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ABSTRACT

This research focussed on the development of the synthetic methods and

characterisation (structural, thermal, magnetic and redox properties) of two types of

ionic copper(II) mixed-carboxylates: (a) Ka[Cu2(p-OC6H4COO)a(CH3(CH2)nCOO)4-a],

and (b) [Cu2(p-H3NC6H4COO)a(CH3(CH2)14COO)4-a]Xa, where a = 1, 2; n = 14, 10, 8,

and 6; X = Cl, CH3COO and CF3SO3. These complexes were designed to be thermally

stable and magnetic metallomesogens and/or metal-containing ionic liquids.

The synthetic methods used to prepare these complexes were one-pot reaction,

ligand-exchange reaction, and acid-carbonate-base reaction. A total of twelve (12)

complexes were successfully prepared and fully characterised (Table 1).

Table 1 The structural formulas of the complexes

Complex Structural formula

1 K2[Cu2(p-OC6H4COO)2(CH3(CH2)14COO)2(p-HOC6H4COOH)2].2H2O

2 [Cu2(p-HOC6H4COO)2(CH3(CH2)14COO)2(CH3(CH2)14COOH)(H2O)].

CH3CH2OH

3 [Cu2(p-H2NC6H4COO)2(CH3(CH2)14COO)2].2H2O

4 K[Cu2(p-OC6H4COO)(CH3(CH2)14COO)3]

5 [Cu2(p-HOC6H4COO)(CH3(CH2)14COO)3(CH3CH2OH)2]

6 [Cu2(p-HOC6H4COO)(CH3(CH2)10COO)3].H2O

7 [Cu2(p-HOC6H4COO)(CH3(CH2)8COO)3].CH3CH2OH

8 [Cu2(p-HOC6H4COO)(CH3(CH2)6COO)3(CH3(CH2)6COOH)

(CH3CH2OH)].H2O

9 [Cu2(CH3(CH2)14COO)2(OH)2(H2O)4].2C2H5OH

10 K2[Cu2(CH3(CH2)10COO)2(OH)4]

11 K2[Cu2(CH3(CH2)8COO)2(OH)4]

12 K2[Cu2(CH3(CH2)6COO)2(OH)4]
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The structural formulas of these complexes were deduced from elemental

analyses, FTIR and UV-vis spectroscopies. The thermal properties were determined by

TGA and DSC, while the mesomorphic properties were determined by OPM. The

magnetic properties were determined by Gouy method using a magnetic susceptibility

balance, and the redox properties by cyclic voltammetry. Additionally, GCMS was

used to analyze the products formed from the carbon-carbon bond-forming reaction of

methyl carbonyl (3,3-dimethyl-2-butanone).

The structure of most of the complexes were dimeric paddle-wheel with either

square planar or square pyramidal geometry at copper(II) centres.

Complex 1 had the highest thermal stability (Tdec = 424oC) compared to the other

complexes (Tdec = 200oC – 250oC). Additionally, the complexes with a higher ratio of

the alkylcarboxylate ligands (aromatic: aliphatic = 1:3) were more thermally stable; the

stability increases with increasing alkyl chain length. However, the opposite trend was

noted for the melting temperatures: complexes with a higher ratio of the

alkylcarboxylate ligands had a lower melting point.

Six of the complexes (Complex 2, Complexes 5 - 9) exhibited metallomesogenic

properties. However, the type of mesophase cannot be deduced with certainty from

OPM.

All complexes were magnetic at room-temperature. Except for Complex 1 which

showed a weak ferromagnetic interaction (μeff = 3.12 B.M.; 2J = 60 cm-1), the other

complexes had magnetism (μeff  = 1.87 B.M. - 2.62 B.M.) which were lower than the

spin-only value for two unpaired electrons (μeff = 2.83 B.M.), with variable strength of

antiferromagnetic interaction (2J = -78 cm-1 to -346 cm-1). The complexes with a higher

ratio of the alkylcarboxylate ligands have a stronger antiferromagnetic interaction.

However, the difference in the chain length did not have much effect on the magnetic

interaction.
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All of the complexes were redox-active and showed step-wise quasi-reversible

electrochemical reaction. The initial reduction potentials were in the range of

0.07-0.30  V.

Both Complex 1 and Complex 4 ‘catalysed’ the carbon-carbon bond-forming

reaction of 3,3-dimethyl-2-butanone. Complex 4 seemed to be a better ‘catalyst’ as the

products formed were in higher purity and amount.

The findings of this research were published in one (1) ISI journal and presented

either orally or as poster at three (3) national and four (4) international conferences and

seminars (Appendix 1).
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ABSTRAK

Penyelidikan ini berfokuskan pembangunan kaedah sintetik dan pencirian (struktur, dan

sifat terma, magnet dan redoks) dua jenis kuprum(II) karboksilat bercampur ionik: (a)

Ka[Cu2(p-OC6H4COO)a(CH3(CH2)nCOO)4-a], dan (b) [Cu2(p-H3NC6H4COO)a

(CH3(CH2)14COO)4-a]Xa, dengan a = 1, 2; n = 14, 10, 8 dan 6; X = Cl, CH3COO dan

CF3SO3. Kompleks-kompleks ini direkabentuk untuk menjadi metallomesogen dan/atau

cecair ionik yang stabil secara terma  dan magnetik.

