REFERENCES

APPENDIX A: Machines used to produce raw toner

Figure A.1: Henschel Mixer (A: Sample container with cooling jacket, B: Power button)

Figure A.2: Extruder

Figure A.3: Crusher
Figure A.4: Jet mill and Classifier

Figure A.5: Blender (A: Sample container, B: timer, C: speed controller)
APPENDIX B: Instruments used for sample characterization

Figure B.1: Mettler Toledo Differential Scanning Calorimeter 822e

Figure B.2: Gel Permeation Chromatography (GPC)
Figure B.3: Ray-ran Melt Flow Indexer (A: specified weight load, B: Automatic Flow Rate Timer, C: Temperature Controller, D: Heater and Insulation)

Figure B.4: (a) Instrument for tribocharge determination (A: tribometer, B: electrometer, C: sample cell which held by tribometer)
Figure B.5: Apparatus for Apparent Density Test (A: funnel, B: density cup, C: flowmeter funnel)

Figure B.6: The Flotest Tester (A: funnel, B: sample container, C: flow disc with holes of various diameters)
Figure B.7: CILAS 1064 particle size analyzer

Figure B.8: Tectron Ag. 916 Fluxmeter

Figure B.9: QUIKDens 100 Densitometer
APPENDIX C: DSC profiles of toner resins and toners

Figure C.1: DSC profile of L20-TR

Figure C.2: DSC profile of L21-TR
Figure C.3: DSC profile of L22-TR

Figure C.4: DSC profile of L15-TR
Figure C.5: DSC profile of L16-TR

Figure C.6: DSC profile of L23-TR
Figure C.7: DSC profile of L24-TR

Figure C.8: DSC profile of L25-TR
Figure C.9: DSC profile of L18-TR

Figure C.10: DSC profile of H22-TR
Figure C.11: DSC profile of H15-TR

Figure C.12: DSC profile of H16-TR
Figure C.13: DSC profile of H17-TR

Figure C.14: DSC profile of H23-T
Figure C.15: DSC profile of H18-TR

Figure C.16: DSC profile of H19-TR
Figure C.17: DSC profile of M08-TR

Figure C.18: DSC profile of M09-TR
Figure C.19: DSC profile of M10-TR

Figure C.20: DSC profile of M11-TR
Figure C.21: DSC profile of M12-TR

Figure C.22: DSC profile of Commercial Resin A
Figure C.23: DSC profile of Commercial Resin B

Figure C.24: DSC profile of Commercial Resin C
Figure C.25: DSC profile of Commercial Resin D
APPENDIX D: TGA profiles of toners

Figure D.1: TGA curve of M09-FT

Figure D.2: TGA curve of M10-FT
Figure D.3: TGA curve of M11-FT

Figure D.4: TGA curve of magnetite pigment
Figure D.5: TGA curve of charge control agent
APPENDIX E: GPC profiles of toner resins and toners

Figure E.1: GPC profile of L18-TR
Figure E.2: GPC profile of H18-TR
Figure E.3: GPC profile of high molecular weight fraction of M10-TR
Figure E.4: GPC profile of low molecular weight fraction of M10-TR
Figure E.5: GPC profile of high molecular weight fraction of M10-FT
Figure E.6: GPC profile of low molecular weight fraction of M10-FT
APPENDIX F: Particle Size Distribution Data Sheet

Figure F.1: Particle size distribution of M09-FT
Figure F.2: Particle size distribution of M10-FT
Figure F.3: Particle size distribution of M11-FT
APPENDIX G: Calculation of Acid Number of High Molecular Weight Styrene Acrylic Copolymers and Blended Resins

Standardization of Potassium hydroxide (KOH)

\[N = \frac{1000 \times W_{\text{KHP}}}{204.23 \times V_{\text{eq}}} \]

Where,
\[N = \text{Normality of standardized KOH solution} \]
\[W_{\text{KHP}} = \text{Weight of Potassium hydrogen phthalate (KHP) used, g} \]
\[V_{\text{eq}} = \text{Volume of KOH used for the sample titration, ml} \]

204.23 = equivalent weight of KHP

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of KHP/ g</td>
<td>0.5068</td>
<td>0.5056</td>
</tr>
<tr>
<td>Initial reading of KOH, (V_0)/ ml</td>
<td>1.10</td>
<td>0.50</td>
</tr>
<tr>
<td>Final reading of KOH, (V_1)/ ml</td>
<td>32.90</td>
<td>32.50</td>
</tr>
<tr>
<td>Total of KOH used, (V_{\text{eq}})/ ml</td>
<td>31.80</td>
<td>32.00</td>
</tr>
<tr>
<td>Normality, (N)</td>
<td>0.0780</td>
<td>0.0774</td>
</tr>
</tbody>
</table>

