ml with ultrapure water.

APPENDIX D – Coomasie Blue Reagent for Protein Determination

i) According to Spector (1978)

Coomasie Brilliant Blue G-250 (100 mg) was dissolved in 50 ml 95% ethanol. Then, 100 ml of 85% (w/v) phosphoric acid was added to this solution. The resulting solution was diluted to a final volume of 1 liter with distilled water. The solution was left overnight then filtered (Whatman paper) before used. A stock solution of 2mg/ml bovine serum albumin (BSA) was prepared in an appropriate buffer solution.

APPENDIX E – Substrate Preparation and Enzyme Assay conditions

i) 1-chloro-2,4-dinitrobenzene (CDNB)

2.85 ml Buffer A, 0.05 ml sample, 0.05 ml 60 mM GSH (0.0553 g in 3 ml Buffer A), and 0.05 ml 60 mM CDNB (0.2430 g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 340 nm. Molar absorption coefficient, ε_m is 9600 M⁻¹cm⁻¹.

ii) 1,2-dichloro-4-nitrobenzene (DCNB)

2.80 ml Buffer B, 0.10 ml sample, 0.05 ml 240 mM GSH (0.2212 g in 3 ml Buffer A), and 0.05 ml 24 mM DCNB (0.2430 g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 344 nm. Molar absorption coefficient, ε_m is 8400 M⁻¹cm⁻¹.

iii) *p*-nitrobenzylchloride (NBC)

2.60 ml Buffer A, 0.10 ml sample, 0.25 ml 60 mM GSH (0.0553 g in 3 ml Buffer A), and 0.05 ml 60 mM DCNB (0.2058 g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 310 nm. Molar absorption coefficient, ε_m is 1900 M⁻¹cm⁻¹.

iv) Sulfobromophthalein (BSP)

2.60 ml Buffer C, 0.10 ml sample, 0.25 ml 60 mM GSH (0.0553 g in 3 ml Buffer A), and 0.05 ml 2 mM BSP (0.0334g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 330 nm. Molar absorption coefficient, ϵ_m is 4500 M⁻¹cm⁻¹.

v) Ethacrynic acid (EA)

2.80 ml Buffer A, 0.10 ml sample, 0.05 ml 15 mM GSH (0.0138 g in 3 ml Buffer A), and 0.05 ml 12 mM EA (0.0727 g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 270 nm. Molar absorption coefficient, ϵ_m is 5000 M⁻¹cm⁻¹.

vi) Trans-4-phenyl-3-butene-2-one (PBO)

2.80 ml Buffer A, 0.10 ml sample, 0.05 ml 15 mM GSH (0.0138 g in 3 ml Buffer A), and 0.05 ml 3 mM PBO (0.0876 g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 290 nm. Molar absorption coefficient, ϵ_m is -24800 M⁻¹cm⁻¹.

vii) Nitrocinnamaldehyde (NCA)

2.80 ml Buffer A, 0.10 ml sample, 0.05 ml 60 mM GSH (0.0553 g in 3 ml Buffer A), and 0.05 ml 24 mM NCA (0.0876 g in 20 ml ethanol) were mixed. Changes of absorbance were recorded for 10 minutes at 360 nm. Molar absorption coefficient, ϵ_m is -3200 M⁻¹cm⁻¹.

APPENDIX F – Reagent for Proteomic Analysis

i) IPG Strip Rehydration Solution

To prepare 1 ml of rehydration solution, 0.48 g urea was dissolved in approximately 400 μ l mili-Q water followed by addition of 0.02 g CHAPS, 0.0015 g DTT, 0.0017 g thiourea, and 20 μ l ampholyte (pH 3-10). The content was made dissolved completely before the volume made up to 1 ml.

ii) Equibration solution (ES)

To prepare 20 ml of equilibration solution, 7.2 g urea was first dissolved in approximately 7 ml mili-Q water followed by addition of 0.67 ml 1.5 M Tris-HCl (pH 8.8), 6.9 ml glycerol, and 0.4 g SDS. The solution was then made up to 20 ml. For equilibration solution I, 12.5 mg DTT was added in 5 ml ES. In equilibration solution II, 0.225 g iodoacetamide and traces of bromophenol blue was added in 5 ml of equilibration solution.

iii) Agarose sealing solution

0.5 g agarose and traces of bromophenol blue were added into 100 ml of SDS electrophoresis buffer and swirled to disperse. The microwave was heated in a microwave until agarose was completely melted.

APPENDIX G – Standard Curve of BSA

Standard curve of protein using bovine serum Albumin.

Standard curve of log molecular mass (kDa) vs protein marker relative mobility (rf)

APPENDIX I – Peptide masses for GSTs purified from GSTrapTM**HP**

i) Spot 1

COM=Project: Proteomics, Spot Set: Proteomics\110117, Label: C7, Spot Id: 37869, Peak List Id: 84812, MS Job Run Id: 11316 805.44434 2393.0605 806.12457 1536.2112 832.3526 1682.6394 856.06854 1355.1366 860.53088 2742.8926 906.53296 2227.7385 935.56281 1454.874 988.6156 2856.8726 1044.0978 1592.2186 1153.6216 1338.2144 1179.6465 1075.1072 1300.1022 1242.1243 1353,7035 4701,4707 1424.7776 1160.3627 1609.8689 1297.0588 1723.967 1070.5883 1882.0631 1047.0588 2163.158 4339.7061 2273.2805 2803.9216 2289.27 2556.9602 BEGIN IONS PEPMASS=805.44434 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85441, MSMS Job_Run_Id: 11317, Comment: 112.11942 161.50586 129.14931 106.30453 158.12248 117.44826 172.07455 130.41632 175.1629 719.5589 230.16396 168.6049 245.18246 190.43617 262.20728 524.87402 299.20587 347.71268 315.23712 185.08289 317.21481 553.77612 322.26251 248.24748 342.21622 211.42622 359.24548 735.87701 376.28287 187.78241 386.27615 108.29222 402.29971 178.55859 412.30673 364.40042 472.32724 175.29825 489.36621 204.37746 614.30322 376.74203 617.17438 1292.2406 674.52985 487.28085 756,56195 350,35236 760.59796 377.70764 761.46417 447.23383 775.53491 541.57233 END IONS BEGIN IONS PEPMASS=856.06854 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85438, MSMS Job_Run_Id: 11317, Comment: 172.07457 124.13093 335.16943 121.5791 478.22446 155.34978 622.20343 180.13982 623.12183 209.18585 664.27234 401.522 665.3045 361.27896 666.14978 1455.0112 667.21533 771.11499 668.19098 397.92688 727.5943 290.22226

729,52734 195,37189 809.5401 408.72537 811.22107 1214.0892 812.17877 416.34741 813.26453 362.49289 END IONS BEGIN IONS PEPMASS=860.53088 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85442, MSMS Job_Run_Id: 11317, Comment: 244.2155 641.53528 304.24707 123.61678 335.17441 141.48631 357.3103 142.30511 433.3082 344.17725 480.29855 189.04816 487.33224 537.90991 504.36597 213.808 572.48956 275.56171 589.44147 295.36066 600.42828 338.73969 617.45978 798.02789 666.28992 401.57718 667.33783 503.42569 668.30426 346.79294 669.33813 717.52936 670.33582 420.89688 672.28406 255.31097 674.12177 258.15533 676.07391 359.60529 732.53613 2552.3015 814.34888 729.86505 816.28619 388.8212 END IONS BEGIN IONS PEPMASS=873.07318 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85431, MSMS Job_Run_Id: 11317, Comment: 175.16451 138.69629 682.13147 1565.0696 684.11084 972.66882 827.20532 516.27161 END IONS BEGIN IONS PEPMASS=935.56281 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85439, MSMS Job_Run_Id: 11317, Comment: 129.13455 137.7451 175.15306 612.8974 286.19672 277.24844 303.22183 124.86664 357.27811 191.71901 399.30322 176.44405 416.33575 118.5838 449.26788 199.80447 492.38342 137.29401 520.37457 167.80287 562.37311 230.32191 579.42249 643.69104 605.50134 189.56511 END IONS BEGIN IONS PEPMASS=988.6156 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85443, MSMS Job_Run_Id: 11317, Comment: 86.113708 105.44118 101.09611 119.1199 112.11079 149.00493 175.14795 1933.0784 246.16026 114.79177 271.21567 333.13217 288.25171 356.1041

325.24542 228.13741 343.24826 131.35847 359.26416 227.87845 374.22464 238.18694 384.31863 301.55612 401.35883 203.0831 430.29233 204.87416 455.38272 150.63055 457.29004 158.49028 472.3981 367.05432 475.28918 278.3345 487.32452 159.80385 499.33014 318.90948 542.42487 218.80927 559.46014 191.36612 560.38654 251.06351 570.38184 666.54834 588.39783 879.52368 646.48895 179.09666 701.49023 335.92618 774.56079 256.36917 815.56232 649.39484 833.58112 602.24658 944.68909 1333.4951 946.65295 147.13756 947.66705 440.9288 958.70587 339.49573 END IONS BEGIN IONS PEPMASS=1044.0978 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85440, MSMS Job_Run_Id: 11317, Comment: 175.16402 151.88373 855.16962 562.96124 856.16071 580.53839 857.19543 277.72809 858.16632 225.80754 END IONS BEGIN IONS PEPMASS=1179.6465 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85434, MSMS Job_Run_Id: 11317, Comment: 175.1535 213.73433 303.23907 111.91177 422.22574 196.6682 535.34265 182.91498 758.58051 295.93195 887.61377 197.61443 1135.7339 256.6676 1136.7223 288.77722 END IONS BEGIN IONS PEPMASS=1259.725 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85428, MSMS Job_Run_Id: 11317, Comment: 175.15074 222.04048 338.27057 152.10963 472.40161 143.60559 738.5379 236.90509 788.51447 193.85934 1067.2714 184.81827 1193.7946 1127.6311 1194.77 679.20837 1215.8136 654.06836 END IONS BEGIN IONS PEPMASS=1300.1022 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85436, MSMS Job_Run_Id: 11317, Comment: 175.15138 108.43137 338.22748 148.62193 1233.8075 1290.3977
1254.2378 466.0448 1256.2086 1593.7881 END IONS BEGIN IONS PEPMASS=1308.7161 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85430, MSMS Job_Run_Id: 11317, Comment: 175.15099 401.02942 288.26276 108.67432 303.26425 140.34285 338.25177 154.56978 417.29965 124.70306 530.39319 367.95047 620.44196 142.50497 659.49475 861.3075 774.54791 236.23747 1256.2971 2296.6089 1258.2892 442.85754 1259.2932 245.41379 END IONS BEGIN IONS PEPMASS=1353.7035 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85444, MSMS Job_Run_Id: 11317, Comment: 175.15334 585.93134 288.25391 223.72549 385.28479 201.91936 402.31354 2012.1079 475.27719 190.68469 500.32251 132.85336 517.36682 200.33467 589.33618 251.02515 664.45636 2519.1948 762.47168 161.28192 859.5451 577.29236 876.56433 544.76025 973.61609 260.8577 1311.8333 140.11517 END IONS BEGIN IONS PEPMASS=1424.7776 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85435, MSMS Job_Run_Id: 11317, Comment: 329.21738 139.74588 520.31909 112.50616 591.4198 804.9859 607.35229 517.23315 678.49054 168.12212 706.44354 239.45969 719.52753 580.23828 818.60583 493.06238 933.65576 197.82771 1359.89 264.74677 1381.8248 208.13914 END IONS BEGIN IONS PEPMASS=1475.822 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85429, MSMS Job_Run_Id: 11317, Comment: 175.14581 138.03108 464.31772 594.86255 489.38449 138.97231 588.47369 128.39273 716.54669 163.57602 987.59229 256.52493 END IONS BEGIN IONS PEPMASS=1609.8689 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85437, MSMS Job_Run_Id: 11317, Comment: 175.14409 100.44118 322.22177 908.87256

