SYNTHESIS AND CHARACTERISATION OF THERMALLY STABLE $K_a[Cu_2(p-OC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]$ AND $[Cu_2(p-H_3NC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]X_a$ AND THEIR REACTIONS WITH SELECTED KETONES

ZAIMATUL 'AZIAN KAMARAZAMAN

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

SYNTHESIS AND CHARACTERISATION OF THERMALLY STABLE $K_a[Cu_2(p-OC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]$ AND $[Cu_2(p-H_3NC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]X_a$ AND THEIR REACTIONS WITH SELECTED KETONES

ZAIMATUL 'AZIAN KAMARAZAMAN

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2012

ACKNOWLEDGEMENTS

Alhamdulillah, I praise and thank Allah SWT for His greatness and for giving me the strength and courage to complete this thesis.

First and foremost I offer my sincerest gratitude to my supervisor, Assoc. Prof. Dr. Norbani Abdullah, who has supported me thoughout my thesis with her patience and expertise while allowing me the room to work on my own way. I attribute my Master degree to her encouragement and effort and without her this thesis would not have been completed. One simply could not wish for a better or friendlier supervisor.

Deepest gratitude are also due to Prof. Dr. Yatimah Alias, my second supervisor, and Assoc. Prof. Dr. Zunita Zakaria who encouraged and adviced me to continue my Master degree even after 15 years 'away' from chemistry line.

In my daily work I have been blessed with a friendly and cheerful group of friends. Special thanks to all my group members for sharing the literature and invaluable assistance. Not forgetting to all staff in Chemistry Department, Faculty of Science, University of Malaya. Without their cooperation and kindness, this project could not have been completed.

My parents, Kamarazaman Hj. Hasan and Mahawiyah Khalid deserve special mention for their inseparable support and prayers. Words fail to express my appreciation to my husband, Mr. Amal Nathan whose dedication, love and confidence in me, has taken the load off my shoulder.

Finally, I would like to thank everybody who was important to the successful realization of this thesis, as well as expressing my apology that I could not mention personally one by one.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ii			
ABSTRACT			
ABST	ABSTRAK		
TABL	E OF CONTENTS	ix	
LIST (OF FIGURES	xiii	
LIST (OF TABLES	xxi	
CHAP	CHAPTER 1 INTRODUCTION		
Refere	ences	4	
CHAPTER 2 THEORY AND LITERATURE REVIEW 7			
2.1	Metallomesogen	7	
2.2	Metal-Containing Ionic Liquids	13	
2.3	Copper(II) Carboxylates	15	
2.4	The C-C Bond Forming Reactions	16	
2.5	Elemental Analyses	17	
2.6	Fourier Transform Infrared Spectroscopy	18	
2.7	UV-Visible Spectroscopy	19	
2.8	Thermal Analysis	24	
	2.8.1 Thermogravimetry	24	
	2.8.2 Differential Scanning Calorimetry	25	
2.9	Optical Polarizing Microscope	26	
2.10	Magnetic Susceptibility	29	
2.10	Cyclic Voltammetry	33	
References 35			