Average Normality, \(N = \frac{N_{\text{Test 1}} + N_{\text{Test 2}} + N_{\text{Test 3}}}{3} \)

\[= 0.0777N \]

Blank Titration of Toluene

<table>
<thead>
<tr>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial reading of KOH, (V_0)/ ml</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>Final reading of KOH, (V_1)/ ml</td>
<td>1.05</td>
<td>2.00</td>
</tr>
<tr>
<td>Total of KOH used, (V_{\text{blank}})/ ml</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Average \(V_{\text{blank}} = \frac{(V_{\text{blank}} \text{ (Test 1)} + V_{\text{blank}} \text{ (Test 2)} + V_{\text{blank}} \text{ (Test 3)})}{3} \)

\[= 0.05 \text{ml} \]
Table G.1: Calculation of Acid Number of High Molecular Weight Styrene Acrylic Copolymers

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>H22-TR</th>
<th>H15-TR</th>
<th>H16-TR</th>
<th>H17-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
<td>Test 3</td>
<td>Test 1</td>
</tr>
<tr>
<td>Weight of sample/ g</td>
<td>1.0181</td>
<td>1.0405</td>
<td>1.058</td>
<td>1.0103</td>
</tr>
<tr>
<td>Initial reading of KOH, V0 / ml</td>
<td>1.10</td>
<td>2.20</td>
<td>3.40</td>
<td>4.60</td>
</tr>
<tr>
<td>Final reading of KOH, V1 / ml</td>
<td>2.20</td>
<td>3.40</td>
<td>4.60</td>
<td>5.75</td>
</tr>
<tr>
<td>Total of KOH used, Veq / ml</td>
<td>1.10</td>
<td>1.20</td>
<td>1.20</td>
<td>1.15</td>
</tr>
<tr>
<td>Acid Number / mgKOHg-1</td>
<td>4.50</td>
<td>4.82</td>
<td>4.74</td>
<td>4.75</td>
</tr>
<tr>
<td>Average</td>
<td>4.68</td>
<td>4.92</td>
<td>4.42</td>
<td>3.64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>H23-TR</th>
<th>H18-TR</th>
<th>H19-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
<td>Test 3</td>
</tr>
<tr>
<td>Weight of sample/ g</td>
<td>1.0372</td>
<td>1.0113</td>
<td>1.0256</td>
</tr>
<tr>
<td>Initial reading of KOH, V0 / ml</td>
<td>3.45</td>
<td>3.60</td>
<td>4.50</td>
</tr>
<tr>
<td>Final reading of KOH, V1 / ml</td>
<td>4.20</td>
<td>4.50</td>
<td>5.30</td>
</tr>
<tr>
<td>Total of KOH used, Veq / ml</td>
<td>0.75</td>
<td>0.90</td>
<td>0.80</td>
</tr>
<tr>
<td>Acid Number / mgKOHg-1</td>
<td>2.94</td>
<td>3.66</td>
<td>3.19</td>
</tr>
<tr>
<td>Average</td>
<td>3.26</td>
<td>4.04</td>
<td>2.34</td>
</tr>
</tbody>
</table>
Table G.2: Calculation of Acid Number of Blended Resins

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>M08-TR</th>
<th>M09-TR</th>
<th>M10-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
<td>Test 3</td>
</tr>
<tr>
<td>Weight of sample/ g</td>
<td>1.0451</td>
<td>1.0413</td>
<td>1.0495</td>
</tr>
<tr>
<td>Initial reading of KOH, V0 / ml</td>
<td>4.20</td>
<td>5.00</td>
<td>5.70</td>
</tr>
<tr>
<td>Final reading of KOH, V1 / ml</td>
<td>4.85</td>
<td>5.70</td>
<td>6.35</td>
</tr>
<tr>
<td>Total of KOH used, Veq / ml</td>
<td>0.65</td>
<td>0.70</td>
<td>0.65</td>
</tr>
<tr>
<td>Acid Number / mgKOHg-1</td>
<td>2.50</td>
<td>2.72</td>
<td>2.49</td>
</tr>
<tr>
<td>Average</td>
<td>2.57</td>
<td>2.82</td>
<td>2.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>M11-TR</th>
<th>M12-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test 1</td>
<td>Test 2</td>
</tr>
<tr>
<td>Weight of sample/ g</td>
<td>1.039</td>
<td>1.1827</td>
</tr>
<tr>
<td>Initial reading of KOH, V0 / ml</td>
<td>6.30</td>
<td>7.50</td>
</tr>
<tr>
<td>Final reading of KOH, V1 / ml</td>
<td>7.10</td>
<td>8.40</td>
</tr>
<tr>
<td>Total of KOH used, Veq / ml</td>
<td>0.80</td>
<td>0.90</td>
</tr>
<tr>
<td>Acid Number / mgKOHg-1</td>
<td>3.15</td>
<td>3.13</td>
</tr>
<tr>
<td>Average</td>
<td>3.16</td>
<td>3.23</td>
</tr>
</tbody>
</table>
APPENDIX H: Calculation of Percentage of THF Insoluble Fraction of High Molecular Weight Styrene Acrylic Copolymers and Blended Resins