737.47156 873.91376 1225.7633 322.32767 1475.8939 224.82912 1518.9569 328.3071 1545.0844 442.62714 1545.99 12913.178 1566.9103 240.57861 END IONS BEGIN IONS PEPMASS=1638.9551 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85427, MSMS Job_Run_Id: 11317, Comment: 175.1528 155.04903 288.24695 271.27451 322.22849 107.72575 402.32986 751.48657 737.45306 127.16407 1210.8047 189.89729 1324.9347 138.54491 1575.9915 200.1637 1580.8563 262.81204 1595.0353 368.93317 1610.0421 139.21887 END IONS BEGIN IONS PEPMASS=1723.967 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85433, MSMS Job_Run_Id: 11317, Comment: 503.33044 283.60114 665,43964 128,52585 691.41852 159.4883 865.59729 178.54596 1033.718 1278.1686 1104.7831 297.13544 1191.8202 331.98044 1319.8547 172.68295 END IONS BEGIN IONS PEPMASS=1882.0631 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85432, MSMS Job_Run_Id: 11317, Comment: 646.42206 108.40604 809.52716 205.91454 813.5636 324.98325 1069.6736 1953.2593 1182.7709 323.53409 1393.9125 797.23315 1540.9818 725.91309 END IONS BEGIN IONS PEPMASS=2226.0891 CHARGE=1+ TITLE=Label: C7, Spot_Id: 37869, Peak_List_Id: 85426, MSMS Job_Run_Id: 11317, Comment: 1142.6111 504.16068 1144.6243 176.35255 1145.5912 212.42233 1271.6973 247.16327 1316.7662 258.35977 1318.7507 131.32346 1370.8218 256.86133 1445.8138 392.17926 1469.8049 400.12183 1811.1152 365.09631

END IONS

ii)	Spot	2
-----	------	---

)	Spot 2	
	COM=Project: Pr	oteomics, Spot Set: Proteomics\110117, Label: C8, Spot Id: 37870, Peak List Id: 84813, MS Job Run Id: 11316
	804.46222	20409.043
	805 47064	16973 896
	860 56152	77803 52
	006 56616	7300.457
	900.30010	2/302.437
	955.59747	5109.55
	988.64954	52/9/.262
	1065.5839	6528.9253
	1153.6514	8647.2637
	1179.6855	6711.4468
	1235.6202	5755.4082
	1284.6392	6349.873
	1307.7788	5652.626
	1308 754	9688 9375
	1353 7423	56375.91
	1424 8223	7827 806
	1422 8251	5060 2486
	1455.6251	3700.3480 7542.7002
	1493.8475	7542.7002
	1609.9001	63/0.1533
	1791.8607	6615.686
	2163.2288	32600
	BEGIN IONS	
	PEPMASS=804.4	6222
	CHARGE=1+	
	TITLE=Label: C8	3, Spot Id: 37870, Peak List Id: 85460, MSMS Job Run Id: 11317, Comment:
	112 10732	150 59406
	175 14917	899 16064
	246 16742	100 20182
	240.10742	125.1500
	257.20001	1/5.15202
	262.189	181.26311
	274.19397	329.85516
	299.20081	206.26802
	317.20486	259.63821
	359.22992	400.95773
	367.26212	119.71044
	385.27985	264.22992
	402 29886	727 07446
	403 25082	264.05368
	403.23002	201.01155
	412.3013	201.01155
	4/2.33/43	152.23155
	489.35355	110.53223
	514.34399	173.52689
	531.31873	399.07007
	612.36768	246.52164
	614.27588	243.77133
	617.15479	399.55429
	674.48126	412.87646
	713 5379	226 93781
	759 287/1	2241892
	760 40007	26 (291)
	100.4909/	200.3011
	//J.JUI//	2/1.34120
	END IONS	
	BEGIN IONS	
	PEPMASS=860.5	66152
	CHARGE=1+	
	TITLE=Label: C8	B, Spot_Id: 37870, Peak_List_Id: 85462, MSMS Job_Run_Id: 11317, Comment:
	244.21417	671.52612
	335.17352	103.96983
	357 31448	143 33492
	416 26727	139.47455
	T10.20121	127 5712
	433.31002	555.32215 129.69299
	480.2746	136,06336
	481.24817	118.02216
	482.27341	111.41644
	487.31308	616.64545
	504.37717	168.32312
	524.25232	167,92952
	572.4115	211.77733
	589 46771	401 1763
	600 /31/6	101.705 A82 74239
	000.45140	400.24530 702.15000
	017.44219	(7.), [, NN/7

667.26068	431.96576
668.28351	428.9639
669.36432	612.26886
670.28448	413.8064
671.33643	259.21527
672.20123	530.44086
674.10229	396.95364
676.09296	444.39905
732.53595	2397.3521
814.40857	439.30673
816.25922	530.53552
END IONS	
BEGIN IONS	
PEPMASS=935.5	59747
CHARGE=1+	
TITLE=Label: C8	3, Spot Id: 37870, Peak List Id: 85461, MSMS Job Run Id: 11317, Comment:
129.13826	144.59308
175.15387	661.9118
286.19257	311,96014
303.23926	179.01961
357.27463	259.069
399,29031	131 60364
416 33228	142.01505
449 27734	167 84929
520 37305	187 03995
562 38593	103 72126
579 42334	549 48645
605 45557	154 03149
819 59784	195.68419
END IONS	1/5.0041/
BEGIN IONS	
PEPMASS-951 4	53485
$CHARGE-1 \perp$	
TITLE-Label: CS	R Spot Id: 27870 Peak List Id: 85445 MSMS Job Pup Id: 11217 Comment:
112 10693	1/2 72208
175 16042	400 61337
115.10042	1/2 72312
617 /1001	265 28763
017.41901 886.61081	602 40042
END IONS	093.49042
END IONS	
DEGIN IONS	
PEPMASS=982.3	00110
CHARGE=1+	Spot Id. 27970 Dools List Id. 95450 MEMS Job Dyn. Id. 11217 Commonts
175 15196	222 205 40
1/3.13160	522.50509 810.86401
/80.90185	819.80401
935.68591	139.32841
936.50269	432.97421
END IONS	
BEGIN IONS	
PEPMASS=988.6	04954
CHARGE=1+	
TTTLE=Label: Co	3, Spot_Id: 3/8/0, Peak_List_Id: 85463, MSMS Job_Run_Id: 1131/, Comment:
1/5.14841	985.85767
271.22549	272.64658
288.25092	113.29029
325.2377	141.53139
359.27536	147.92529
384.31613	137.24825
401.34552	114.8522
450.50544	212.97904
457.27866	1/0.2555/
4/2.36047	214.51962
475.28064	162.37752
487.30975	110.54105
499.32468	157.33916
559.4707	158.49/89
570.37585	312.58554
5/1.35962	104.25291
588.40198	480.28821
646.48578	1/3.36455
/01.4848	245.28102

774.5495 145.19662 944 68506 716 76239 958.66681 253.71313 END IONS BEGIN IONS PEPMASS=1065.5839 CHARGE=1+ TITLE=Label: C8, Spot Id: 37870, Peak List Id: 85454, MSMS Job Run Id: 11317, Comment: 175.16824 384 28687 346.27686 135.97198 390.30463 147.82018 402.3764 427.84653 574 40613 110.89514 618.46027 268.7626 873.18719 327.95633 END IONS **BEGIN IONS** PEPMASS=1179.6855 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85456, MSMS Job_Run_Id: 11317, Comment: 175.14725 112.15686 END IONS BEGIN IONS PEPMASS=1222.7314 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85447, MSMS Job_Run_Id: 11317, Comment: 114.31373 175.15424 411.25092 327.77377 494.32846 106.80286 568.41083 214.86909 154.59575 622.40564 637.37384 187.11797 732.4469 382.17221 766.44696 485.27441 782.46667 244.34055 812.59784 526.51514 847.50732 203.19783 851.52747 435.64795 879.54333 990.82288 949.6579 661.53632 950.63489 349.45984 960.5777 503.95981 978.61383 1843.572 1079.6603 287.38544 1088.6831 261.74496 1091.7098 944.60913 427.1405 1157.6882 1161.7324 720.44116 1175.7866 336.37726 END IONS BEGIN IONS PEPMASS=1235.6202 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85451, MSMS Job_Run_Id: 11317, Comment: 175.14215 401.27451 458.36383 162.98221 701.51648 220.22708 END IONS BEGIN IONS PEPMASS=1284.6392 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85452, MSMS Job_Run_Id: 11317, Comment: 175.14703 201.76471 409.26999 153.32298 468.28259 177.2952 675.39313 122.64357 692.43219 2135.5496 END IONS BEGIN IONS PEPMASS=1308.754 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85459, MSMS Job_Run_Id: 11317, Comment:

314.36276 175.15491 303.25632 113.03928 338.26196 132.15187 400.30438 109.33163 530.41681 293.32306 775.01544 659.50317 774.5506 247.29179 END IONS BEGIN IONS PEPMASS=1353.7423 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85464, MSMS Job_Run_Id: 11317, Comment: 175 14857 433 13727 288.24362 151.42157 385.2843 177.69656 402.31247 1637 7347 475.2724 141.71541 478.32242 124.68226 500.34802 103.40881 169.19553 517.36847 664.45856 1957.3541 702.41821 103.0509 779 48529 102.41322 859.54865 496.28165 876.56549 464.79016 973.60864 221.28603 END IONS BEGIN IONS PEPMASS=1424.8223 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85458, MSMS Job_Run_Id: 11317, Comment: 591.39862 456.33334 607.32996 308.34717 179.59683 706.44031 719.51776 298.44455 818.57532 199.6012 END IONS BEGIN IONS PEPMASS=1445.8105 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85449, MSMS Job_Run_Id: 11317, Comment: 218.78625 437.31613 591.41534 193.99319 621.41962 205.69411 187.22095 784.5141 898.60321 211.75974 1009.6335 1307.4613 1146.7321 416.0192 1313.8656 505.44281 1381.8826 165.57909 299.75934 1400.847 END IONS BEGIN IONS PEPMASS=1475.8751 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85448, MSMS Job_Run_Id: 11317, Comment: 464.31064 248.80003 830.60681 139.93953 107.40086 987.62897 END IONS BEGIN IONS PEPMASS=1493.8475 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85457, MSMS Job_Run_Id: 11317, Comment: 1365.8475 772.99597 END IONS BEGIN IONS PEPMASS=1609.9001 CHARGE=1+ TITLE=Label: C8, Spot_Id: 37870, Peak_List_Id: 85453, MSMS Job_Run_Id: 11317, Comment: 175.15118 103.38235 322.21445 439.2406

737.45349	434.96298
1225.7693	143.90398
1475.8983	186.09221
1518.9156	250.45866
1543.9904	160.11156
1545.9894	6619.1211
1560.0626	168.33611
END IONS	

iii)	Spot 3	
	COM=Project: Pr	oteomics, Spot Set: Proteomics/110117, Label: C9, Spot Id: 37871, Peak List Id: 84814, MS Job Run Id: 11316
	804.45154	12100.285
	860.55396	134108.22
	864.51617	18202.994
	935.58771	98827.547
	969.67786	23113.891
	988.63855	177472.17
	1044.1158	13421.643
	1179.6718	15887.772
	1225.6942	12684.486
	1300.1083	17508.037
	1307.7596	15622.172
	1308 7471	19297 338
	1353 7332	218871.08
	1424 8108	34834 82
	1475 8574	11934 844
	1609 8964	25298 898
	1724 0072	20887 957
	1791 8453	11378 916
	1852 1019	11634 804
	2163 2188	14262 742
	BEGIN IONS	1202.7.12
	PEPMASS-804 /	15154
	CHARGE-1+	
	TITLE-Label: CO) Spot Id: 27871 Deak List Id: 85471 MSMS Job Pup Id: 11317 Comment:
	112 10414	7, 500_10, 57671, 1 eak_List_10, 65471, Misiyis 300_Kuii_10, 11517, Comment.
	112.10414	100.00/42
	129.1307	
	147.10003	100.50016
	130.12022	106.13465
	172.06143	473.0
	175.15002	10400776
	226.17401	123,00270
	244.22204	115.2/148
	240.1697	170.057
	257.20399	220.30049
	258.17595	15516056
	209.17641	23/1408/
	274.2213	249.00/55 105 71842
	260.19624	193.7645
	285 205 44	234.0662
	402 22506	334.07062 716.0427
	402.52590	/10.6405/
	403.24013	233.04/41 564 73270
	413.23003	204.12575
	617 14195	442,30737
	617.14165	1323.9004
	672 50757	310.21207 404 2025
	0/3.30/3/	494.2225
	0/4.4/5/1	1303.9099
	742.43403	332.01097 924.7.696
	754.48663	834./0880
	750.49257	1108.4432
	757.45374	524.10858 200.00018
	780.48932	389,90918
	782.45966	426.36084
	END IONS	
	BEGIN IONS	
	PEPMASS=860.3	5396
	CHARGE=1+	0. 4 11 27071 D. 1. 1. 4 11 07400 MONG L. D. 11 11017 C
	TITLE=Label: CS	9, Spo_1d: 3/8/1, Peak_List_Id: 85482, MSMS Job_Run_Id: 1131/, Comment:
	/0.080441	103.73130
	112.11401	300.23003
	129.13928	109.34103
	147.13779	158.0/384
	157.14688	4/0./55/5
	175.16182	163.24702
	226.19685	470.29413
	244.21539	5968.606
	259.20526	501.70737
	287.19928	297.99612
	304.23468	619.43823