CHAPTER 3 EXPERIMENTAL

CHAPTER 3 EXPERIMENTAL 39			39	
3.1	Metho	od Development 4		
	3.1.1	$K_{2}[Cu_{2}(p-OC_{6}H_{4}COO)_{2}(CH_{3}(CH_{2})_{14}COO)_{2}]$	40	
		(a) One-pot synthesis	40	
		(b) Ligand-exchange reaction	40	
		(c) Carbonate-base-acid reaction	42	
	3.1.2	$[Cu_2(p-H_3NC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2]X_2$	42	
		(a) One-pot synthesis (X=Cl)	42	
		(b) Ligand-exchange reaction $(X = CF_3SO_3)$	43	
		(c) Carbonate-base-acid reaction ($X = CH_3COO$)	43	
3.2	Coppe	er(II) Mixed Carboxylates of Lower Symmetry	44	
	3.2.1	$K[Cu_2(p-OC_6H_4COO)(CH_3(CH_2)_{14}COO)_3]$	44	
		(a) One-pot synthesis	44	
		(b) Ligand-exchange reaction	44	
	3.2.2	One-pot synthesis of [Cu ₂ (<i>p</i> -H ₃ NC ₆ H ₄ COO)(CH ₃ (CH ₂) ₁₄ COO) ₃]Cl	45	
3.3	Low S	Symmetry Copper(II) Mixed Carboxylates with Shorter 45		
	Alkyl	lkyl Chain Length		
	3.3.1	$K[Cu_2(p-OC_6H_4COO)(CH_3(CH_2)_{10}COO)_3]$	45	
	3.3.2	$K[Cu_2(p-OC_6H_4COO)(CH_3(CH_2)_8COO)_3]$	46	
	3.3.3	$K[Cu_2(p-OC_6H_4COO)(CH_3(CH_2)_6COO)_3]$	46	
3.4	The C	The C-C Bond-Forming Reaction		
	3.4.1	Complex 1	46	
	3.4.2	Complex 4	47	
3.5	Instru	mental Analyses	47	
	3.5.1	Elemental Analyses	47	
	3.5.2	Fourier Transform Infrared Spectroscopy	47	

х

	3.5.3	UV-V	isible Spectroscopy	48
	3.5.4	Thern	nogravimetric Analysis	48
	3.5.5	Differ	rential Scanning Calorimetry	48
	3.5.6	Optica	al Polarizing Microscopy	49
	3.5.7	Magn	etic Susceptibility	49
	3.5.8	Cyclic	e Voltammetry	50
	3.5.9	Gas C	hromatography-Mass Spectroscopy	50
CHAF	PTER 4	RESU	LTS AND DISCUSSIONS	51
4.1	Metho	d Deve	elopment	53
	4.1.1	K ₂ [Cu	$H_2(p-OC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2]$	53
		(a)	One-pot reaction	53
		(b)	Ligand-exchange reaction	63
		(c)	Carbonate-base-acid reaction	74
	4.1.2	[Cu ₂ ()	$p-H_3NC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2]X_2$	77
		(a)	One-pot synthesis	77
		(b)	Ligand-exchange reaction	84
		(c)	Carbonate-base-acid reaction	85
4.2	Coppe	er(II) M	ixed Carboxylates of Lower Symmetry	87
	4.2.1	K[Cu ₂	$_{2}(p-OC_{6}H_{4}COO)(CH_{3}(CH_{2})_{14}COO)_{3}]$	88
		(a)	One-pot synthesis	88
		(b)	Ligand-exchange reaction	93
	4.2.2	One-p	oot synthesis [Cu ₂ (<i>p</i> -H ₃ NC ₆ H ₄ COO)(CH ₃ (CH ₂) ₁₄ COO) ₃]Cl ₂	101

4.3	Low s	ymmetry Copper(II) Mixed Carboxylates with shorter	103
	alkyl chain		
	4.3.1	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{10}COO)_3]$	103
	4.3.2	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_8COO)_3]$	110
	4.3.3	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_6COO)_3]$	119
4.4	Conve	rsion to ionic complex	127
	4.4.1	$K[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{14}COO)_3]$	127
	4.4.2	$K[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{10}COO)_3]$	132
	4.4.3	$K[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_8COO)_3]$	136
	4.4.4	$K[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_6COO)_3]$	138
4.5	The C	-C Bond-Forming Reaction	140
	4.5.1	Complex 1	141
	4.5.2	Complex 4	145
	Refere	ences	147
CHAP	TER 5	CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK	150
5.1	Conclu	isions	150
5.2	Sugge	stions for Future Works	152
APPENDICES			