Table H.1: Calculation of Percentage of THF Insoluble Fraction of High Molecular Weight Styrene Acrylic Copolymers

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of sample, w/ g</td>
<td>1.0413</td>
<td>1.0324</td>
<td>1.1827</td>
<td>1.0137</td>
<td>1.1495</td>
<td>1.0261</td>
<td>1.0644</td>
</tr>
<tr>
<td>Weight of filter paper, w0/ g</td>
<td>0.7935</td>
<td>0.7965</td>
<td>0.8032</td>
<td>0.7806</td>
<td>0.7824</td>
<td>0.7948</td>
<td>0.7985</td>
</tr>
<tr>
<td>Weight of (filter paper + residue), w1/ g</td>
<td>0.8989</td>
<td>0.9244</td>
<td>1.0245</td>
<td>0.9170</td>
<td>0.8888</td>
<td>0.9677</td>
<td>1.5215</td>
</tr>
<tr>
<td>w1-w0 /g</td>
<td>0.1054</td>
<td>0.1279</td>
<td>0.2213</td>
<td>0.1364</td>
<td>0.1064</td>
<td>0.1729</td>
<td>0.7230</td>
</tr>
</tbody>
</table>

Table H.2: Calculation of Percentage of THF Insoluble Fraction of Blended Resins

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>M08-TR</th>
<th>M09-TR</th>
<th>M10-TR</th>
<th>M11-TR</th>
<th>M12-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight of sample, w/ g</td>
<td>1.0402</td>
<td>1.0145</td>
<td>1.0338</td>
<td>1.0048</td>
<td>1.0108</td>
</tr>
<tr>
<td>Weight of filter paper, w0/ g</td>
<td>0.7986</td>
<td>0.7910</td>
<td>0.7909</td>
<td>0.7909</td>
<td>0.7971</td>
</tr>
<tr>
<td>Weight of (filter paper + residue), w1/ g</td>
<td>0.8918</td>
<td>0.8862</td>
<td>0.8879</td>
<td>0.9294</td>
<td>0.9324</td>
</tr>
<tr>
<td>w1-w0 /g</td>
<td>0.0932</td>
<td>0.0952</td>
<td>0.0970</td>
<td>0.1385</td>
<td>0.1353</td>
</tr>
<tr>
<td>% THF Insoluble Fraction</td>
<td>8.96</td>
<td>9.38</td>
<td>9.38</td>
<td>13.78</td>
<td>13.39</td>
</tr>
</tbody>
</table>
APPENDIX I: Estimation of T_g by using Fox equation and Gordon-Taylor equation

(a) Fox equation:

$$\frac{1}{T_g} = \frac{w_1}{T_{g1}} + \frac{w_2}{T_{g2}}$$

Where $T_{g1} = T_g$’s of the poly(butyl acrylate), 218 K

$T_{g2} = T_g$’s of the polystyrene, 373 K

w_1 = respective weight fractions of poly(butyl acrylate) in the mixture

w_2 = respective weight fractions of polystyrene in the mixture.

Example:

Sample L20-TR, $w_1 = 0.25$ and $w_2 = 0.75$

$$\frac{1}{T_g} = \frac{0.25}{218} + \frac{0.75}{373}$$

$$\frac{1}{T_g} = \frac{0.25}{218} + \frac{0.75}{373}$$

Where $T_{g1} = 218$ K and $T_{g2} = 373$ K

So, $T_g = 316.70$ K

Likewise, T_g of other samples were calculated.

Table 1.1: Estimation of T_g of Low Molecular Weight Styrene Acrylic Copolymers by using Fox equation

<table>
<thead>
<tr>
<th>Sample</th>
<th>L20-TR</th>
<th>L21-TR</th>
<th>L22-TR</th>
<th>L15-TR</th>
<th>L-16TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_g/K</td>
<td>316.70</td>
<td>326.56</td>
<td>337.05</td>
<td>348.24</td>
<td>360.19</td>
</tr>
</tbody>
</table>
Table I.2: Estimation of T_g of High Molecular Weight Styrene Acrylic Copolymers by using Fox equation

<table>
<thead>
<tr>
<th>Sample</th>
<th>H22-TR</th>
<th>H15-TR</th>
<th>H16-TR</th>
<th>H17-TR</th>
<th>H23-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_g/K</td>
<td>316.35</td>
<td>326.18</td>
<td>336.65</td>
<td>347.81</td>
<td>359.73</td>
</tr>
</tbody>
</table>

(b) Gordon-Taylor equation:

$$T_g = \frac{(w_1T_{g1} + kw_2T_{g2})}{(w_1 + kw_2)}$$

Where $T_{g1} = T_g$'s of the poly(butyl acrylate), 218 K

$T_{g2} = T_g$'s of the polystyrene, 373 K

$w_1 = $ respective weight fractions of poly(butyl acrylate) in the mixture

$w_2 = $ respective weight fractions of polystyrene in the mixture.