348.22461	604.49347
357.32092	1180.1711
374.24023	303.73376
405.30481	501.49655
416.27942	1117.4048
428.37643	473.90353
433.30756	3202.9448
445.29691	855.59656
459 32507	700 67816
176 35574	573 31183
470.33374	5621 0100
504 25440	1010 1240
572 42221	2064 6470
572.45251	2004.0479
5/4.85638	492.99829
575.42456	363.56421
589.45697	3125.9219
591.84869	947.099
600.42871	3803.2119
617.45612	5466.2871
635.46765	883.97351
666.19293	956.63812
667.24414	839.1275
668.23315	666.95721
669.27301	733.6781
715.49799	882.43494
731 54993	1235 9187
732 53821	23317 363
811 26801	678 57810
811.20801	1010 6246
812.24800	1010.0240
816.32495	880.28033
818.59106	883.32166
END IONS	
BEGIN IONS	
PEPMASS=935.5	58771
CHARGE-1	
CHAROL-IT	
TITLE=Label: C9	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment:
TITLE=Label: C9 84.103889	O, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113
TITLE=Label: C9 84.103889 86.122452	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929
TITLE=Label: C9 84.103889 86.122452 101.10224	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178
TITLE=Label: C9 84.103889 86.122452 101.10224 112.11694	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938
TITLE=Label: C9 84.103889 86.122452 101.10224 112.11694 129.13826	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735
TITLE=Label: C9 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109
TITLE=Label: C9 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395
TITLE=Label: C5 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506 19318
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80850
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.219704 240.2042	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.24422
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1467.2655
TITLE=Label: C9 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655
TITLE=Label: C9 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175	 9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 20.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.92883 714.08295
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492 37073	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.92883 714.08295 278.25305 1018.3085 652.97076
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28855 492.37073 520.37872 534.38947 562.3913	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80059 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227 0883
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 405.2854 416.33527 421.27884 449.2885 492.37073 520.37872 534.38947 562.3913 579.42932	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.42102	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.49296	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386 382.22253
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 602.46550	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386 382.22253 718.51532
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386 382.22253 718.51532 506.8725
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28855 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558 708.48212	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 127.0983 4115.5386 382.22253 718.51532 506.8725 580.11835
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 405.2854 416.33527 421.27884 449.2885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558 708.48212 761.57037	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386 382.22253 718.51532 506.8725 580.11835 360.84933
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558 708.48212 761.57037 819.57489	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386 382.22253 718.51532 506.7725 580.11835 506.8725 580.11835 500.55188
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558 708.48212 761.57037 819.57489 836.60461	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 253.29705 1227.0983 4115.5386 382.22253 718.51532 506.11835 306.84933 301.51588 337.09402
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.2885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558 708.48212 761.57037 819.57489 836.60461 893.64612	y, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 278.25305 1018.3085 652.97076 952.62292 535.29755 1227.0983 4115.5386 382.22253 718.51532 506.8725 580.11835 360.84933 530.55188 337.09402 426.54663
TITLE=Label: CS 84.103889 86.122452 101.10224 112.11694 129.13826 158.12587 175.15602 228.21613 242.19704 249.2043 286.20148 293.17175 303.23215 357.27737 382.26392 399.30743 402.34378 405.2854 416.33527 421.27884 449.28885 492.37073 520.37872 534.38947 562.3913 579.42932 591.43103 605.48096 633.46558 708.48212 761.57037 819.57489 836.60461 893.64612 900.58746	9, Spot_Id: 37871, Peak_List_Id: 85481, MSMS Job_Run_Id: 11317, Comment: 399.63113 195.84929 185.7178 309.29938 667.40735 173.51109 3573.4395 506.19318 220.80959 140.34433 1657.3655 531.841 892.30396 1176.131 317.50983 842.33813 272.13373 272.92883 714.08295 253.297076 952.62292 535.29755 1227.0983 4115.5386 382.22253 718.51532 506.8725 580.11835 360.84933 530.55188 337.09402 426.54663 332.06546

BEGIN IONS PEPMASS=969.6 CHARGE=1+	57786
TITLE-Label: C	9 Spot Id: 37871 Peak List Id: 85478 MSMS Job Run Id: 11317 Comment:
129 14224	172 94514
125.14224	1037 3300
200 1/218	148 65741
200.14218	18/ 16005
242.20013	300 65634
271.21332	165 01617
327 26746	164.96959
342 28491	155.01363
359 30978	230.241
370 3154	278 54114
384 33636	302 72156
398 32382	199 39674
441.34561	221.10081
487.3847	178.03136
498.40836	217.87416
558.45532	207.56146
611.47998	305.34918
682.55896	208.06392
726.45514	430.70996
800.5896	358.35413
END IONS	
BEGIN IONS	
PEPMASS=988.6	53855
CHARGE=1+	
TITLE=Label: C9	9, Spot_Id: 37871, Peak_List_Id: 85483, MSMS Job_Run_Id: 11317, Comment:
86.115189	461.13922
101.09288	382.9902
112.10873	529.77051
129.13745	274.32959
157.13611	225.77226
158.11617	267.78226
175.14938	6501.8125
215.17787	216.33577
216.13921	231.75406
230.14832	296.69196
246.15556	428.6792
271.21918	1393.4207
288.24643	993.09009
325.23325	792.44519
343.25452	463.09024
359.2485	740.64948
374.22958	659.56946
384.32031	841.86285
401.35092	830.44208
430.30029	827.06628
455.36957	349.49921
457.28186	804.69238
472.39191	1201.804
475.29346	1087.1649
487.33459	570.23096
499.33823	768.45233
517.34369	701.01965
559.44623	11/0.04/6
560.42139	2205 5201
570.38092	2395.5291
5/1.9/168	472.73083
588.40520	2845.5170
040.49194	171.27000
0/3.4//29 692 4055 4	432.00233
083.49334	J11.0J7// 054.46004
701.40009	7J4.40204 761 41040
026 6557	218 0/608
920.0337 929.57968	A68 1/0/29
943 61777	400.14027 315 76355
944 60568	3701 281
947 67133	313 73212
958.69733	930.20996

END IONS	
BEGIN IONS	1150
PEPMASS=1044 CHARGE=1+	.1158
TITLE-Label CO) Spot Id: 37871 Deak List Id: 85473 MSMS Job Pup Id: 11317 Comment:
175 15828	479 08771
646 54242	514 67548
811.17273	883.14502
812.15918	245.39952
853.22223	506.76379
854.18524	413.0386
855.17303	1703.0658
856.1604	4853.0977
858.15326	529.11993
996.66077	330.147
997.70148	267.91092
999.02335	303.03824
END IONS REGIN IONS	
PEPMASS=1179	6718
CHARGE=1+	
TITLE=Label: C9	9. Spot Id: 37871, Peak List Id: 85474, MSMS Job Run Id: 11317, Comment:
112.11678	189.92216
129.14081	113.34248
175.15714	538.03418
242.19734	197.19432
293.16522	249.73328
303.23874	189.89149
371.23428	152.11101
404.29279	225.17398
406.27646	119.63517
422.22632	223.99534
535 33185	203.90338
646 41864	210 4749
663.42267	495.26376
758.56897	700.17468
887.62128	405.11591
934.57294	840.18005
1051.6698	1203.2523
1135.7118	672.92554
END IONS	
BEGIN IONS	
PEPMASS=1225	.6942
CHARGE=1+) Snot Id 27071 Deale List Id 95472 MSMS Job Due Id 11217 Comments
111LE=Label: CS	7, Spot_1d: 5/8/1, Peak_List_1d: 854/2, MiSMIS Job_Kun_1d: 1151/, Comment:
266 203	137 21956
379 32047	206 97115
411.24319	253.88858
494.34711	492.88727
604.37341	372.60086
622.42853	662.09521
637.39276	209.80002
675.43732	258.42654
732.46625	2106.3252
736.49927	586.24048
737.47668	186.40215
/00.4005/	387.27274
812.05501	1124 5031
851.52618	1484 8914
879.56091	504.44342
922.63391	236.43115
950.62659	1105.1604
960.6087	1613.2191
978.63495	969.30652
1079.6704	1218.2491
1088.7025	1059.4858
1091.7527	678.0993
1097.6903	7/80.04254
1101./8/8	393.99911

11/0 7105	220.05125
1162./125	238.95125
11/9.8149	342.4017
1190./30/ END IONS	295.82715
END IONS	
DEGIN IONS	0 1002
PEPMASS=130	0.1085
CHARGE=1+	20 Spot Id. 27971 Dooly List Id. 95475 MSMS Job Dup Id. 11217 Commont
175 1 479	25, Spot_Id: 57871, Peak_List_Id: 65475, MSMS Job_Kun_Id: 11517, Comment:
1/3.14/8	555.50020
200.22934	104.03080
402 22228	122 44206
402.33328	112.44290
421.2222	12.00245
520 32574	106.09380
591 /0967	181 51286
664 47137	214 87727
812 46967	532 633
1111 1602	482.00574
1212.2235	842.42798
1254.2473	3214.1716
1256.1979	17782.232
END IONS	
BEGIN IONS	
PEPMASS=130	8.7471
CHARGE=1+	
TITLE=Label: C	C9, Spot_Id: 37871, Peak_List_Id: 85476, MSMS Job_Run_Id: 11317, Comment:
84.100792	130.24794
112.11981	326.13293
129.13705	257.88712
175.15472	1283.6616
242.2197	141.62387
243.1796	338.8241
288.26129	343.784
303.25854	541.45349
338.24847	767.02954
356.28235	132.80107
358.32785	242.77499
385.28397	341.05725
400.29733	392.63382
402.31512	388.84509
406.28439	188.8098
417.31531	271.97281
433.27579	181.40555
515.40454	190.85718
530.41555	1045.0422
535.30145	100.13187
501 41418	230.42447
618 / 300/	148.45040
620 46198	A25 59045
659 49432	3131 8574
757 50262	253 84372
774.55072	678.64813
779.47021	411.1366
790.52539	825.50159
1256.2897	5381.3218
1258.2896	2322.5505
END IONS	
BEGIN IONS	
PEPMASS=135	3.7332
CHARGE=1+	
TITLE=Label: C	C9, Spot_Id: 37871, Peak_List_Id: 85484, MSMS Job_Run_Id: 11317, Comment:
70.091423	112.54903
112.11685	293.31689
129.1447	189.86703
136.10573	148.50697
175.15349	2932.1428
201.15942	136.07706
212.15242	136.82253
213.13316	184.60027
228.17519	127.43918

