STUDY ON STRUCTURAL TRANSFORMATION OF MOLYBDENUM OXIDE CATALYST FOR PROPANE OXYDEHYDROGENATION (ODH) REACTION

DURGA DEVI A/P SUPPIAH

FACULTY OF SCIENCE UNIVERISTY MALAYA KUALA LUMPUR

2012

STUDY ON STRUCTURAL TRANSFORMATION OF MOLYBDENUM OXIDE CATALYST FOR PROPANE OXYDEHYDROGENATION (ODH) REACTION

DURGA DEVI A/P SUPPIAH

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

ABSTRACT

Catalytic oxidative dehydrogenation (ODH) of propane is recognized as an attractive alternative process as compared to propane dehydrogenation which the latter requires higher reaction temperature. For ODH of propane, key points in synthesizing an active catalyst are the preparation method, surface reducibility, and acid-base properties. However, existing ODH catalysts gives low activity and poor selectivity. Combination of optimal activation thermal analysis and structural control can help to guide and gain insight into the structure-activity relationship of the nanostructured catalyst system. Molybdenum and vanadium oxide based catalyst has been identified as one of the most suitable catalyst for the reaction. However it is difficult to control the key properties such as crystal size, structure, particle shape and surface area that influence the catalysts performances. In these studies, molybdenum oxides based catalysts (MoOx and MoVOx) were synthesized using controlled precipitation method. Parameters varied were pH, concentration, temperature and also rate of addition. For MoOx based catalysts, the phase obtained were 'supramolecular' phase (Mo₃₆O₁₁₂) and hexagonal phase (h-MoO₃). Protonation encourages the growth of the catalytic structure where Mo₇O₂₄ acts as a nucleus creating the polyoxomolybdates. Both phases have bulk structural corner sharing pentagonal channels as structural motif which is catalytically active. For MoVOx based catalyst, amorphous phase was observed for all spray dried precursors. Highly crystalline hexagonal phase (MoV_2O_8) and tetragonal phase $[(MoV)_5O_{14}]$ were obtained after activation under static air and inert respectively when vanadyl was used as the vanadium source. Dispersion of vanadium creates the 'site isolation' effect which is important to avoid olefins transforming to neighboring oxidized sites. When vanadates were used as the vanadium source, different phases were observed at varying of vanadium loading. Orthorhombic phase was observed

at low vanadium loading whilst mixed phase of monoclinic and triclinic were obtained at higher vanadium loading. Temperature programmed activation using *in-situ* XRD was used to study the dynamics of structural transformation of selected synthesized molybdenum oxide-based precursor. The structural evolution for MoOx precursor takes place from 'supramolecular' to metastable hexagonal phase at 300 °C. The structural changed finally to the stable orthorhombic phase at 450 °C. For MoVOx precursor, the structural transformation takes place from amorphous to nanocrystalline phase at 400 °C. At 500 °C, the catalyst morphology transforms finally to thermodynamically stable crystallized tetragonal phase. By correlating *in-situ* XRD reactivity studies with temperature programmed *in-situ* DSC, catalytic activity in MoOx catalyst was not observed whilst for reaction using MoVOx catalyst, catalytic activity was observed at the nanocrystalline phase.