LIST OF FIGURES

- Figure 2.1 Different molecular arrangement in (a) solid; (b) liquid crystal; and (c) liquid
- **Figure 2.2** The nematic phase: (left) an illustration of the orientation of the molecules, and (right) an optical micrograph of the characteristic Schlieren texture
- Figure 2.3 A molecular arrangement of: (a) S_A phase; and (b) S_C phase
- **Figure 2.4** An illustration of smectic A phase (*left*), and the optical texture of the phase viewed under a polarizing microscope (*right*)
- **Figure 2.5** An illustration of smectic C phase (*left*) and the optical texture of the phase viewed under a polarizing microscope (*right*)
- Figure 2.6 Examples of calamitic metallomesogens
- **Figure 2.7** Molecular structure of the first series of discotic liquid crystals discovered: benzene-hexa-*n*-alkanoate derivatives ($R = C_4H_9$ to C_9H_{19})
- **Figure 2.8** An illustration of a molecular arrangement of *N*_D phase
- Figure 2.9 (a) The general structure of Col phases; (b) a representation of Col_r; and
 (c) a representation of Col_h
- **Figure 2.10** Examples of disc-like metallomesogens: (a) four-chain -diketonates where $R = C_n$ and $R' = C_m$; n = 7, m = 13; n = m = 10, n = m = 12; and (b) eight-chain -diketonates
- **Figure 2.11** Lantern or paddle-wheel structure of $[Cu_2(CH_3COO)_4(H_2O)_2]$
- **Figure 2.12** Lantern or paddle wheel structure of the dicopper(II) tetraalkanoate, stacking in the two possible ways for the formation of the columnar phase: (a) tilted to the columnar axis for the tetragonal phase; and (b) parallel to the columnar axis for the hexagonal phase
- Figure 2.13 Applications of ionic liquids

- Figure 2.14 Examples of cations of ionic liquids
- Figure 2.15 An example of metal-containing ionic liquids [12]
- Figure 2.16 General structure of polynuclear copper(II) carboxylates: I, stepped without additional ligands; II, ligands bridging two Cu; III, ligands bridging Cu and O
- Figure 2.17 The enol (top) and enolate (bottom) mechanisms of aldol condensation of carbonyl compounds
- **Figure 2.18** Coordination of carboxylate ligand: (I) monodentate, (II) chelating, (III) bridging bidentate (a) *syn-syn*, (b) *syn-anti*, and (c) *anti-anti*
- Figure 2.19 The colour wheel
- Figure 2.20 Shapes (angular dependence functions) of the *d* orbitals
- Figure 2.21 Splitting of *d* orbitals for common stereochemistries
- Figure 2.22 Crystal-field splitting of *d* orbitals for complexes of various geometry
- **Figure 2.23** TG and DTA curves of $[Cu_2(C_6H_5COO)_4(C_2H_5OH)_2]$
- Figure 2.24 An example of a DSC curve
- Figure 2.25 OPM of liquid crystals phase structures (a) N droplets; (b) nematic LC;(c) cholesteric LC; (d) smectic A LC; (e) hexagonal columnar liquid crystalline and (f) spherulite texture of crystalline phase of a LC
- Figure 2.26 A schematic view of the columnar mesophase of fatty acid copper(II) complexes. Each column is made of stacked dicopper tetracarboxylate units
- Figure 2.27 OPM of (a) copper(II) butanoate, showing tetragonal domains at 184.1°C; (b) typical columnar developable domains for copper(II) butanoate at 164.7°C; (c) copper(II) pentanoate, showing hexagonal homeotropic domains at 98.9°C; (d) developable domains at 118.9°C for copper(II) pentanoate; (e) copper(II) hexanoate, showing hexagonal

homeotropic domains at 135° C; and (f) developable domains for copper(II) hexanoate at 152° C