271.22748	167.45146
278.15985	284.97052
288 2/03	1086 9608
200.2475	245.05192
527.17589	243.03185
346.23312	229.80612
360.21878	254.4317
364.23593	201.38287
365 23703	277 44321
277 22600	220 70021
577.25088	259.70021
385.28311	988.34216
402.31335	10347.334
475.25522	1252.7732
478 30237	728 6828
402 28812	180.43546
492.20012	100.45340
499.33701	229.97023
500.33163	572.60669
517.35303	1130.6014
544.28961	224.91298
572 31427	219 29057
580 22625	05015504
569.52055	237.13374
622.47058	568.73517
647.42419	300.7384
664.45807	13543.895
674.42285	504.46408
702 43835	733 42499
702.43033	
752.48005	920.80300
/50.55853	286.73898
761.49921	274.03723
762.47552	678.15082
779.48785	312.37271
789 5152	314 17813
847 52527	470.02001
047.52527	2531.5770
859.53333	2521.5/69
864.61603	293.46671
876.5705	2910.488
960.62622	705.94269
973.60352	1552.2808
979 65839	903 93646
000 6264	253.32646
990.0204	052.23043
10/8./22/	505.27164
1088.7384	707.40601
1153.7438	765.85687
1207.8033	745.51117
1225 8024	724 6076
1223.0024	114,9070
1240.8011	414.80932
1309.8296	416.84189
1311.7958	324.46411
1323.8042	553.10046
END IONS	
BEGIN IONS	
DEDMASS-140	AC 9460
FEFMASS-140	0.6407
CHARGE=1+	
TITLE=Label: (C9, Spot_Id: 37871, Peak_List_Id: 85465, MSMS Job_Run_Id: 11317, Comment:
129.12764	128.73143
175.155	467.0867
288 2402	120 85375
357 24835	120,20124
295 24092	127.20727
385.24285	159.02879
402.30151	433.48666
591.39313	372.94559
629.39984	275.83264
639,39209	317.42978
646 45471	377 25186
757 46420	209 25117
/5/.40429	500.53117 201.64962
774.50763	291.64862
917.65015	437.73996
1050.7019	952.08954
1161.7461	2595.2473
1277 8492	923 83221
1277.0472	/
1/10/00/09	3422 8845
1226.8224	3422.8845
1336.8234	3422.8845 562.4057

1.1.1.1.74/	747 94067
1350 8865	547 0007
1359.8805	785 64060
1301.7901	1205 8127
1372.7098	776 49276
1377.9130	549 42702
1305./920	540.45795 692 67006
END IONS	082.07090
BEGIN IONS	
PEPMASS-1424	8108
CHARGE-1+	.0100
TITLE-Label: C	9 Spot Id: 37871 Peak List Id: 85480 MSMS Job Run Id: 11317 Comment:
129 12921	197 74533
159.10168	156.76471
228.20213	113.42429
329.20557	381.31296
378.21075	128.45195
464.24023	207.10571
465.24057	441.72397
492.28085	166.53284
520.33087	198.94389
536.29108	142.53101
543.32056	178.01134
564.32629	148.80113
573.39398	294.41754
591.39343	3038.2842
607.33441	1928.9888
635.39984	202.46796
678.43176	482.63934
706.42627	855.55811
719.51233	2237.7993
818.60303	1225.0669
931.39032	202.04813
933.03323.37910	222 80051
1000.0733	222 02669
1090.7255	288 17126
1207.7370	441 03513
END IONS	441.05515
BEGIN IONS	
PEPMASS=1475	.8574
CHARGE=1+	
TITLE=Label: C	9. Spot. Id: 37871. Peak List. Id: 85470. MSMS Job. Run. Id: 11317. Comment:
175.14499	348.82227
316 15781	
510.15761	110.56023
322.23123	110.56023 314.76981
322.23123 402.30124	110.56023 314.76981 118.35466
322.23123 402.30124 429.26096	110.56023 314.76981 118.35466 124.48022
322.23123 402.30124 429.26096 464.30652	110.56023 314.76981 118.35466 124.48022 835.32251
322.23123 402.30124 429.26096 464.30652 489.37665	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497
322.23123 402.30124 429.26096 464.30652 489.37665 588.47461	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 092.638	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1210.8664	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 600.28776
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1423.8820	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END LONS	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS PEPPMASS=1609	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS PEPMASS=1609 CHARGE=1+	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: C	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778 .8964 ∂ , Spot_Id: 37871, Peak_List_Id: 85479, MSMS Job_Run_Id: 11317, Comment:
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: C 175.1459	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 883.49768 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: C 175.1459 322.22614	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: C 175.1459 322.22614 437.25815	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: Ct 175.1459 322.22614 437.25815 508.30627	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: Ct 175.1459 322.22614 437.25815 508.30627 636.39252	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778
310.13781 322.23123 402.30124 429.26096 464.30652 489.37665 588.47461 591.41675 737.4588 768.47021 830.61328 883.49768 888.54053 987.638 1319.8644 1433.8829 END IONS BEGIN IONS BEGIN IONS PEPMASS=1609 CHARGE=1+ TITLE=Label: Ct 175.1459 322.22614 437.25815 508.30627 636.39252 645.42133	110.56023 314.76981 118.35466 124.48022 835.32251 196.06497 259.69281 185.44908 282.8056 241.4948 305.4585 266.9725 312.45844 429.83899 629.38776 507.25778

720.44269	216.06328
737.45953	3225.6838
852.52234	246.86058
906 5274	200 62151
1078 7207	210 54219
1078.7507	219.04210
1161./863	627.44214
1225.7592	1135.0323
1475.9238	893.51349
1501.9821	303.92786
1503 9701	326 39328
1518 0601	1427 4222
1514.0004	1427.4555 524.12970
1544.0994	534.13879
1545.0304	726.17682
1545.9957	41791.566
1550.9185	274.84869
1561.9576	321 37772
1564 0168	122 68846
1564.0052	244 41171
1304.9032	544.411/1
END IONS	
BEGIN IONS	
PEPMASS=1724	.0072
CHARGE=1+	
TITLE-Label: CO	9 Spot Id: 37871 Peak List Id: 85477 MSMS Job Run Id: 11317 Comment:
175 12742	125 (2705
1/5.15/42	135.03725
303.21548	134.72787
498.31601	234.27693
503.33304	546.8067
533,3656	103 77921
536 3728	145 43663
550.5726	244 64156
611.43658	244.64156
620.39337	103.78656
665.44507	289.96164
691.44855	432.74118
758 5332	220.21466
730.3332	400 25452
//8.34/5	490.23432
865.59369	755.51447
946.5766	199.2606
1015.703	288.0361
1033 7166	4874 3159
1104 7530	807 46716
1104.7557	259 (0424
1188.7552	358.09424
1191.7909	838.63763
1319.8734	429.20715
1433.0132	191.25578
END IONS	
DECINIONS	
BEOIN IONS	0.170
PEPMASS=1791	.8453
CHARGE=1+	
TITLE=Label: C9	9, Spot_Id: 37871, Peak_List_Id: 85468, MSMS Job_Run_Id: 11317, Comment:
112.11028	247.05215
175 1/218	325 4902
210.24022	114 57606
319.24033	114.57606
406.23474	110.13193
520.32422	187.61746
577.36365	104 4252
	194.4552
737 38751	256.61426
737.38751	194.4552 256.61426 206.04046
737.38751 753.39233	194.4552 256.61426 306.94046
737.38751 753.39233 797.47894	194.4552 256.61426 306.94046 118.94456
737.38751 753.39233 797.47894 854.49921	194.4552 256.61426 306.94046 118.94456 232.62326
737.38751 753.39233 797.47894 854.49921 894.52203	194.4352 256.61426 306.94046 118.94456 232.62326 235.74368
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339	194.4332 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338	194.4532 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232 360.54813
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338	194,4332 256,61426 306,94046 118,94456 232,62326 235,74368 268,09232 360,54813 098,14508
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543	194,4532 256,61426 306,94046 118,94456 232,62326 235,74368 268,09232 360,54813 298,14508
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266	194.4332 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232 360.54813 298.14508 119.96706
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638	194.4332 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232 360.54813 298.14508 119.96706 1351.063
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722	194,4332 256,61426 306,94046 118,94456 232,62326 235,74368 268,09232 360,54813 298,14508 119,96706 1351,063 393,04416
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722 1166.7142	194,4332 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232 360.54813 298.14508 119.96706 1351.063 393.04416 951.54108
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722 1166.7142 1168.7048	194,4332 256,61426 306,94046 118,94456 232,62326 235,74368 268,09232 360,54813 298,14508 119,96706 1351.063 393,04416 951,54108 273,55963
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722 1166.7142 1168.7048	194.4332 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232 360.54813 298.14508 119.96706 1351.063 393.04416 951.54108 373.55963
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722 1166.7142 1168.7048 1169.6871	194,4332 256,61426 306,94046 118,94456 232,62326 235,74368 268,09232 360,54813 298,14508 119,96706 1351,063 393,04416 951,54108 373,55963 157,57549
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722 1166.7142 1168.7048 1169.6871 1226.7102	194,4332 256.61426 306.94046 118.94456 232.62326 235.74368 268.09232 360.54813 298.14508 119.96706 1351.063 393.04416 951.54108 373.55963 157.57549 338.65524
737.38751 753.39233 797.47894 854.49921 894.52203 911.53339 921.52338 927.56543 929.54266 1095.6638 1097.6722 1166.7142 1168.7048 1169.6871 1226.7102 12253.7537	194,4532 256,61426 306,94046 118,94456 232,62326 235,74368 268,09232 360,54813 298,14508 119,96706 1351.063 393,04416 951,54108 373,55963 157,57549 338,65524 679,98816

1725,1085	414.36237
1743.9843	539.84125
1756.9011	273.76224
1761.9512	530.80951
1766.0652	352.71759
1768.1351	313.09091
END IONS BEGIN IONS	
PEPMASS=1852	2.1019
CHARGE=1+	
TITLE=Label: C	9, Spot_Id: 37871, Peak_List_Id: 85469, MSMS Job_Run_Id: 11317, Comment:
498.31564	338.41641
503.31934	218.00356
533.31995	131.18279
551.39197 611 39502	105.29705 305.96823
620 38263	155 69168
664.47192	437.44525
691.41461	266.47379
793.53613	635.77136
887.54901	145.80389
906.651	495.41321
993.71381	522.94043
1101.8043	3411.8787
1232.8373	753 56067
1408 9373	738 89636
1724.0953	928.39111
1808.124	427.09448
END IONS	
BEGIN IONS	
PEPMASS=1995	5.1289
CHARGE=1+	0 Grad Li 27071 Dark List Li 05467 MCMC Lab Dara Li 11217 Comment
111LE=Label: C	9, Spot_Id: 5/8/1, Peak_List_Id: 85467, MSMS Job_Run_Id: 11517, Comment:
274 21725	180.29411
338.23193	110.00609
554.34967	152.56491
626.37164	518.06787
739.48694	271.83551
863.5564	212.6812
886.60138	1157.3768
933.59497	739.69464
930.39381	499 30188
1113.6716	821.03528
1136.7267	383.47925
1200.7208	1910.4186
1256.8287	271.66058
1315.7697	753.22058
1369.8962	466.88779
1428.9104	508.59157
1690 1056	523 34253
1754.0682	2479.9375
1913.25	599.47955
1916.2516	485.19107
1925.1935	304.36008
1929.2745	384.4209
1931.2289	11079.924
1951 2074	225 53078
1973.0504	434.71011
END IONS	
BEGIN IONS	
PEPMASS=2384	1.1172
CHARGE=1+	
TTTLE=Label: C	9, Spot_Id: 3/8/1, Peak_List_Id: 85466, MSMS Job_Run_Id: 11317, Comment:
12.11051	135 98103
175.15314	268.38235
346.20175	144.6889