ABSTRAK

Propylene adalah bahan mentah yang digunakan secara meluas dalam industri petrokimia. Permintaan yang tinggi dan kepelbagaian dalam pengunaan propylene merangsang pembangunan teknologi pengeluaran terkini. Oksidatif pengdehidrogenan propana yang menggunakan mangkin merupakan alternatif yang menarik berbanding pengdehidrogenan propana yang memerlukan suhu yang tinggi meyebabkan kos yang mahal. Dalam ODH propana, perkara utama yang perlu diberikan perhatian untuk mensintesis mangkin yang sempurna adalah kaedah penyediaan, aspek penurunan permukaan dan sifat asid-bes. Walau bagaimanapun, Mangkin ODH yang ada pada masa kini masih mempunyai aktiviti dan pemilihan yang rendah. Pemilihan produk sintesis adalah berdasarkan struktur mangkin. Gabungan analisis terma dan kajian struktur boleh membantu dalam membimbing dan mendapat pemahaman atas hubungan struktur-aktiviti sistem pemangkin nanostruktur. Mangkin Molibdenum dan Vanadium oksida telah dikenal pasti sebagai salah satu mangkin yang sesuai untuk tindak balas ini. Walau bagaimanpun, adalah sukar untuk mengawal sifat-sifat utama seperti saiz dan struktur kristal, bentuk dan luas permukaan zarah yang menentukan prestasi mangkin tersebut. Dalam kajian ini, mangkin berasaskan Molibdenum oksida (MoOx dan MoVOx) telah disintesis mengunakan kaedah pemendapan terkawal. Parameter seperti pH, kepekatan, suhu dan kadar penambahan telah diubah-ubah. Untuk mangkin MoO_x, fasa yang telah diperolehi adalah fasa 'supramolekular' (Mo₃₆O₁₁₂) dan fasa heksagon (h-MoO₃). Protonasi menggalakkan pembesaran struktur mangkin dimana Mo_7O_{24} selaku nukleus membentuk polioxymolibdates. Kedua-dua fasa mempunyai sudut berstruktur pukal dan berkongsi saluran pentagonal sebagai motif stuktur mangkin yang aktif. Untuk mangkin berasaskan $MoVO_x$, fasa amorfus didapati untuk semua prekursor yang diperolehi melalui semburan kering. Fasa hexagon (MoV₂O₈) dengan kehabluran yang tinggi dan fasa tetragon [(MoV)₅O₁₄] telah diperoleh selepas pengaktifan masing-masing di bawah udara statik dan gas lengai apabila vanadil telah digunakan sebagai sumber vanadium. Oksida Mo₅O₁₄ struktur dengan fasa tetragon juga mempunyai saluran pentagon dan herotan fasa dioksida meningkat dengan kandungan vanadium. Penyebaran vanadium mewujudkan kesan 'tapak terasing' yang penting untuk mengelakkan olefin berubah ke tapak teroksida bersebelahan. Apabila vanadate digunakan sebagai sumber vanadium, fasa berbeza diperolehi pada muatan vanadium yang berbagai. Fasa ortorombik diperhatikan pada peratus muatan vanadium rendah manakala fasa campuran monoklinik dan triklinik didapati pada peratus muatan vanadium yang lebih tinggi. Pengaktifan dengan suhu terprogram menggunakan XRD in-situ telah digunakan untuk mengkaji transformasi dinamik struktur prekursor mangkin molibdenum oksida. Evolusi struktur untuk prekursor MoOx berlaku dari fasa 'supramolekular' ke fasa heksagon metastabil pada suhu 300 °C. Struktur tersebut akhirnya berubah ke fasa ortorombik yang stabil dari segi termodinamik pada suhu 450 °C. Bagi prekursor MoVOx, transformasi adalah dari amorfus ke fasa nanokristal pada 400 °C. Pada 500 °C, morfologi mangkin berubah ke tetragon iaitu fasa yang stabil dari segi termodinamik. Dengan menghubungkaitkan kajian reaktiviti XRD in-situ bersama dengan DSC in-situ dengan program suhu, aktiviti pemangkinan pada mangkin MoOx tidak diperhatikan manakala untuk mangkin MoVOx, aktiviti pemangkinan telah diperhatikan pada fasa nanokristal.

ACKNOWLEDGEMENT

First and foremost I would like to thank God for guiding me in completing this dissertation successfully. I would also like to give great thanks to my supervisor, Prof. Dr. Sharifah Bee Abd Hamid for all the advice, knowledge and helpful support in completing this project. I am also very grateful to Dr. Muralithran Kutty, Dr. Looi Ming Hong and Fazliana Abd Hamid for all their encouragement, assistance and suggestions in helping me to complete my MSc studies. Not to forget, the COMBICAT technical service team for all their contributions in samples characterization. I would also want to expresses sincere gratitude to the National Science Foundation (NSF) for financially supporting me and my MSc program and PPP Grant (PS374/2010B) for providing financial support for this project. Finally I am very grateful to my parents and friends for all their understanding and support throughout my MSc program.