- Figure 2.28 Random orientation of magnetic moments in paramagnetic materials
- Figure 2.29 Parallel alignment of magnetic moment in ferromagnetic materials
- Figure 2.30 Alignment of magnetic moment in antiferromagnetic materials
- Figure 2.31 Alignment of magnetic moment in ferrimagnetic materials
- Figure 2.32 Cyclic voltammogram of a reversible process
- **Figure 4.1** Proposed structure of **Complex 1** (K⁺ ions and H₂O solvate molecules are not shown)
- Figure 4.2 FTIR spectrum of Complex 1
- Figure 4.3 FTIR spectrum of CH₃(CH₂)₁₄COOH
- **Figure 4.4** FTIR spectrum of *p*-HOC₆H₄COOH
- Figure 4.5 UV-vis spectrum of Complex 1 (solid)
- Figure 4.6 Resonance structure of Complex 1 (only a partial structure is shown)
- Figure 4.7 UV-vis spectrum of Complex 1 (solution)
- Figure 4.8 Thermogram of Complex 1
- Figure 4.9 DSC curve of Complex 1
- **Figure 4.10** OPM of **Complex 1** at: (a) 25°C; (b) 206°C
- Figure 4.11 Cyclic voltamogram of Complex 1
- **Figure 4.12** Proposed structural formula of $[Cu_2(p-HOC_6H_4COO)_4]$ (H₂O solvate molecules are not shown)
- Figure 4.13 FTIR spectrum of [Cu₂(HOC₆H₄COO)₄].8H₂O
- **Figure 4.14** UV-vis spectrum of $[Cu_2(p-HOC_6H_4COO)_4].8H_2O$ (solution)
- **Figure 4.15** Proposed structural formula of $[Cu_2(CH_3(CH_2)_{14}COO)_4]$
- **Figure 4.16** FTIR spectrum of $[Cu_2(CH_3(CH_2)_{14}COO)_4]$
- **Figure 4.17** UV-vis spectrum of [Cu₂(CH₃(CH₂)₁₄COO)₄] (solution)

- Figure 4.18 Proposed structural formula of Complex 2 (CH₃CH₂OH solvate is not shown)
- Figure 4.19 FTIR spectrum of Complex 2
- Figure 4.20 UV-vis spectrum of Complex 2 (solution)
- Figure 4.21 Thermogram of Complex 2
- **Figure 4.22** OPM micrographs of **Complex 2** on heating: (a) 25°C; (b) 140°C; (c) 180°C; and (d) 84°C
- Figure 4.23 DSC curve of Complex 2
- Figure 4.24 Cyclic voltamogram of Complex 2
- Figure 4.25 The FTIR spectrum of the product isolated from the carbonate-base-acid reaction
- **Figure 4.26** The UV-Vis spectrum of the product isolated from the carbonate-baseacid reaction
- Figure 4.27 Proposed structure of Complex 3 (H₂O solvate molecules are not shown)
- Figure 4.28 FTIR spectrum of Complex 3
- **Figure 4.29** FTIR spectrum of p-H₂NC₆H₄COOH
- Figure 4.30 UV-vis spectrum of Complex 3 (solid)
- Figure 4.31 UV-visible spectrum of Complex 3 (solution)
- Figure 4.32 Thermogram of Complex 3
- Figure 4.33 DSC curve of Complex 3
- Figure 4.34 Cyclic voltammogram of Complex 3
- Figure 4.35 The FTIR spectrum of the product isolated from the ligand-exchange reaction
- Figure 4.36 The UV-vis spectrum of the product isolated from the ligand-exchange reaction

- Figure 4.37 The FTIR spectrum of the product isolated from the carbonate-base-acid reaction
- **Figure 4.38** The UV-Vis spectrum of the product isolated from the carbonate-baseacid reaction
- Figure 4.39 Proposed structure of Complex 4 (K⁺ ion is not shown)
- Figure 4.40 FTIR spectrum of Complex 4
- Figure 4.41 UV-vis spectrum of Complex 4 (solid)
- Figure 4.42 UV-vis spectrum of Complex 4 (solution)
- Figure 4.43 TGA of Complex 4
- Figure 4.44 DSC of Complex 4
- Figure 4.45 Cyclic voltammogram of Complex 4
- Figure 4.46 Proposed structure of Complex 5
- Figure 4.47 FTIR spectrum of Complex 5
- Figure 4.48 UV-vis spectrum of Complex 5 (solid)
- Figure 4.49 UV-vis spectrum of Complex 5 (solution)
- Figure 4.50 Thermogram of Complex 5
- Figure 4.51 OPM of Complex 5 on heating: (a) 147°C; (b) 161C; (a) 208°C; and (d) 217°C
- **Figure 4.52** OPM of **Complex 5** on cooling from the isotropic liquid phase: (a) 195°C; (b) 98°C
- Figure 4.53 DSC curve of Complex 5
- Figure 4.54 Cylic voltammogram of Complex 5
- Figure 4.55 The FTIR spectrum
- Figure 4.56 The UV-vis spectrum (solution)
- Figure 4.57 FTIR spectrum of [Cu₂(CH₃(CH₂)₁₀COO₄]
- **Figure 4.58** UV-visible spectrum of [Cu₂(CH₃(CH₂)₁₀COO)₄] (solid)