192.32019
232.69479
287.72342
462.99371
238.55186
200.20717
499.91599
495.61115
230.69127
253.09436
320.86884
410.5603
256.98816
225.32597
384.85635
369.10474
386.53915
266.85703
333.4256
700.49182
457.02084
248.84975
1280.0945

iv) S	Spot	4
-------	------	---

COM Duckets	Destermine Seat Set Destermine/110117 Label (10 Seat 1) 27972 Deal List 1) 94915 MS Labour 14 11216
COM=Project:	Proteomics, Spot Set: Proteomics (110117, Label: C10, Spot Id: 37872, Peak List Id: 84815, MS Job Run Id: 11316
805.45923	4890.4844
806.13171	3009.2764
832.35486	1586.7332
855.07593	2154.905
856.06567	2033.7329
873.07672	1929.347
906.54767	4911.7236
912.6109	9057.8711
1017.5901	4218.0044
1044.1235	3616.272
1097 6594	1872 3473
1153 6381	2673 5498
1173 7074	10/3.865
1200 6677	175.005
1300.109	3771 (M91
1401 8800	5/21/04/1
1491.0009	207.4407
1019.9878	
2105.2202	0002.3409
22/3.31/9	1902.4509
2289.3270	2428.4514
BEGIN IONS	
PEPMASS=805	5.45923
CHARGE=1+	
TITLE=Label:	U10, Spot_Id: 37872, Peak_List_Id: 85499, MSMS Job_Run_Id: 11317, Comment:
112.12329	154.91393
158.13577	109.66594
175.16292	629.77075
230.15817	206.96591
245.17796	209.28882
262.20782	495.29297
299.20084	334.9079
315.23441	148.20016
317.21396	577.43158
342.20901	170.76938
359.23993	834,9093
376 27887	194 40781
402.32874	226 03123
412,29251	313 38727
430.32672	253.82642
455 3187	186 04477
472 3551	312 03134
489 38165	182 57474
542 35651	125 5524
559 38318	170 1863
573 1734	127 5547
61/ 20202	101.00 0 206 27723
615 26025	2003/755
013.20933	212.20071
610.19105	101.02000
01/.1803	1552,1403
619.18347	208.33084
763.5238	284.32/35
7/0.4/815	147.41925
//1.49127	122.17533
775.53668	616.71765
END IONS	
BEGIN IONS	
PEPMASS=855	5.07593
CHARGE=1+	
TITLE=Label:	C10, Spot_Id: 37872, Peak_List_Id: 85492, MSMS Job_Run_Id: 11317, Comment:
581.06201	140.85744
621.10303	187.47444
622.11786	350.17935
623.09656	1168.069
664.15906	365.93683
665.15393	536.08337
666.11554	2831.2998
667.10187	1379.1648
668.07715	544.29895
670.0675	321.25024
809.2309	515.08716

810.18622	242.31035
811.15424	2563.9304
812 1/325	1980.026
012.14525	577 (30120
814.1358	570.42139
END IONS	
BEGIN IONS	
PEPMASS=873.0	07672
CHARGE-1+	
TITLE-Label C	10 Spot Id. 27972 Deals List Id. 95400 MSMS Job Dup Id. 11217 Comments
IIILE=Label: C	10, spot_10: 5/8/2, Peak_List_10: 83490, MSMS Job_Kun_10: 11517, Comment:
442.33487	188.73415
571.40125	298.84293
589.41339	201.79654
638 12012	441 5799
640 11507	405 36504
040.11397	420.30324
681.1629	432.79846
682.14862	2422.5439
684.11469	1825.0817
686.10663	155.1026
718.48303	239.76495
811 16296	814 19757
827 22748	1204 1176
827.22740	2274.1170
828.21277	324.76575
829.17407	1174.8942
832.58563	148.43846
END IONS	
BEGIN IONS	
DEDMASS_012	6100
CUADOE 1	3109
CHARGE=1+	
TITLE=Label: C	10, Spot_Id: 37872, Peak_List_Id: 85500, MSMS Job_Run_Id: 11317, Comment:
101.10111	134.95099
112.10908	108.42352
185,15228	131.64581
268 18542	233 30031
212 24622	165 48240
313.24622	165.48349
339.24344	179.31372
441.37787	275.27277
444.35699	1719.624
452.31461	309.25681
460 36017	2565 0768
409.30917 502.42072	2J0J.7708
585.45075	515.85547
600.47046	277.07925
664.54504	342.97003
665.60864	190.85509
720 12762	577 48254
723.0531	172.08286
725.0551	217.75(2)
128.54219	217.75050
738.59637	539.16882
766.58069	447.80939
783.6098	232.12808
784.59375	3943.77
849 52869	123 73678
047.52007	220.4012
882.00030	250.4215
ENDIONS	
BEGIN IONS	
PEPMASS=1017	.5901
CHARGE=1+	
TITLE=Label: C	10. Spot Id: 37872. Peak List Id: 85498. MSMS Job Run Id: 11317. Comment:
175 15886	666 37256
212 14204	000.57250
212.14394	203.27097
243.1783	130.02126
288.24896	183.92145
325.24585	197.95662
372.2525	468.89368
385 28476	268 44205
157 35029	116 66668
TJ1.JJ020	110.00000
403.33394	223.13113
482.35742	1781.8638
499.39178	737.9881
519.34058	114.27126
629,44836	287.50824
646 48572	1583 6359
775 54201	956 6669
113.34471	030.0002

973.57935 975.59448 END IONS	208.77089 398.16138
BEGIN IONS PEPMASS=1044	.1235
TITLE=Label: Cl	10, Spot_Id: 37872, Peak_List_Id: 85495, MSMS Job_Run_Id: 11317, Comment:
811.16656	554.64722
812.17615	335.23935
855.16266	1291.1954
856.17047	4253.4741
858.14307	594.35889
END IONS	387.8002
BEGIN IONS	
PEPMASS=1097	.6594
CHARGE=1+ TITLE=Label: C1	10 Spot Id: 37872 Peak List Id: 85489 MSMS Job Run Id: 11317 Comment:
112.11037	158.23532
129.1373	111.32405
175.15257	130.29266
255.18/35	122.9754 073 13733
316.16943	449.75229
369.24966	938.06372
386.27682	420.90982
401.28012	251.88995
429.27417	675.08459
485.36493	165.694
500.33252	216.2047
514.36353	182.8409 697 16364
556.41394	210.68315
613.43091	1032.4194
669.52032	305.86642
712.50275	258.41461
897.66772	637.19965
907.11981	153.58807
908.09985	292.09854
909.13379	885.03961
END IONS	200.74041
BEGIN IONS	
PEPMASS=1117	.5986
CHARGE=1+	10 Spot Id: 27972 Dook List Id: 95496 MSMS Job Dup Id: 11217 Comment:
272.21304	183.24245
437.33945	258.05319
518.32422	324.61411
633.37701	350.18555 753 39502
760.47235	339.03873
761.48138	284.38104
818.46735	254.9623
881.14105 882 11578	585.159 225 44984
923.17645	511.26416
925.1507	1295.4041
927.11261	404.55893
1068.2295	1/1.62482
END IONS	1401.0901
BEGIN IONS	
PEPMASS=1155	.6831
CHAKGE=1+ TITLE=Label: C1	0 Spot Id: 37872 Peak List Id: 85487 MSMS Job Run Id: 11317 Comment:
312.20514	188.07722
359.33093	239.92885
360.2652	170.9046

402.23032	164.95424
425.31412	283.37875
473.31088	219.20924
475.29739	103.2343
547.30017	123.3495
553.42615	174.64545
555.35724	251.6125
565 31268	370 20444
570 42401	318 38522
571 44043	4000 3687
592 22544	4777.5007
586 42022	369.4033
380.42932 692.52251	209.6723
065.55551	390.1425 780.20004
734.54272	789.30994
/96.5899/	849.45215
821.58051	552.75317
846.61639	346./8403
866.56616	149.93105
876.52893	251.21611
894.52673	576.51337
909.70679	330.25363
979.70691	441.41547
1091.8124	3033.8738
END IONS	
BEGIN IONS	
PEPMASS=1173	.7074
CHARGE=1+	
TITLE=Label: C	10 Spot Id: 37872 Peak List Id: 85491 MSMS Job Run Id: 11317 Comment:
129 12714	111 76523
175 15312	618 65167
116 36853	201.40015
545 42702	201.49915
620 40454	208 44800
050.40454	208.44609
655.52/16	220.57748
/59.4856	210.98163
802.60358	509.67502
809.49268	530.37146
873.63116	383.81375
999.69275	2078.8862
1017.6931	2288.8311
1113.7764	696.40063
1130.754	521.4754
1131.7698	1311.5061
END IONS	
BEGIN IONS	
PEPMASS=1200	.6677
CHARGE=1+	
TITLE-Label C	10 Spot Id: 37872 Peak List Id: 85497 MSMS Job Run Id: 11317 Comment:
266 14572	120 12220
412 20568	1069 4705
412.29308	1908.4723
525.40344	417.09502
639.45453	588.12695
676.40216	247.59988
754.51221	278.74261
789.49933	476.65884
825.55426	393.7691
926.57953	943.73828
943.63629	272.30679
954.61212	235.82953
1054.6536	823.48761
1072.6493	213.58304
1165 6805	115 61228
END IONS	
BEGIN IONS	
PEPMASS-1767	611
CHAPCE-1	AV11
TITI E_L abole O	10 Spot Id: 27872 Deak List Id: 85488 MCMC Lob Dun Id: 11217 Commont.
ATA 2469	17, Spor_ru. 57672, Feak_List_ru. 65466, WISWIS JOU_KUII_ru: 11517, Comment: 174.04510
+/4.2400 597 24161	210 6799
J07.J4101 701.41409	10.0700 1/6 50612
101.41498	440.30013
010.40327	270.97000
887.50195	328.32808

988.52283 1016.5209	438.07401 169.35638
1067.213	328.39465
1068.2512	276.00455
1134.6305	391.68143
END IONS	
BEGIN IONS	
PEPMASS=1300	.109
CHARGE=1+	
TITLE=Label: Cl	10, Spot_Id: 37872, Peak_List_Id: 85496, MSMS Job_Run_Id: 11317, Comment:
1111.1689	250.37331
1212.205	490.05234
1254.2596	2187.8914
1256.1959	14493.154
END IONS	
PEPMASS-1/01	8800
CHARGE-1+	.0007
TITLE-Label: C1	10 Spot Id: 37872 Peak List Id: 85494 MSMS Job Run Id: 11317 Comment:
272.20148	339.06851
369.22501	286 96078
386.27133	159.01897
466.30426	115.07899
485.35016	102.28844
556.37579	174.05632
669.4812	219.82281
710.44452	224.26433
782.60236	1999.652
795.52655	107.2398
822.4585	150.57381
823.53638	224.6456
897.65619	431.69785
936.58685	166.67998
1007.6732	224.85055
1223.8720	200.9077
1300.2001	266.17154
1362.24	421 45538
END IONS	121.13330
BEGIN IONS	
PEPMASS=1619	.9878
CHARGE=1+	
TITLE=Label: Cl	10, Spot_Id: 37872, Peak_List_Id: 85493, MSMS Job_Run_Id: 11317, Comment:
669.49591	100.17683
782.59637	622.59741
897.63116	146.84979
1348.9363	147.00241
1362.9371	177.25558
1430.1189	127.75149
1574.1519	365.87708
15/0.1039 END IONS	1/8.98408
END IONS REGIN IONS	
PEPMASS-1733	9934
CHARGE=1+	
TITLE=Label: C1	10. Spot Id: 37872. Peak List Id: 85485. MSMS Job Run Id: 11317. Comment:
817.56256	347.24133
932.61163	244.61569
1118.6847	189.63083
1146.6649	245.17879
1259.7424	307.54977
1372.8284	373.91568
1588.0574	302.46484
END IONS	