TABLE OF CONTENTS

Abst	ract		iii
Abst	rak		V
Ackı	nowledg	gement	vii
Tabl	e of Coi	ntents	viii
List	of Figur	res	xi
List	of Table	es	XV
List	of Symł	ools and Abbreviations	xvii
List	of Appe	endices	xix
1.0	INTI	RODUCTION	1
	1.1	Overview of Malaysia's Petrochemical Industry	2
	1.2	Propene and Its Derivatives	3
	1.3	Propene Production Technology	5
	1.4	Propene Market and Demand	7
	1.5	Oxidative dehydrogenation (ODH) of propane	8
	1.6	Molybdenum Based-Catalyst	10
	1.7	Project Design Motivation	11
	1.8	Objectives	12
2.0	LITE	ERATURE REVIEW	13
	2.1	Selective Oxidation	14
		2.1.1 Propane Selective Oxidation	14
	2.2	Oxydehydrogenation of Propane	16
	2.3	Catalyst	18
		2.3.1 Heterogeneous catalyst	18
		2.3.2 Catalyst Support	19
		2.3.3 Nanostructured Catalyst	20

		2.3.4 Bulk Catalyst	20
	2.4	Catalyst Synthesis	21
		2.4.1 Hydrothermal	22
		2.4.2 Sol-Gel	22
		2.4.3 Impregnation	23
		2.4.4 Precipitation	23
		2.4.4.1 Co-precipitation	25
	2.5	Transition Metal Oxides (TMO)	26
		2.5.1 Mixed Metal Oxide (MMO)	27
		2.5.2 Molybdenum Oxides	28
		2.5.2.1 Polyoxomolybdates	31
		2.5.3 Vanadium Oxides	32
		2.5.4 Molybdenum Vanadium Oxides	35
	2.6	Structure-Activity Relationship	40
	2.7	In situ Structural Techniques Studies	43
3.0	MET	HODOLOGY	47
	3.1	Chemicals and Gases	48
	3.2	Synthesis of Mo based Catalyst Precursors	49
		3.2.1 Synthesis of MoOx Catalyst	49
		3.2.2 Synthesis of MoVOx Catalyst	50
		3.2.2.1 MoVOx Activation	51
	3.3	Structural and Elemental Characterization	52
		3.3.1 X-Ray Diffractogram (XRD)	52
		3.3.2 Scanning Electron Microscope (SEM) Imag	ging 52
		3.3.3 Energy Dispersive X-ray (EDX)	53
	3.4	Thermal Analysis	53
		3.4.1 Thermogravimetric Analysis (TGA)	53
		3.4.2 Differential Scanning Calorimetry (DSC)	53
	3.5	Reactivity Studies	54
		3.5.1 In-situ XRD	54
		3.5.2 In-situ DSC	55

4.0	RESU	JLTS A	ND DISCUSSION	56
PART	ΓA			57
	4.1	Synthe	esis and Characterization of MoOx Catalyst	57
		4.1.1	Titration Curves	57
		4.1.2	Structural and Elemental Characterization	62
			4.1.2.1 X-Ray Diffractogram (XRD) Analysis	62
			4.1.2.2 Scanning Electron Microscope (SEM) Imaging	69
			4.1.2.3 Energy Dispersive X-ray (EDX)	75
		4.1.3	Catalytic Thermal Analysis	76
PART	ΓВ			
	4.2	Synthe	esis and Characterization of MoVOx Catalyst	83
		4.2.1	Structural and Elemental Characterization of MoVOx	83
			4.2.1.1 X-Ray Diffractogram (XRD) Analysis	83
			4.2.1.2 Scanning Electron Microscope (SEM) Imaging	96
			4.2.1.3 Energy Dispersive X-ray (EDX)	104
		4.2.2	Catalytic Thermal Analysis	107
PART	ГС			
	4.3	Reacti	ivity Studies	117
		4.3.1	In-situ X-Ray Diffractogram (XRD) Analysis	117
		4.3.2	In-situ Differential Scanning Calorimetry (DSC) Analysis	127
5.0	CON	CLUSIC)N	131
BIBL	IOGRA	PHY		135
APPE	ENDICE	ËS		147

LIST OF FIGURES

Global Propene Demand by Derivative

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 3.1:

Figure 3.2:

Figure 4.1:

Figure 4.2:

Figure 4.3:

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Global Propene Consumption Trends	8
Propane ODH Reaction Network	8
Propane reaction pathways and reaction enthalpies	15
Polyhedra representations of $\{Mo_{36}\}$ and a $\{Mo_8\}$ unit	40
h-MoO ₃ (xy) projection	41
Crystal structure of Mo ₅ O ₁₄	43
In-situ X-Ray Diffractometer (XRD)	54
In-situ Differential Scanning Calorimeter (DSC)	55
Titration of 0.10 M AHM with 1.0 M HNO ₃ at different	57
temperature	
Titration of AHM at different concentration with 1.0 M HNO ₃	59
at 1 mL/min	
Titration of 0.10 M AHM with 1.0 M HNO ₃ at different rate	60
of addition	
Titration of 0.10 M AHM with HNO ₃ at different concentration	61
XRD Diffractograms of MoOx showing 'Supramolecular'	62
structure peak characteristics.	
XRD Diffractograms of MoOx showing hexagonal structure	65
peak characteristics.	
SEM Imaging of M014 (Supramolecular structure)	71
SEM Imaging of M033 (Supramolecular structure)	71
	xi