Kaedah sintesis yang digunakan untuk menyediakan kompleks-kompleks

tersebut adalah  tindak balas satu pot, tindak balas penukaran ligan, dan tindak balas

asid-karbonat-bes. Sejumlah dua belas (12) kompleks berjaya disediakan dan dicirikan

sepenuhnya (Jadual 1).

Jadual 1 Formula struktur kompleks

Kompleks Formula Struktur

1 K2[Cu2(p-OC6H4COO)2(CH3(CH2)14COO)2(p-HOC6H4COOH)2].2H2O

2 [Cu2(p-HOC6H4COO)2(CH3(CH2)14COO)2(CH3(CH2)14COOH)(H2O)].

CH3CH2OH

3 [Cu2(p-H2NC6H4COO)2(CH3(CH2)14COO)2].2H2O

4 K[Cu2(p-OC6H4COO)(CH3(CH2)14COO)3]

5 [Cu2(p-HOC6H4COO)(CH3(CH2)14COO)3(CH3CH2OH)2]

6 [Cu2(p-HOC6H4COO)(CH3(CH2)10COO)3].H2O

7 [Cu2(p-HOC6H4COO)(CH3(CH2)8COO)3].CH3CH2OH

8 [Cu2(p-HOC6H4COO)(CH3(CH2)6COO)3(CH3(CH2)6COOH)

(CH3CH2OH)].H2O

9 [Cu2(CH3(CH2)14COO)2(OH)2(H2O)4].2C2H5OH

10 K2[Cu2(CH3(CH2)10COO)2(OH)4]

11 K2[Cu2(CH3(CH2)8COO)2(OH)4]

12 K2[Cu2(CH3(CH2)6COO)2(OH)4]
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Formula struktur kompleks dideduksikan daripada analisis unsur, spektroskopi

FTIR dan UV-vis. Sifat terma ditentukan melalui TGA dan DSC, manakala sifat

mesomorfik ditentukan melalui OPM. Sifat magnet ditentukan melalui kaedah Gouy

dengan menggunakan neraca kerentanan magnet, dan sifat redoks melalui voltametri

siklik. Seterusnya, GCMS digunakan untuk menganalisis hasil yang terbentuk daripada

tindak balas pembentukan ikatan karbon-karbon yang melibatkan metilkarbonil  (3,3-

dimetil-2-butanon).

Struktur kebanyakan kompleks di atas adalah dimerik ‘paddle-wheel’ dengan

sama ada geometri  empat sisi sama sesatah atau piramid pada pusat kuprum(II).

Kompleks 1 mempunyai kestabilan terma yang paling tinggi (Turai = 424oC)

berbanding kompleks-kompleks yang lain (Turai = 200oC – 250oC). Selanjutnya,

kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi (aromatik: alifatik =

1:3) adalah lebih stabil secara terma; kestabilan meningkat dengan penambahan dalam

panjang rantai alkil. Bagaimanapun, tren berlawanan diperhatikan bagi suhu lebur:

kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi mempunyai takat lebur

yang lebih rendah.

Enam daripada kompleks tersebut (Kompleks 2, Komplek 5 - 9) menunjukkan

sifat metalomesogenik. Bagaimanapun, jenis mesofasa tidak dapat dideduksikan dengan

jelas daripada OPM.

Semua kompleks adalah magnetik pada suhu bilik. Kecuali Kompleks 1 yang

menunjukkan saling tindakan feromagnet yang lemah (μeff = 3.12 B.M.; 2J = 60 cm-1),

kompleks-kompleks yang lain mempunyai kemagnetan (μeff  = 1.87 B.M. - 2.62 B.M.)

yang lebih rendah berbanding nilai spin sahaja untuk dua elektron tak berpasangan  (μeff

= 2.83 B.M.), dengan saling tindakan antiferomagnet pelbagai kekuatan (2J = -78 cm-1

hingga -346 cm-1). Kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi
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mempunyai saling tindakan antiferomagnet yang lebih kuat. Bagaimanapun, perbezaan

dalam panjang rantai tidak mempunyai kesan yang ketara pada saling tindakan magnet.

Semua kompleks adalah aktif redoks dan menunjukkan tindak balas elektrokimia

kuasi-berbalik bertertib. Keupayaan penurunan awal adalah dalam julat 0.07 – 0.30 V.

Kedua-dua Kompleks 1 dan Kompleks 4 ‘memangkinkan’ tindak balas

pembentukan ikatan karbon-karbon  yang melibatkan 3,3-dimetil-2-butanon. Kompleks

4 merupakan ‘mangkin’ yang lebih baik kerana hasil tindak balas adalah lebih tulen dan

dalam amaun yang lebih tinggi.

Penemuan penyelidikan ini telah diterbitkan dalam satu (1) jurnal ISI dan

dibentang secara lisan atau poster dalam tiga (3) seminar kebangsaan dan empat (4)

seminar antarabangsa (Appendik 1).