V)	Spot 5	
----	--------	--

COM=Project: I	Proteomics, Spot Set: Proteomics\110117, Label: C11, Spot Id: 37873, Peak List Id: 84816, MS Job Run Id: 11316
805.46021	5603.3047
832.36041	2897.0293
855.06323	3270.2935
906.55157	7268.0313
912.61237	43499.844
9/4.53485	4329.503
1017.3923	21/30.073
1097.6536	8252.8984
1155.7146	6827.7983
1173.7058	7212.729
1174.7106	15001.864
1200.6729	21851.713
1262.5938	6720.1528
1300.1018	2421.3/3 2272 4/6
1433.0079	5373.440 9157 0557
1619.9877	5050
2163.1936	12921.078
2225.1555	3732.1396
BEGIN IONS	
PEPMASS=805	.46021
CHARGE=1+	
TTTLE=Label: (202 44298
1/5.15/05	393.44388 113.21530
243.18872	279 16672
299.20667	174.93878
317.21356	347.15488
342.19824	125.07967
359.24146	437.62689
402.30148	188,48848
412.30722	229.29825
430.31099	148.97/34
573 16193	303 2897
614.19617	368.64893
615.24292	355.83246
616.21332	213.89679
617.17175	2336.6504
759.37549	632.96155
775.52887 END IONS	381./1021
BEGIN IONS	
PEPMASS=855	06323
CHARGE=1+	
TITLE=Label: (C11, Spot_Id: 37873, Peak_List_Id: 85506, MSMS Job_Run_Id: 11317, Comment:
172.10023	131.72098
560.2287	323.79785
621.09344	190.86272
622.13446	635.32715
662 29517	715.51244 565 12103
663 25244	289 9346
664.1925	627.19983
665.18915	492.77554
666.10284	3056.4377
667.09784	790.81921
668.09381	518.33112
809.32306	1087.3014
810.32294	205.19324 2706 2468
812,14099	2100.2400
END IONS	
BEGIN IONS	
PEPMASS=873	.07568
CHARGE=1+	
TITLE=Label: (C11, Spot_Id: 37873, Peak_List_Id: 85503, MSMS Job_Run_Id: 11317, Comment:
172.091	13/.05031
400.39233	1/4.//032

442.33395	254.03261
578.24884	247.07802
638 12433	463 38879
640 12408	50220
040.12408	777.32332 CEA 0005
681.17688	674.0885
682.13129	3126.0986
684.11584	2471.6926
811.17755	1447 8237
812 17630	113 51/80
812.17039	1504.0744
827.21545	1584.2744
829.17841	1493.861
END IONS	
BEGIN IONS	
PEPMASS-912	61237
CUADCE-1	51257
CHARGE-I+	
IIILE=Label: C	11, Spot_Id: 3/8/3, Peak_List_Id: 85520, MSMS Job_Run_Id: 1131/, Comment:
101.09186	134.7549
112.11255	148.34692
185.14832	116.12772
268 18668	317 92752
212 24561	105 04196
515.24501	193.94180
339.2417	189.85034
441.35834	212.01836
444.35672	1803.0789
452,33044	303 08701
469 36716	3648 3081
407.30710 502.45715	481 41527
585.45/15	481.41557
600.47272	261.48059
636.46216	188.29391
653.48584	138.98396
664.57422	393.59735
665 51422	151 25536
711 52790	165 55027
/11.32/89	105.55257
720.19073	487.25647
728.52832	201.33273
738.57007	876.29657
766.58289	564,32483
782 55817	332 91391
782.50076	286.00576
783.39070	5457 1401
/84.59198	5457.1401
865.26935	318.15805
870.67346	230.9062
882.65564	205.38618
END IONS	
BEGIN IONS	
DEDIMINIONS	52.185
PEPMASS=9/4.:	53485
CHARGE=1+	
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85508, MSMS Job_Run_Id: 11317, Comment:
172.08818	102.24106
438 36902	123 29253
180 285/13	184 77016
407.20343	245.01006
503.31335	245.01006
531.30505	1065.0125
533.29199	281.92639
662.44696	163.05629
697 40253	302.89087
726 47833	327 48367
720.47855	527.40507 407.57052
/28.4511/	427.57953
800.52222	217.21945
828.52307	467.25635
846.55365	316.16528
END IONS	
BEGIN IONS	
DEDMACE_1017	5023
rEPWIASS=1017	.576.
CHARGE=1+	
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85518, MSMS Job_Run_Id: 11317, Comment:
175.15436	690.11823
212.14394	132.29068
243,19002	142.63254
288 24579	240
200.243/7	140 0070
323.24158	108.0278
372.259	429.46078

385.28149	
115 00511	284.5098
465.33566	172.46713
482 36334	1984 7299
400.20465	510 50407
499.39405	518.58490
519.35571	112.84064
629.45441	326.80225
6/6/1869/	1503.041
040.40094	1303.041
//5.54205	824.88422
958.59149	140.71448
972 27734	120 10564
072 67047	146 66027
9/3.0/04/	140.00857
END IONS	
BEGIN IONS	
DEDMASS-1031	6063
CULLECE 1	.0005
CHARGE=1+	
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85505, MSMS Job_Run_Id: 11317, Comment:
175.15044	364.77884
212 136	104 95623
212.130	10< 2022
2/1.22214	106.30878
288.24969	151.53943
385 28265	165 27194
206 2627	770 27460
380.2037	2/9.2/409
465.31021	130.58971
482.34552	1041.4884
499 37955	372 3063
499.37933	<i>372.3005</i>
629.43414	201.41615
646.47052	626.40936
789 55682	330 70584
T07.55002	550.70504
END IONS	
BEGIN IONS	
PEPMASS=1044	.1276
CHARGE=1+	
TITLE_Label C	11 Spot Id. 27972 Deals List Id. 95500 MSMS Job Dyn. Id. 11217 Comments
IIILE=Label: C	11, Spot_1d: 57875, Peak_List_1d: 85509, MSMS Job_Run_1d: 11517, Comment:
811.17273	609.52917
851.25421	154.38896
85/ 1813/	640 60394
055.10207	
855.19287	1513.615
856.16479	3284.5801
1000 2051	270 87167
END IONS	270107107
DECINIONS	
BEGIN IONS	
PEPMASS=1097	.6536
CHARGE=1+	
TITLE=Label: C	11 Spot Id: 37873 Peak List Id: 85515 MSMS Job Run Id: 11317 Comment:
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment:
TITLE=Label: C 255.18437	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998
TITLE=Label: C 255.18437 272.21237	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197
TITLE=Label: C 255.18437 272.21237 316.17087	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26552	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356 16138
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 555.402	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184 76787
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61092	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1240.8034
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS PEPMASS=1155	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS PEPMASS=1155 CHARGE=1+	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505 .7146 11, Spot_Id: 37873, Peak_List_Id: 85514, MSMS Job_Run_Id: 11317, Comment:
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505 .7146 11, Spot_Id: 37873, Peak_List_Id: 85514, MSMS Job_Run_Id: 11317, Comment: 128.03922
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169 473.31955	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505 .7146 11, Spot_Id: 37873, Peak_List_Id: 85514, MSMS Job_Run_Id: 11317, Comment: 128.03922 146.21979
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169 473.31955 570.40602	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505 .7146 11, Spot_Id: 37873, Peak_List_Id: 85514, MSMS Job_Run_Id: 11317, Comment: 128.03922 146.21979 205.85427
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169 473.31955 570.40692	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169 473.31955 570.40692 571.42792	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505 .7146 11, Spot_Id: 37873, Peak_List_Id: 85514, MSMS Job_Run_Id: 11317, Comment: 128.03922 146.21979 225.85437 520.8465
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169 473.31955 570.40692 571.42792 586.41846	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505
TITLE=Label: C 255.18437 272.21237 316.17087 369.2468 386.28119 401.26553 429.27316 485.3689 500.33234 542.3833 556.4082 613.41437 669.52283 712.47583 782.61993 897.64185 909.12378 END IONS BEGIN IONS BEGIN IONS PEPMASS=1155 CHARGE=1+ TITLE=Label: C 360.26169 473.31955 570.40692 571.42792 586.41846 683.51422	11, Spot_Id: 37873, Peak_List_Id: 85515, MSMS Job_Run_Id: 11317, Comment: 494.25998 657.39197 231.17639 567.44434 232.87486 161.19438 462.03714 128.73466 164.42113 356.16138 135.38211 596.01721 211.87248 184.76787 1849.8934 523.73804 566.98505

796.59058	492.64731		
846.59686	194.13116		
909.72382	215.25775		
1091.8065	1688.5398		
END IONS			
BEGIN IONS	7106		
CHARGE=1+			
TITLE=Label: C	11, Spot Id: 37873, Peak List Id: 85517, MSMS Job Run Id: 11317, Comment:		
129.13336	123.67648		
175.14651	645.01428		
302.18115	142.39877		
303.25403	151.32671		
410.34398 541 40698	302.00983		
545.42615	447.30637		
630.40625	251.49832		
655.50104	156.61513		
759.5011	327.6955		
785.57965	138./2/36		
802.38221	264 86072		
873.66132	440.20135		
931.66144	259.0224		
999.67096	1496.3586		
1017.6977	2408.198		
1113.7823	667.64435 500.71806		
1130.7887	300.71890 840.0863		
END IONS	0+0.0005		
BEGIN IONS			
PEPMASS=1200	0.6729		
CHARGE=1+			
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85519, MSMS Job_Run_Id: 11317, Comment:		
200.10098	155.78452 2365.0637		
525.38666	457.59717		
639.45404	641.13989		
676.39624	389.49399		
754.50677	313.15536		
789.49408	469.96027		
825.55741	300.90008		
926.58496	1208.4751		
943.63031	291.45166		
954.59906	265.73535		
1054.6564	1069.8604		
1072.6604	342.29861		
FND IONS	184.09982		
BEGIN IONS			
PEPMASS=1235	6.6187		
CHARGE=1+			
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85504, MSMS Job_Run_Id: 11317, Comment:		
1/5.140/6	234.92819		
505.17585 478 28433	102.15955		
607.32672	140.42284		
864.53998	215.59937		
1044.262	433.31567		
1193.6682	398.88794		
END IONS			
PEPMASS=1262	5938		
CHARGE=1+			
TITLE=Label: C	11, Spot_Id: 37873, Peak_List_Id: 85513, MSMS Job_Run_Id: 11317, Comment:		
469.36203	100.69441		
4/4.22067	195.56787		
207.22148 701.40961	210.0774 442 67792		
703.38446	139.24532		
816.47162	278.09732		

887.50391	423.72546
988.52124	453.73788
1016.5854	250.15306
1068.2018	268.8569
1134.5985	292.78799
1197.7427	101.72993
END IONS	
BEGIN IONS	1019
CHARGE-1	.1018
TITLE=Label: C1	1 Spot Id: 37873 Peak List Id: 85511 MSMS Job Run Id: 11317 Comment:
1212.2395	248.63916
1215.907	163.36681
1254.2444	1659.2523
1256.2075	8961.9609
END IONS	
BEGIN IONS	
PEPMASS=1473	.8762
CHARGE=1+	
TTTLE=Label: CI	11, Spot_Id: 3/8/3, Peak_List_Id: 85501, MSMS Job_Run_Id: 1131/, Comment:
212.21/03	170.17555
386 2782	1/8 627//
692,4364	219 53465
782.62958	1029.6224
805.51459	219.18756
897.67212	305.70419
989.67297	260.9061
1319.8352	231.638
1427.3168	990.41968
END IONS	
BEGIN IONS	
PEPMASS=1491	.8789
CHARGE=1+	11 Spot Id. 27972 Deals List Id. 95516 MSMC Ich Dup Id. 11217 Comments
111LE=Label: C	11, Spot_10: 57875, Peak_List_10: 85516, MSMS Job_Kun_10: 11517, Comment:
272.20328	429.20439 283 57614
386.25851	242, 92082
395.23315	102.46426
466.32413	118.9043
485.33994	176.73521
556.39673	213.56924
595.35437	115.91996
669.51611	276.992
709.36743	117.01062
710.41595	269.83286
782.59515	2195.7729
823.52271	249.03931
936 61066	168 44881
1007 6581	242, 27238
1106.719	245.48164
1220.7863	199.03258
1300.24	399.64853
1362.9244	515.49036
END IONS	
BEGIN IONS	
PEPMASS=1619	.9877
CHARGE=1+	
TTTLE=Label: CI	11, Spot_Id: 37873, Peak_List_Id: 85510, MSMS Job_Run_Id: 11317, Comment:
212.20114	131.2740
309.23109	121.10243
556 38861	151 28815
669.50507	200.79164
782.58527	1598.8164
838.5238	252.49049
880.60071	104.52577
897.63098	410.68668
951.63019	240.06644
1064.7406	222.31648
1135.8143	308.43597