- Figure 4.59 FTIR spectrum of Complex 6
- Figure 4.60 UV-vis spectrum of Complex 6 (solid)
- Figure 4.61 UV-vis spectrum of Complex 6 (solution)
- Figure 4.62 Thermogram of Complex 6
- Figure 4.63 Optical structure of Complex 6 on heating at (a) 107°C; and (b) 152°C.
- **Figure 4.64** Optical structure of **Complex 6** on cooling at (a) 161°C; and (b) 78°C
- Figure 4.65 DSC curve of Complex 6
- Figure 4.66 Cyclic Voltammogram of Complex 6
- **Figure 4.67** FTIR spectrum of [Cu₂(CH₃(CH₂)₈COO)₄]
- **Figure 4.68** UV-visible spectrum of [Cu₂(CH₃(CH₂)₈COO)₄] (solid)
- **Figure 4.69** An ORTEP presentation of [Cu₂(CH₃(CH₂)₈COO)₄]
- Figure 4.70 The packing pattern of the peacock-blue crystal of $[Cu_2(CH_3(CH_2)_8COO)_4]$
- Figure 4.71 FTIR of peacock-blue crystals
- Figure 4.72 FTIR spectrum of Complex 7
- Figure 4.73 UV-vis spectrum of Complex 7 (solid)
- Figure 4.74 UV-vis spectrum of Complex 7 (solution)
- Figure 4.75 Thermogram of Complex 7
- **Figure 4.76** Optical structure of **Complex 6** on heating at (a) 110°C; and (b) 145°C
- **Figure 4.77** Optical structure of **Complex 7** on cooling at: (a) 70°C; (b) 51°C and (c) 31°C
- Figure 4.78 DSC curve of Complex 7
- **Figure 4.79** Plot of melting temperature *vs. n* for $[Cu_2(pHOC_6H_4COO)$ $(CH_3(CH_2)_nCOO)_3]$
- Figure 4.80 Cyclic voltammogram of Complex 7
- **Figure 4.81** FTIR spectrum of [Cu₂(CH₃(CH₂)₆COO)₄]

- **Figure 4.82** UV-visible spectrum of $[Cu_2(CH_3(CH_2)_6COO)_4]$ in solution
- Figure 4.83 An ORTEP presentation of the peacock-blue crystal of $[Cu_2(CH_3(CH_2)_6COO)_4]$
- Figure 4.84 The crystal packing of the peacock-blue crystal of $Cu_2(CH_3(CH_2)_6COO)_4]$
- **Figure 4.85** FTIR spectrum of single crystal of [Cu₂(CH₃(CH₂)₆COO)₄]
- Figure 4.86 FTIR spectrum of Complex 8
- Figure 4.87 UV-vis spectrum of Complex 8 (solution)
- Figure 4.88 Thermogram of Complex 8
- **Figure 4.89** OPM of **Complex 8** on heating: (a) 27° C; (b) 50° C and (c) 101° C
- **Figure 4.90** OPM of **Complex 8** on cooling: (a) 148°C; (b) 145°C; (c) 80°C; and (d) 32°C
- Figure 4.91 DSC curve of Complex 8
- Figure 4.92 Cyclic voltammogram of Complex 8
- Figure 4.93 FTIR spectrum of Complex 9
- Figure 4.94 UV-vis spectrum of Complex 9 (solution)
- Figure 4.95 Proposed structure of Complex 9; solvated C₂H₅OH molecules are not shown
- Figure 4.96 Thermogram of Complex 9
- **Figure 4.97** Optical structure of **Complex 9** on heating at (a) 30°C; (b) 162°C; and (c) 175°C
- Figure 4.98 Optical structures of Complex 9 on cooling at (a) 105° C; and (b) 96° C; (c) 25° C and (d) 24° C
- Figure 4.99 DSC curve of Complex 9
- Figure 4.100 FTIR spectrum of Complex 10
- Figure 4.101 UV-vis spectrum of Complex 10