$k = $ fitting factor

Calculation of k

Example:

Sample L20-TR, $w_1 = 0.25$ and $w_2 = 0.75$

$$T_g = \frac{(w_1T_{g1} + kw_2T_{g2})}{(w_1 + kw_2)}$$

$$T_g = \frac{(0.25T_{g1} + 0.75T_{g2})}{(0.25 + 0.75)}$$

Where $T_{g1} = 218$ K, $T_{g2} = 373$ K and $T_g = T_g\text{exp} = 312$ K

So, $k = 0.5137$

Likewise, k of other samples was calculated.
Table I.3: Calculation of fitting factor, k of Low Molecular Weight Styrene Acrylic Copolymers by using Gordon-Taylor equation

<table>
<thead>
<tr>
<th>Sample</th>
<th>L20-TR</th>
<th>L21-TR</th>
<th>L22-TR</th>
<th>L15-TR</th>
<th>L-16TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0.5137</td>
<td>0.4298</td>
<td>0.3396</td>
<td>0.2716</td>
<td>0.1679</td>
</tr>
</tbody>
</table>

Average $k = 0.3445$

Table I.4: Calculation of fitting factor, k of High Molecular Weight Styrene Acrylic Copolymers by using Gordon-Taylor equation

<table>
<thead>
<tr>
<th>Sample</th>
<th>H22-TR</th>
<th>H15-TR</th>
<th>H16-TR</th>
<th>H17-TR</th>
<th>H23-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0.7273</td>
<td>0.7273</td>
<td>0.5860</td>
<td>0.5056</td>
<td>0.3556</td>
</tr>
</tbody>
</table>

Average $k = 0.5804$

Calculation of T_g

(i) Low Molecular Weight Styrene Acrylic Copolymers

T_g of other samples was calculated by fitting $k = 0.3445$ into the Gordon-Taylor equation.

Example:

Sample L20-TR, $w_1 = 0.25$ and $w_2 = 0.75$

$$T_g = \frac{0.25T_{g1} + 0.75T_{g2}}{0.25 + 0.75}$$

Where $T_{g1} = 218$ K, $T_{g2} = 373$ K, and $k = 0.3445$,

So, $T_g = 296.78$ K

Likewise, T_g of other samples were calculated.
Table I.5: Estimation of T_g of Low Molecular Weight Styrene Acrylic Copolymers by using Gordon-Taylor equation

<table>
<thead>
<tr>
<th>Sample</th>
<th>L20-TR</th>
<th>L21-TR</th>
<th>L22-TR</th>
<th>L15-TR</th>
<th>L-16TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_g/K</td>
<td>296.78</td>
<td>307.82</td>
<td>320.68</td>
<td>335.20</td>
<td>352.46</td>
</tr>
</tbody>
</table>

(ii) High Molecular Weight Styrene Acrylic Copolymers

T_g of other samples was calculated by fitting $k = 0.5804$ into the Gordon-Taylor equation.

Example:

Sample H20-TR, $w_1 = 0.28$ and $w_2 = 0.70$

$$T_g = \frac{(0.28T_{g1} + k0.70T_{g2})}{(0.28 + k0.70)}$$

Where $T_{g1} = 218$ K, $T_{g2} = 373$ K, and $k = 0.5804$,

So, $T_g = 309.76$ K

Likewise, T_g of other samples were calculated.

Table I.6: Estimation of T_g of High Molecular Weight Styrene Acrylic Copolymers by using Gordon-Taylor equation

<table>
<thead>
<tr>
<th>Sample</th>
<th>H22-TR</th>
<th>H15-TR</th>
<th>H16-TR</th>
<th>H17-TR</th>
<th>H23-TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_g/K</td>
<td>309.76</td>
<td>319.42</td>
<td>329.70</td>
<td>340.67</td>
<td>352.41</td>
</tr>
</tbody>
</table>
APPENDIX J

Test Print Images of M09-FT
APPENDIX K

Test Print Images of M10-FT
APPENDIX L

Test Print Images of M11-FT
APPENDIX M

Test Print Images of commercial toner A