1234.8574	353.63531
1348.8909	317.76968
1362.9539	644.33899
1430.1046	164.41031
1573.1772	405.72293
1574.0989	140.9817
1575.1078	156.22256
1576.0322	118.76785
1578.0167	168.87544
END IONS	
BEGIN IONS	
PEPMASS=1733.	9744
CHARGE=1+	
TITLE=Label: C1	1, Spot_Id: 37873, Peak_List_Id: 85502, MSMS Job_Run_Id: 11317, Comment:
817.5578	706.9436
917.54816	195.95914
932.6004	458.7533
1118.7037	367.98495
1146.6768	738.6167
1247.7792	240.87396
1259.7589	708.7533
1372.8358	797.32916
1376.8351	303.02481
1459.8619	524.60278
1504.9001	241.8412
1588.0183	388.75281
END IONS	
BEGIN IONS	
PEPMASS=2225.	1555
CHARGE=1+	
TITLE=Label: C1	1, Spot_Id: 37873, Peak_List_Id: 85507, MSMS Job_Run_Id: 11317, Comment:
1142.6158	445.67871
1145.5964	153.00104
1316.7593	231.00677
1370.759	206.34016
1445.822	254.30997
1573.835	281.73465
1811.1331	236.50493
END IONS	

	Smat 6	
VI)	COM Duckets Du	
	COM=Project: Pr	oteomics, Spot Set: Proteomics (110117, Laber: C12, Spot Id: 57874, Peak List Id: 84817, MS Job Run Id: 11516
	805.45349	4140.1963
	832.35248	3703.4312
	835.51483	600
	860.54401	2491.6382
	865.05688	433.02716
	887.03656	381.86276
	891 5423	567.647.09
	006 54010	204.0624
	025 57405	12261177
	933.37493	1309.11//
	1029.0501	308/1448
	1046.6492	724.91504
	1069.5839	1334.7555
	1153.636	2315.6863
	1416.7263	903.80023
	1426.8173	3162.6936
	1624.8882	860.41193
	2163.1968	7109.314
	BEGIN IONS	
	PEPMASS-805 /	15340
	CHARGE-1	
	TITLE Label CI	12 Send LA 27974 Deals L'4 LA 05522 MONS Leb Deer LA 11217 Comments
	IIILE=Label: CI	12, Spot_Id: 3/8/4, Peak_List_Id: 85552, MSMS Job_Kun_Id: 11517, Comment:
	112.11317	155.39217
	175.1571	652.58337
	230.1627	184.26643
	245.18211	116.40026
	262.21207	396.056
	299.19357	327.28391
	315.2359	168.76083
	317.2189	615.1532
	342.2337	147 86945
	359 241	700 2/53
	276 26505	1220065
	402 22722	105,2005
	402.32733	202.07721
	412.30438	340.30135
	430.29947	127.39084
	472.34482	250.12047
	489.37097	186.79/84
	544.38098	121.15332
	559.40381	225.81824
	613.40393	141.70645
	617.17859	360.35898
	618.17535	110.01474
	763.5072	191.82542
	775.53613	448.96024
	END IONS	
	BEGIN IONS	
	PEPMASS=835.5	51483
	CHARGE=1+	
	TITLE=Label: C1	12. Spot Id: 37874. Peak List Id: 85523. MSMS Job Run Id: 11317. Comment:
	325,23972	10371146
	398 28751	777 91443
	575 43195	439.62247
	608 46062	757.02277
	622,41550	2202.3767
	632.41559	318.02844
	644.15508	382.40/4/
	645.13599	124,90913
	646.41449	1197.0876
	661.47449	349.4429
	662.46008	565.99298
	663.44318	202.78442
	689.48474	366.84113
	707.50031	203.44067
	721.53735	169.72089
	731.52942	137.03169
	805.60413	185.24335
	END IONS	
	BEGIN IONS	
	PEPMASS=860.5	54401
	CHARGE=1+	
	TITLE=Label: C1	12, Spot_Id: 37874, Peak_List_Id: 85529, MSMS Job_Run_Id: 11317, Comment:

433.30292 151.79651 190.92821 487.31931 600.43176 205.05348 617.4458 237.30948 183.30559 666.22607 667.25116 203.48898 668.24121 302.70126 266.14346 670.21271 672.12921 274.72174 674.13843 151.34114 676.06921 368.45181 1133.2267 732 5271 811.29065 237.629 812.23438 160.17934 813.28076 232.87143 END IONS BEGIN IONS PEPMASS=865.05688 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85521, MSMS Job_Run_Id: 11317, Comment: 244.22409 178.70219 433.31702 148.59335 487.37747 125.86494 674.12305 250.04388 675.12451 203.26216 676.11609 1409.0635 678.11279 187.73351 682.09369 160.91106 732.62415 769.67474 END IONS BEGIN IONS PEPMASS=891.5423 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85522, MSMS Job_Run_Id: 11317, Comment: 175.14964 178.30922 491.33151 118.3865 664.47534 235 25755 698.12933 940.79279 700.11444 224.64908 701.06421 221.5813 704.07489 311.58496 843.21667 786.80145 845.17645 218.32382 END IONS BEGIN IONS PEPMASS=935.57495 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85528, MSMS Job_Run_Id: 11317, Comment: 175.14841 219.19685 579.42548 335.76395 890.55457 106 1374 END IONS BEGIN IONS PEPMASS=1029.6561 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85530, MSMS Job_Run_Id: 11317, Comment: 175.14534 648.77454 271.21414 113.76958 125.90024 287.1817 288.25119 103.68723 400.28412 112.04897 415.24527 101.59325 472.39737 294.19376 516.3363 207.36946 569.43481 184.97556 586.48163 202.49673 629.44159 673.29285 985.71991 928.49866 END IONS BEGIN IONS PEPMASS=1046.6492

244.22328

230.49022

CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85524, MSMS Job_Run_Id: 11317, Comment: 115.99469 175.15755 262.19363 100.88235 855.19019 130.03471 856.20392 617.05377 857.19165 232.28586 859.11292 184.53702 END IONS BEGIN IONS PEPMASS=1069.5839 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85527, MSMS Job_Run_Id: 11317, Comment: 494.34015 103.75776 595.40527 167.51736 723.47894 124.89251 149.07903 776.48438 END IONS BEGIN IONS PEPMASS=1416.7263 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85526, MSMS Job_Run_Id: 11317, Comment: 274 23154 231.51962 768.53864 770.36816 1143.6393 235.13603 1230.8044 229.80859 153.61801 1296.7849 1351.8406 266.08032 1352.8593 5760.876 END IONS BEGIN IONS PEPMASS=1426.8173 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85531, MSMS Job_Run_Id: 11317, Comment: 175.13174 137.13571 368.2814 242.86592 385.32202 144.75491 235.24445 506.26404 515.39301 176.2872 532.41095 106.84846 619.37607.16864 732.46649 282.42581 1212.907 552.13513 END IONS BEGIN IONS PEPMASS=1624.8882 CHARGE=1+ TITLE=Label: C12, Spot_Id: 37874, Peak_List_Id: 85525, MSMS Job_Run_Id: 11317, Comment: 166.32353 175.14609 1061.808 133.68561 1337.9033 440.69617 1509.9742 529 2757 1563.0389 195.90578 1581.0154 162.19919 END IONS vii) Spot 7 COM=Project: Proteomics, Spot Set: Proteomics/110117, Label: C13, Spot Id: 37875, Peak List Id: 84818, MS Job Run Id: 11316 805.45844 7041.7798 806.13416 2526.9561

832.35455 2823.5293 835.5235 2884.804 856.07159 1978.9209 860.54651 9852.9844 864.50757 1471.8901 903.01556 1793.2233 906.55139 8150.4902 921.52899 1369.3379 6970.0991 935.58124 1029.6615 9391.6992 1044.1168 1644.9611

1800.1078 1046.6436 1145.7158 1403 4437 1153.6381 3397.5366 1301.8385 2447.0586 1432.8374 2181.5745 1464.8322 2386.7158 2163.2212 7827.4512 BEGIN IONS PEPMASS=805.45844 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85548, MSMS Job_Run_Id: 11317, Comment: 175.15907 424.71573 103.3924 230 16566 245.18669 147.18059 262.21115 296.23108 299.1918 225.19426 405.11224 317.20978 359.24536 533.5553 402.30582 181.68231 194.55508 412 29465 430.32889 133.77049 472.34653 172.08026 489.37479 102.68811 576.44897 101.17966 617.16284 368.14453 775.54749 348.9213 END IONS BEGIN IONS PEPMASS=835.5235 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85546, MSMS Job_Run_Id: 11317, Comment: 398.28049 642.49915 547.42877 183.73027 491.44229 575.42761 608.45667 2500.2354 644.22479 244.68138 645.09497 258.21768 646 30341 187.49069 689.46771 360.94794 707.52576 124.60471 721.54883 253.00117 END IONS BEGIN IONS PEPMASS=856.07159 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85542, MSMS Job_Run_Id: 11317, Comment: 622.16449 188.82933 623.12213 199.25137 323.05167 665.21246 666.13672 735.50519 538.77979 667.22162 668 16681 297.62256 669.2998 258.69339 732.51813 456.53372 811.20679 545.93665 812.16821 395.67215 813.18341 133.05757 END IONS BEGIN IONS PEPMASS=860.54651 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85550, MSMS Job_Run_Id: 11317, Comment: 244.2193 871.94354 304.23416 142.94118 357.3252 187.77811 416.28937 158.68629 433.30286 545.88531 445.29825 158.67044 487.32309 765.19666 504.35397 332.4332 572.44678 293.33322 589.47131 476.12509

617.45551 929.35272 668.23499 422.49289 669.30353 251.72456 670.09436 265.3432 359.55652 672.14142 676.09869 188.03325 732.53314 3758.5134 812 30768 396.95755 END IONS BEGIN IONS PEPMASS=873.073 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85537, MSMS Job_Run_Id: 11317, Comment: 232.1969 137.97601 638 12787 313 60547 251.87656 640.12225 681.17444 432.1105 682.138 2878.3987 942.03143 684 11334 745.49005 437.90961 827.24731 1383.0847 829 18274 524.52161 END IONS BEGIN IONS PEPMASS=887.04169 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85535, MSMS Job_Run_Id: 11317, Comment: 654.08826 569.49854 696.11475 845.10974 697.08533 647.18671 698.07227 4248.3472 1783.4316 843.13281 END IONS BEGIN IONS PEPMASS=903.01556 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85540, MSMS Job_Run_Id: 11317, Comment: 411.31729 183.07129 479.34164 174.43646 496.375 602.69867 659.47192 587.00696 664.479 6900.3608 711.35339 422.15936 712.16736 689.01306 714.06439 3383.1108 716.06586 233.05838 760.53271 361.93341 451.09396 778.53748 792.57513 465.64743 857.18005 275.97162 859.13495 1436.5692 END IONS BEGIN IONS PEPMASS=921.52899 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85538, MSMS Job_Run_Id: 11317, Comment: 111.37255 127.11606 131.86282 333.25308 390.26944 165.80522 426.31046 395.03391 503.38315 147.69891 553.38306 390.27258 561.41425 165.10287 589.41644 217.82329 662.39288 281.15128 666.47253 364.63593 730.07471 666.67334 294.2504 736.02124 460.11017 875.14215 END IONS BEGIN IONS