Page

4

Figure 4.9:	SEM Imaging of M064 (Supramolecular structure)	72
Figure 4.10:	SEM Imaging of M065 (Supramolecular structure)	72
Figure 4.11:	SEM Imaging of M043 (Supramolecular structure)	73
Figure 4.12:	SEM Imaging of M021 (Supramolecular structure)	73
Figure 4.13:	SEM Imaging of M035 (Mixed Hexagonal and	
	Supramolecular structure)	74
Figure 4.14:	SEM Imaging of M039 (Hexagonal structure)	74
Figure 4.15:	TG/DTG Analysis of M033 from 30 °C to 500 °C	76
Figure 4.16:	MS Evaluation of M033 from 30 °C to 500 °C	77
Figure 4.17:	DSC Analysis of M033 from 30 °C to 500 °C	77
Figure 4.18:	TG/DTG Analysis of M039 from 30 °C to 500 °C	79
Figure 4.19:	MS Evaluation of M039 from 30 °C to 500 °C	79
Figure 4.20:	DSC Analysis of M039 from 30 °C to 500 °C	80
Figure 4.21:	TG/DTG Analysis of M035 from 30 °C to 500 °C	81
Figure 4.22:	MS Analysis of M035 from 30 °C to 500 °C	81
Figure 4.23:	DSC Analysis of M035 from 30 °C to 500 °C	82
Figure 4.24:	XRD Diffractograms of MoVOx spray dried precursors synthesized	83
	using (a) vanadyl oxalate (b) ammonium metavanadate	
Figure 4.25:	XRD Diffractograms of M038 before and after calcination	85
	(i) spray Dried (ii) calcined in static air (iii) calcined in Helium	
Figure 4.26:	XRD Diffractograms of M042 before and after calcination	85
	(i) spray Dried (ii) calcined in static air (iii) calcined in Helium	
Figure 4.27:	XRD Diffractograms of MoVOx synthesized using ammonium	91
	metavanadate calcined in Nitrogen	

Figure 4.28: SEM imaging for M038 (a,b,c) and M042 (d,e,f) before calcination 99

xii

Figure 4.29:	SEM imaging for M038 after calcination (a,b,c) in air &	100
	calcination (d,e,f) in Helium	
Figure 4.30:	SEM imaging for M042 after calcination (a,b,c) in air &	101
	calcination (d,e,f) in Helium	
Figure 4.31:	SEM imaging for M044 before (a,b,c) & after calcination	102
	in Nitrogen (d,e,f)	
Figure 4.32:	SEM imaging for M056 before (a,b,c) & after calcination	103
	in Nitrogen (d,e,f)	
Figure 4.33:	Elemental Mapping for MoVOx, M038 (calcination in Helium)	105
Figure 4.34:	Elemental Mapping for MoVOx, M042 (calcination in Helium)	106
Figure 4.35:	TG/DTG Analysis of M038 from 30 °C to 500 °C.	108
Figure 4.36:	MS Evaluation of M038 from 30 °C to 500 °C.	108
Figure 4.37:	DSC Analysis of M038 from 30 °C to 500 °C.	109
Figure 4.38:	TG/DTG Analysis of M042 from 30 °C to 500 °C.	110
Figure 4.39:	MS Evaluation of M042 from 30 °C to 500 °C.	110
Figure 4.40:	DSC Analysis of M042 from 30 °C to 500 °C.	111
Figure 4.41:	TG/DTG Analysis of M044 from 30 °C to 500 °C.	112
Figure 4.42:	MS Evaluation of M044 from 30 °C to 500 °C.	112
Figure 4.43:	DSC Analysis of M044 from 30 °C to 500 °C.	113
Figure 4.44:	TG/DTG Analysis of M056 from 30 °C to 500 °C.	114
Figure 4.45:	MS Evaluation of M056 from 30 °C to 500 °C.	114
Figure 4.46:	DSC Analysis of M056 from 30 °C to 500 °C.	115
Figure 4.47:	In-situ XRD of MoOx precursor (M033) activation from	118
	50 °C-500 °C in Helium Gas	
Figure 4.48:	In-situ XRD of MoOx precursor (M039) activation from	121

