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ABSTRACT 

Two phase pure copper sulfides, rhombohedral phase digenite (Cu9S5) and hexagonal phase 

covellite (CuS) have been successfully prepared via hydrothermal method using copper 

nitrate and sodium thiosulfate without any assisting agent. The structural, chemical, and 

thermal properties of the as-synthesized phase pure systems were investigated with various 

characterization techniques, including powder X-ray diffraction (PXRD), scanning and 

transmission electron microscopy (SEM and TEM), BET gas sorption, X-ray fluorescence 

(XRF), energy dispersive X-ray scpectroscopy (EDX), thermogravimetric analysis coupled 

to mass scpectroscopy (TGA-MS), as well as differential scanning calorimetry (DSC) 

methods. In this study, the phase pure covellite has shown a potential ability to remove 

Hg(II) in aqueous system with maximum sorption capacity of ca. 400 mg/ g can be reached 

at pH 4. The collected experimental data is best fitted to Langmuir isotherm and the 

sorption of Hg(II) onto covellite in aqueous system is favored in a wide range of pH. This 

was supported by the calculated thermodynamic parameter, ∆G° which has shown that the 

sorption of Hg(II) onto covellite is favorable in a wide range of pH, particularly at low pH. 

Apart from that, three synthesis parameters (synthesis temperature, Cu: S mole ratio, and 

synthesis time) have been systematically investigated throughout the study. It was found 

that synthesis temperature and Cu: S mole ratio determined the phase purity, crystal phase, 

and morphology of the final products formed; while synthesis time has pronounced effect 

on the crystallite size of the yields. Furthermore, several mechanistic pathways leading to 

the final formation of covellite were proposed and discussed based on the detailed analysis 

of PXRD done at different synthesis temperatures. This current study also revealed that the 

renowned most stable phase in copper sulfide family, covellite has transformed into a 
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mixed phase of pentahydrate copper sulfate and covellite at ambient condition after a 

certain period. It could be shown that covellite is an air-sensitive material which undergoes 

structural changes after exposure to moisture or air. This discovery was supported with 

various observations from PXRD, EDX, and TG-MS techniques. Therefore, phase stability 

study was conducted to find out the most efficient way to store copper sulfides besides to 

investigate the stability of covellite over a series of time at ambient condition. The phase 

stability experiments indicated that covellite with the common washing and storage 

methods described in the research methodology was stable up to 4 weeks. Covellite with 

the purging of nitrogen gas before storage is the best method to prevent covellite from 

further oxidation.  
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ABSTRAK 

Dua fasa tulen kuprum sulfida, iaitu rombohedral digenite (Cu9S5) dan heksagonal covellite 

(CuS) telah berjaya disediakan melalui kaedah hidroterma dengan menggunakan kuprum 

nitrat dan natrium thiosulfat tanpa ejen pembantu. Sifat-sifat struktur, kimia, dan terma bagi 

dua sistem fasa tulen telah dicirikan dengan menggunakan pelbagai kaedah pencirian 

termasuk kaedah serbuk pembelauan sinar-X (PXRD), mikroskop elektron imbasan dan 

transmisi (SEM & TEM), penjerapan dan penyahjerapan gas nitrogen (BET), (XRF), 

taburan tenaga sinar-x (EDX), termagravimetrik-jisim spektroskopi (TGA-MS), dan 

perbezaan imbasan tenaga (DSC). Dalam kajian ini, fasa tulen covellite telah menunjukkan 

keupayaan untuk menyingkirkan Hg(II) dalam sistem akueus dengan kapasiti penjerapan 

maksimum yang dicapai ialah kira-kira 400 mg/ g pada pH 4. Data eksperimen yang 

dikumpul adalah sangat bersesuaian dipadankan dengan isoterma Langmuir dan penjerapan 

Hg(II) oleh covellite adalah cenderung dalam lingkungan pH yang luas di dalam sistem 

akueus. Perkara ini adalah disokong dengan parameter termodinamik, ∆G° yang 

menunjukkan penjerapan Hg(II) oleh covellite adalah cenderung dalam lingkungan pH 

yang luas, terutamanya pada pH yang rendah. Selain itu, tiga parameter sintesis (suhu 

sintesis, nisbah mol Cu: S, dan masa sintesis) telah diselidik dengan bersistematik dalam 

kajian ini. Suhu sintesis dan nisbah mol Cu: S didapati boleh menentukan fasa tulen, fasa 

kristal, dan morfologi bagi produk terakhir yang dihasilkan; manakala masa sintesis 

mempunyai kesan yang ketara dalam saiz kristalit hasil produk.Tambahan pula, beberapa 

mekanisme yang menunjukkan pembentukan covellite telah dicadangkan dan dibincangkan 

berdasarkan analisis PXRD yang dijalankan secara terperinci pada suhu sintensis yang 

berbeza. Kajian ini juga menunjukkan bahawa covellite, iaitu fasa yang terkenal dengan 
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kestabilannya dalam keluarga kuprum sulfida, telah tertransformasi kepada fasa campuran 

kuprum sulfat pentahidrat dan covellite pada keadaan ambien selepas suatu jangka masa. 

Fenomena ini menujukkan bahawa covellite ialah bahan yang sensitif kepada udara dan 

boleh menjalani perubahan struktur apabila terdedahkan kepada air atau udara. Penemuan 

ini disokong dengan beberapa perubahan sifat-sifat yang didapati daripada teknik-teknik 

pencirian seperti PXRD, EDX, dan TG-MS. Oleh sebab itu, kajian fasa kestabilan telah 

dijalankan untuk mengetahui cara yang sesuai untuk menyimpan kuprum sulfida selain 

untuk menyelidik kestabilan covellite dalam satu siri masa yang tertentu pada keadaan 

ambien. Ekeperimen fasa kestabilan menunjukkan bahawa covellite yang disediakan 

dengan cara pembasuhan dan penyimpanan yang dihuraikan dalam metodologi 

penyelidikan ini stabil sehingga 4 minggu. Covellite yang disediakan dengan kaedah 

penyemburan gas nitrogen adalah cara yang terbaik untuk mengelakkan covellite daripada 

proses pengoksidaan yang seterusnya. 
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