600.4328 548.0083

PEPMASS=935.58124 CHARGE=1+				
TITLE=Label: C	13, Spot_Id: 37875, Peak_List_Id: 85547, MSMS Job_Run_Id: 11317, Comment:			
175.15724	568.57843			
228.22417	102.46724			
242.20491	108.99285 107			
293.19321	116.81372			
303.23776	172.33458			
357.28467	150.27798			
399.30414	109.51945			
410.3324 138.30	105 144 95413			
520.36218	142.95668			
562.38556	164.3967			
579.42712	612.0603			
END IONS				
BEGIN IONS	CC15			
CHARGE=1+	.0015			
TITLE=Label: C	13, Spot Id: 37875, Peak List Id: 85549, MSMS Job Run Id: 11317, Comment:			
112.10699	124.47715			
175.14809	1239.902			
271.22305	186.04343			
287.19312	248.89532			
200.24047	103 31369			
325.24106	176.33846			
343.23993	139.90268			
384.33499	159.63582			
400.28033	205.09296			
401.55920	103.13038			
444.3201 210.042	234			
472.39566	539.21423			
516.32001	334.79623			
541.36243	158.23621			
558.39551	262.94797			
584.40277	112.12428			
586.46356	272.79523			
601.44714	146.00621			
611.42529	184.87154			
612.3656 111.872	1072.0922			
742.52454	284 16714			
815.61462	167.96495			
985.72333	1579.9668			
END IONS				
BEGIN IONS	6426			
CHARGE=1+	.0450			
TITLE=Label: C	13, Spot_Id: 37875, Peak_List_Id: 85541, MSMS Job_Run_Id: 11317, Comment:			
175.16095	155.43398			
262.19052	119.5098			
855.1897 293.203	349			
857 16779	276.48389			
858.18176	168.22452			
1004.5685	231.18202			
END IONS				
BEGIN IONS	7150			
PEPMASS=1145	./158			
TITLE=Label: C	13, Spot Id: 37875, Peak List Id: 85539, MSMS Job Run Id: 11317. Comment:			
536.38885	214.17896			
610.47278	308.36877			
664.46814	175.7274			
123.33231	555.07805 158.41183			
909.65924	229.37929			
957.04242	213.58656			

101.7037 1046.7341 1077 7662 231.53476 END IONS BEGIN IONS PEPMASS=1193.6829 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85533, MSMS Job_Run_Id: 11317, Comment: 659.48199 101.44128 150.00986 690 47711 1063.6191 385.92276 1065.7228 927.1499 1127.8444 397.40408 END IONS BEGIN IONS PEPMASS=1239.6945 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85536, MSMS Job_Run_Id: 11317, Comment: 491.32468 114.09763 592.37115 266.17117 720.45435 484 442.66 835.52991 359.58551 863.55963 149.27142 948.62097 284.54303 END IONS BEGIN IONS PEPMASS=1301.8385 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85545, MSMS Job_Run_Id: 11317, Comment: 175.15166 181.76471 303.26956 232.9902 1236.8223 384.37189 1256.2625 1012.027 END IONS BEGIN IONS PEPMASS=1367.7999 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85534, MSMS Job_Run_Id: 11317, Comment: 592,40594 133 07634 648.45599 131.66994 720.47437 970.81677 776.56268 322.1355 835.52008 446.84573 877.60461 235.48642 316.5592 948.63068 991.69482 289.15649 1076.7424 460.93585 1092.7279 268.34967 1221.7994 506.04257 1239.7876 445.85037 1304.7216 376.7496 243.68401 1306.8079 END IONS BEGIN IONS PEPMASS=1432.8374 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85543, MSMS Job_Run_Id: 11317, Comment: 591.39215 465.63858 615.36084 293.888 650.38092 205.17111 714.44159 192.67563 719.50751 457.51535 818.58685 322.6936 836.45758 118.44497 923.5177 293.64868 933.62897 143.30273 END IONS BEGIN IONS PEPMASS=1464.8322 CHARGE=1+ TITLE=Label: C13, Spot_Id: 37875, Peak_List_Id: 85544, MSMS Job_Run_Id: 11317, Comment: 591.39807 124.38715 1349.8398 193.69431 END IONS

viji) Spot 8		
COM=Project: Proteomics Spot Set: Proteomics\110117 Label: C14 Spot Id: 37876 Peak List Id: 84819 MS Job Run Id: 11316		
805.46429	1475.1703	
856.07159	1449.2579	
873.07965	1395.3204	
873.47351	2627.9905	
906.54633	2032.9866	
1044.1125	2329.8591	
1118.616	3113.3347	
1179.6707	2483.7781	
1194.677	1146.5686	
1234.7521	3956.8938 2610 4928	
1300.1101	2049.4028	
1300.0143	1224.3901	
1301.0973	1253,5110	
1316.62	1134 3265	
1493.8297	2837.3735	
1567.8505	1550.9803	
1791.8383	1655.8823	
2163.1975	2747.5491	
2384.0989	1224.1987	
BEGIN IONS		
PEPMASS=803	5.46429	
CHARGE=1+		
TITLE=Label:	C14, Spot_Id: 37876, Peak_List_Id: 85560, MSMS Job_Run_Id: 11317, Comment:	
112.12309	119.85892	
172.08069	112.7/946	
1/5.16281	433.34355	
245.17088	115.17/01 274 20215	
202.20558	2/4.2013 230/1790	
317 20938	230.4767	
322 25748	366.32467 456 4519	
359.24091	422,56265	
376.2796	148.42342	
402.31561	179.37054	
412.31863	175.2299	
437.32745	183.35168	
573.17206	383.0242	
612.24738	525.31128	
614.21552	665.97137	
615.18341	187.27522	
616.1889	270.15369	
617.17957	2844.8/16	
0/4.52393	5/4./6/09 208 90627	
759.28149	378.80027 500.97789	
775 52063	JU5.62766 A63.0104A	
END IONS	+03.017++	
BEGIN IONS		
PEPMASS=850	5.07159	
CHARGE=1+		
TITLE=Label:	C14, Spot_Id: 37876, Peak_List_Id: 85559, MSMS Job_Run_Id: 11317, Comment:	
175.17213	112.79831	
581.07422	133.97154	
622.14618	293.39151	
623.11322	1426.3008	
625.10034	121.40439	
664.2948	325.68243	
665.23431	191.65582	
000.13538	2110.7075 1596 2002	
00/.1140/	1380.3093	
008.1100 669 10440	775 42212	
809 22767	269 41083	
810 28613	541 2088	
811.19293	2736.9785	
812.17908	2626.1028	
814.15369	640.11591	
END IONS		
BEGIN IONS		
PEPMASS=873.47351 CHARGE=1+		
--------------------------------	---	
TITLE=Label: Cl	14, Spot Id: 37876, Peak List Id: 85565, MSMS Job Run Id: 11317, Comment:	
169.13031	118.44621	
175.14922	340.73529	
311.19247	253.83629	
332.22607	278.85333	
378.24182	263.77521	
479.29944	150.56615	
546.36322	1148.2539	
563.39642	581.1394	
638.13995	361.46152	
640.11609	258.23697	
682.13953	2907.1467	
684.10248	1108.9007	
686 1/117	423.70438	
811 1524	317 97284	
827 21222	1643 0375	
829.17145	556 41626	
END IONS		
BEGIN IONS		
PEPMASS=1044	.1125	
CHARGE=1+		
TITLE=Label: Cl	14, Spot_Id: 37876, Peak_List_Id: 85563, MSMS Job_Run_Id: 11317, Comment:	
811.17645	487.35941	
853.198	288.05206	
854.19684	380.03687	
855.17725	822.34772	
856.16821	2271.0796	
END IONS		
BEGIN IONS		
PEPMASS=1118	.616	
CHARGE=1+		
TITLE=Label: CI	14, Spot_Id: 3/8/6, Peak_List_Id: 85569, MSMS Job_Run_Id: 1131/, Comment:	
272.21295	312.59802	
457.51018	190,00246	
430.34247	143 44162	
681 3902	235 82124	
714 48822	144 11986	
734 44611	116 17154	
810.50189	179.32909	
818.4646	117.2379	
847.49219	282.48166	
925.09106	138.56348	
926.11108	129.76819	
END IONS		
BEGIN IONS		
PEPMASS=1165	.6554	
CHARGE=1+		
TITLE=Label: CI	14, Spot_Id: 3/8/6, Peak_List_Id: 85551, MSMS Job_Run_Id: 1131/, Comment:	
112.11436	575 7655	
303 22513	178 15288	
321 211	112 63584	
338,23416	236 88733	
345.30093	122.86262	
357.22989	126.01038	
422.26175	110.11971	
486.30209	588.35297	
503.36795	264.9982	
550.3324	188.29323	
680.47253	490.94604	
923.58075	533.62	
976.0282	277.76474	
977.00446	146.79716	
1121./181 END JONE	323.02330	
END IONS		
PEPMASS=1179.6707		
CHARGE=1+		

TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85564, MSMS Job_Run_Id: 11317, Comment: 175.15111 196.10112 125.48436 303.2233 404.30197 115.23376 422.24548 265.52069 535.32458 177.37881 663.42444 197.30838 758.56421 380.55612 887.63293 276.75623 1135.7166 384.16089 END IONS BEGIN IONS PEPMASS=1194.677 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85557, MSMS Job_Run_Id: 11317, Comment: 175 14879 223 13937 659.48456 324.83862 774.51495 113.69825 END IONS BEGIN IONS PEPMASS=1234.7521 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85570, MSMS Job_Run_Id: 11317, Comment: 175.14418 293.67645 458.37161 167.40302 486.37259 207.97491 701.49713 151.44156 END IONS BEGIN IONS PEPMASS=1246.7477 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85552, MSMS Job_Run_Id: 11317, Comment: 175.15721 451.06995 123 27499 272 21417 456.36716 170.70551 458.40341 267.55832 466.25656 144.90884 486.37262 243 02798 676.37775 299.46768 END IONS BEGIN IONS PEPMASS=1300.1101 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85566, MSMS Job_Run_Id: 11317, Comment: 152.30978 175.14145 288.23386 100.93138 338.22797 710 421.20432 128.07721 155.45032 489.25769 812.47638 308.96506 393.90231 1067.1429 1212 198 476.47891 1215.8096 788.03522 1254.2198 2860.8145 1256.1937 16411.141 END IONS BEGIN IONS PEPMASS=1308.7354 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85568, MSMS Job_Run_Id: 11317, Comment: 175.15408 245.98039 303.27856 118.02219 100.14791 338.24054 400.29633 120.09835 530.41803 267.47116 659.48468 741.21362 774.5368 176.86153 1256.2709 1153.3851 1257.2957 421.18536 1258.2615 260.7731 1259.2805 349.91553 END IONS

BEGIN IONS PEPMASS=1316.62 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85556, MSMS Job_Run_Id: 11317, Comment: 175.1449 321.86276 243.18073 104.40228 288.24216 102.31933 303.25433 184.26459 338 21713 263.36264 400.3201 152.09068 530.46472 278.05066 659.52393 718.31299 1252.714 4152,2036 1256.4664 446.97522 1257.3379 700.49628 END IONS BEGIN IONS PEPMASS=1434.8392 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85553, MSMS Job_Run_Id: 11317, Comment: 129.22293 593.39685 650.41211 573.70227 836.54932 303.32687 628.65106 923.56146 1278.8716 1418.8079 1371.8705 275.56699 1390 9758 462.01886 1392.9363 862.45465 END IONS BEGIN IONS PEPMASS=1475.8596 CHARGE=1+ TITLE=Label: C14, Spot Id: 37876, Peak List Id: 85554, MSMS Job Run Id: 11317, Comment: 464.31021 228 34525 430.4129 1427.2773 END IONS BEGIN IONS PEPMASS=1493.8297 CHARGE=1+ TITLE=Label: C14, Spot Id: 37876, Peak List Id: 85567, MSMS Job Run Id: 11317, Comment: 400.2963 110.77946 166.83975 545.3833 728.47723 150.48303 986.73462 264.81674 1339.8356 1365 858 END IONS BEGIN IONS PEPMASS=1567.8505 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85561, MSMS Job_Run_Id: 11317, Comment: 303.26044 196.71568 563.36121 127.19067 129.80376 1523.8547 END IONS BEGIN IONS PEPMASS=1707.8625 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85555, MSMS Job_Run_Id: 11317, Comment: 187.05882 175.144 146.8651 466.26678 503.33292 278.3956 694.41913 122.07867 1661.1172 291.59998 END IONS BEGIN IONS PEPMASS=1791.8383 CHARGE=1+ TITLE=Label: C14, Spot_Id: 37876, Peak_List_Id: 85562, MSMS Job_Run_Id: 11317, Comment: 1761.9573 110.96961 END IONS

ISOLATION AND PURIFICATION OF GLUTATHIONE S-TRANSFERASES FROM Donax sp.

NORFARHAN MOHD ASSA'AD

DISSERTATION SUBMITTED IN FULLFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF BIOTECHNOLOGY

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2011