xiii

50 °C-500 °C in Helium Gas

Figure 4.49:	In-situ XRD of MoVOx precursor (M038) activation from	124
	50 °C-500 °C in Helium Gas	
Figure 4.50:	In-situ DSC of M033 activation from 30 °C -500 °C	127
Figure 4.51:	MS of In-situ DSC of M033 activation from 30°C -500 °C	127
Figure 4.52:	In-situ DSC of M038 activation from 30 °C -500 °C	129
Figure 4.53:	MS of In-situ DSC of M038 activation from 30 °C -500 °C	129

LIST OF TABLES

Table 1.1:	Location of Oil Refineries in Malaysia	3
Table 1.2:	Molybdenum compounds in catalysts	10
Table 3.1:	List of Chemicals & Gases Used	48
Table 3.2:	MoOx precursors synthesized using various conditions	50
Table 3.3:	MoVOx precursors synthesized using various conditions	51
Table 4.1:	X-Ray Data of M014 (MoOx)	63
Table 4.2:	X-Ray Data of M033 (MoOx)	63
Table 4.3:	X-Ray Data of M064 (MoOx)	63
Table 4.4:	X-Ray Data of M065 (MoOx)	63
Table 4.5:	X-Ray Data of M043 (MoOx)	63
Table 4.6:	X-Ray Data of M021 (MoOx)	63
Table 4.7:	X-Ray Data of M039 (MoOx)	67
Table 4.8:	X-Ray Data of M035 (MoOx)	67
Table 4.9:	Crystallite size of MoOx catalyst precursors	68
Table 4.10:	EDX Analysis of MoOx catalyst precursors	75
Table 4.11:	X-Ray Data of M038 (calcined in air)	87
Table 4.12:	X-Ray Data of M038 (calcined in He)	87
Table 4.13:	X-Ray Data of M042 (calcined in air)	89
Table 4.14:	X-Ray Data of M042 (calcined in He)	89
Table 4.15:	X-Ray Data of M044 (calcined in Nitrogen)	92
Table 4.16:	X-Ray Data of M047 (calcined in Nitrogen)	92
Table 4.17:	X-Ray Data of M045 (calcined in Nitrogen)	93

Table 4.18:	X-Ray Data of M056 (calcined in Nitrogen)	93
Table 4.19:	Crystallite size of MoVOx samples	95
Table 4.20:	EDX Analysis of MoVOx catalyst precursors	104
Table 4.21:	X-Ray Data of M033 Activation (300 °C)	119
Table 4.22:	X-Ray Data of M033 Activation (500 °C)	119
Table 4.23:	Crystallite size of M033 after in-situ XRD activation	120
Table 4.24:	X-Ray Data of M039 Activation (240 °C)	122
Table 4.25:	X-Ray Data of M039 Activation (500 °C)	122
Table 4.26:	Crystallite size of M039 after in-situ XRD activation	123
Table 4.27:	X-Ray Data of M038 Activation (500 °C)	126
Table 4.28:	Crystallite size of M038 after in-situ XRD activation	126

LIST OF SYMBOLS AND ABBREVIATIONS

2θ	Two theta
ABS	Acrylonitrile-butadiene-styrene
AHM	Ammonium HeptaMolybdate
C ₃	Propane
C ₄	Butane
C ₅	Pentane
d value	Interplanar spacing
DSC	Differential Scanning Calorimetry
DTG	Differential Thermogravimetric
EDX	Energy Dispersive X-ray
FCC	Fluid Catalytic Cracking
FWHM	Full Width Half Maximum
LPG	Liquefied Petroleum Gas
m/e	Mass/charge ratio
MoOx	Molybdenum based Oxides
MoVOx	Molybdenum Vanadium based Oxides
MS	Mass Spectroscopy
ODH	Oxidative Dehydrogenation
PDF	Powder Diffraction File
PDH	Propane Dehydrogenation
PP	Polypropylene
SAN	Styrene acrylonitrile

SAXS Small-Angle X-ray Scattering

SEM	Scanning Electron Microscope
Tcf	Trillion cubic feet
TG	Thermogravimetric
Ts	Sample Temperature
WAXS	Wide-Angle X-ray Scattering
XRD	X-Ray Diffraction
XRF	X-Ray Fluorescence

List of Appendices

		Page
1.	List of Proceedings	148
2.	List of Publication	149