- Figure 4.102 Proposed structure of Complex 10 (K⁺ is not shown)
- **Figure 4.103** Thermogram of **Complex 10** (K⁺ is not shown)
- Figure 4.104 DSC curve of Complex 10
- **Figure 4.105** FTIR spectrum of **Complex 11** (n = 8)
- **Figure 4.106** UV-vis spectrum of **Complex 11** (n = 8)
- **Figure 4.107** Thermogram of **Complex 11** (n = 8)
- **Figure 4.108** DSC curve of **Complex 11** (n = 8)
- Figure 4.109 FTIR spectrum of Complex 12
- Figure 4.110 UV-vis spectrum of Complex 12
- Figure 4.111 Thermogram of Complex 12
- Figure 4.112 DSC curve of Complex 12
- Figure 4.113 Chromatogram of dark brown liquid (A1)
- Figure 4.114 Chromatogram of yellow liquid (A2)
- Figure 4.115 Mass spectrum of molecules at R_t (min): (a) 4.1, (b) 4.4, (c) 5.8, (d) 6.7, and (e) 6.9
- **Figure 4.116** Structural formulas of the molecules eluated at R_t (a) 4.1 min and (b) 6.7 min
- **Figure 4.117** Structural formulas of the molecules eluated at R_t (a) 4.4 min, and (b) 6.9 min
- Figure 4.118 Chromatogram of dark brown liquid (B1)
- Figure 4.119 Chromatogram of yellow liquid (B2)
- **Figure 4.120** Mass spectrum of the product at $R_t = 9.1$ min

LIST OF TABLES

- **Table 4.1**FTIR data and assignment for Complex 1
- **Table 4.2** The values for **Complex 1** used for the calculation of μ_{eff}
- **Table 4.3** FTIR data and assignment for $[Cu_2(p-HOC_6H_4COO)_4].8H_2O$
- **Table 4.4**DSC data and assignment for Complex 2
- **Table 4.5** The values for **Complex 2** used for the calculation of μ_{eff}
- **Table 4.6** The μ_{eff} values (per Cu(II)) of **Complex 2** and its starting materials
- **Table 4.7**FTIR data and assignment for Complex 3
- Table 4.8DSC data and assignment for Complex 3
- **Table 4.9** The values for **Complex 3** used for the calculation of μ_{eff}
- Table 4.10DSC data and assignment for Complex 4
- **Table 4.11** The values for **Complex 4** used for the calculation of μ_{eff}
- Table 4.12DSC data and assignment for Complex 5
- **Table 4.13** The values for **Complex 5** used for the calculation of μ_{eff}
- **Table 4.14**DSC data and assignment for **Complex 6**
- **Table 4.15** The values for **Complex 6** used for the calculation of μ_{eff}
- Table 4.16DSC data and assignment for Complex 7
- **Table 4.17** The values used to calculate μ_{eff} for **Complex 7**
- Table 4.18DSC data and assignment for Complex 8
- Table 4.19DSC data and assignment for Complex 9
- Table 4.20GC data of main components in A1 and A2
- Table 4.21GC data of main components in B1 and B2
- **Table 5.1**The structural formula of the complexes

ABSTRACT

This research focussed on the development of the synthetic methods and characterisation (structural, thermal, magnetic and redox properties) of two types of ionic copper(II) mixed-carboxylates: (a) $K_a[Cu_2(p-OC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]$, and (b) $[Cu_2(p-H_3NC_6H_4COO)_a(CH_3(CH_2)_{14}COO)_{4-a}]X_a$, where a = 1, 2; n = 14, 10, 8, and 6; X = Cl, CH_3COO and CF_3SO_3 . These complexes were designed to be thermally stable and magnetic metallomesogens and/or metal-containing ionic liquids.

The synthetic methods used to prepare these complexes were one-pot reaction, ligand-exchange reaction, and acid-carbonate-base reaction. A total of twelve (12) complexes were successfully prepared and fully characterised (**Table 1**).

Table 1 The structural formulas of the	e complexes
---	-------------

Complex	Structural formula
1	$K_2[Cu_2(p-OC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2(p-HOC_6H_4COOH)_2].2H_2O$
2	$[Cu_{2}(p-HOC_{6}H_{4}COO)_{2}(CH_{3}(CH_{2})_{14}COO)_{2}(CH_{3}(CH_{2})_{14}COOH)(H_{2}O)].$
	CH ₃ CH ₂ OH
3	$[Cu_2(p-H_2NC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2].2H_2O$
4	$K[Cu_2(p-OC_6H_4COO)(CH_3(CH_2)_{14}COO)_3]$
5	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{14}COO)_3(CH_3CH_2OH)_2]$
6	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{10}COO)_3].H_2O$
7	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_8COO)_3].CH_3CH_2OH$
8	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_6COO)_3(CH_3(CH_2)_6COOH)$
	(CH ₃ CH ₂ OH)].H ₂ O
9	$[Cu_2(CH_3(CH_2)_{14}COO)_2(OH)_2(H_2O)_4].2C_2H_5OH$
10	$K_2[Cu_2(CH_3(CH_2)_{10}COO)_2(OH)_4]$
11	$K_2[Cu_2(CH_3(CH_2)_8COO)_2(OH)_4]$
12	$K_2[Cu_2(CH_3(CH_2)_6COO)_2(OH)_4]$

The structural formulas of these complexes were deduced from elemental analyses, FTIR and UV-vis spectroscopies. The thermal properties were determined by TGA and DSC, while the mesomorphic properties were determined by OPM. The magnetic properties were determined by Gouy method using a magnetic susceptibility balance, and the redox properties by cyclic voltammetry. Additionally, GCMS was used to analyze the products formed from the carbon-carbon bond-forming reaction of methyl carbonyl (3,3-dimethyl-2-butanone).

The structure of most of the complexes were dimeric paddle-wheel with either square planar or square pyramidal geometry at copper(II) centres.

Complex 1 had the highest thermal stability ($T_{dec} = 424^{\circ}C$) compared to the other complexes ($T_{dec} = 200^{\circ}C - 250^{\circ}C$). Additionally, the complexes with a higher ratio of the alkylcarboxylate ligands (aromatic: aliphatic = 1:3) were more thermally stable; the stability increases with increasing alkyl chain length. However, the opposite trend was noted for the melting temperatures: complexes with a higher ratio of the alkylcarboxylate ligands had a lower melting point.

Six of the complexes (**Complex 2**, **Complexes 5** - **9**) exhibited metallomesogenic properties. However, the type of mesophase cannot be deduced with certainty from OPM.

All complexes were magnetic at room-temperature. Except for **Complex 1** which showed a weak ferromagnetic interaction ($\mu_{eff} = 3.12$ B.M.; 2J = 60 cm⁻¹), the other complexes had magnetism ($\mu_{eff} = 1.87$ B.M. - 2.62 B.M.) which were lower than the spin-only value for two unpaired electrons ($\mu_{eff} = 2.83$ B.M.), with variable strength of antiferromagnetic interaction (2J = -78 cm⁻¹ to -346 cm⁻¹). The complexes with a higher ratio of the alkylcarboxylate ligands have a stronger antiferromagnetic interaction. However, the difference in the chain length did not have much effect on the magnetic interaction. All of the complexes were redox-active and showed step-wise quasi-reversible electrochemical reaction. The initial reduction potentials were in the range of 0.07-0.30 V.

Both **Complex 1** and **Complex 4** 'catalysed' the carbon-carbon bond-forming reaction of 3,3-dimethyl-2-butanone. **Complex 4** seemed to be a better 'catalyst' as the products formed were in higher purity and amount.

The findings of this research were published in one (1) ISI journal and presented either orally or as poster at three (3) national and four (4) international conferences and seminars (**Appendix 1**).

ABSTRAK

Penyelidikan ini berfokuskan pembangunan kaedah sintetik dan pencirian (struktur, dan sifat terma, magnet dan redoks) dua jenis kuprum(II) karboksilat bercampur ionik: (a) $K_a[Cu_2(p-OC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]$, dan (b) $[Cu_2(p-H_3NC_6H_4COO)_a(CH_3(CH_2)_1_4COO)_{4-a}]X_a$, dengan a = 1, 2; n = 14, 10, 8 dan 6; X = Cl, CH₃COO dan CF₃SO₃. Kompleks-kompleks ini direkabentuk untuk menjadi metallomesogen dan/atau cecair ionik yang stabil secara terma dan magnetik.

Kaedah sintesis yang digunakan untuk menyediakan kompleks-kompleks tersebut adalah tindak balas satu pot, tindak balas penukaran ligan, dan tindak balas asid-karbonat-bes. Sejumlah dua belas (12) kompleks berjaya disediakan dan dicirikan sepenuhnya (**Jadual 1**).

Kompleks	Formula Struktur
1	$K_{2}[Cu_{2}(p-OC_{6}H_{4}COO)_{2}(CH_{3}(CH_{2})_{14}COO)_{2}(p-HOC_{6}H_{4}COOH)_{2}].2H_{2}O$
2	$[Cu_{2}(p-HOC_{6}H_{4}COO)_{2}(CH_{3}(CH_{2})_{14}COO)_{2}(CH_{3}(CH_{2})_{14}COOH)(H_{2}O)].$
	CH ₃ CH ₂ OH
3	$[Cu_2(p-H_2NC_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2].2H_2O$
4	$K[Cu_2(p-OC_6H_4COO)(CH_3(CH_2)_{14}COO)_3]$
5	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{14}COO)_3(CH_3CH_2OH)_2]$
6	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_{10}COO)_3].H_2O$
7	$[Cu_2(p-HOC_6H_4COO)(CH_3(CH_2)_8COO)_3].CH_3CH_2OH$
8	[Cu ₂ (<i>p</i> -HOC ₆ H ₄ COO)(CH ₃ (CH ₂) ₆ COO) ₃ (CH ₃ (CH ₂) ₆ COOH)
	(CH ₃ CH ₂ OH)].H ₂ O
9	$[Cu_2(CH_3(CH_2)_{14}COO)_2(OH)_2(H_2O)_4].2C_2H_5OH$
10	$K_2[Cu_2(CH_3(CH_2)_{10}COO)_2(OH)_4]$
11	$K_2[Cu_2(CH_3(CH_2)_8COO)_2(OH)_4]$
12	$K_2[Cu_2(CH_3(CH_2)_6COO)_2(OH)_4]$

Jadual 1 Formula struktur kompleks

Formula struktur kompleks dideduksikan daripada analisis unsur, spektroskopi FTIR dan UV-vis. Sifat terma ditentukan melalui TGA dan DSC, manakala sifat mesomorfik ditentukan melalui OPM. Sifat magnet ditentukan melalui kaedah Gouy dengan menggunakan neraca kerentanan magnet, dan sifat redoks melalui voltametri siklik. Seterusnya, GCMS digunakan untuk menganalisis hasil yang terbentuk daripada tindak balas pembentukan ikatan karbon-karbon yang melibatkan metilkarbonil (3,3dimetil-2-butanon).

Struktur kebanyakan kompleks di atas adalah dimerik '*paddle-wheel*' dengan sama ada geometri empat sisi sama sesatah atau piramid pada pusat kuprum(II).

Kompleks 1 mempunyai kestabilan terma yang paling tinggi ($T_{urai} = 424^{\circ}C$) berbanding kompleks-kompleks yang lain ($T_{urai} = 200^{\circ}C - 250^{\circ}C$). Selanjutnya, kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi (aromatik: alifatik = 1:3) adalah lebih stabil secara terma; kestabilan meningkat dengan penambahan dalam panjang rantai alkil. Bagaimanapun, tren berlawanan diperhatikan bagi suhu lebur: kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi mempunyai takat lebur yang lebih rendah.

Enam daripada kompleks tersebut (**Kompleks 2**, **Komplek 5** - **9**) menunjukkan sifat metalomesogenik. Bagaimanapun, jenis mesofasa tidak dapat dideduksikan dengan jelas daripada OPM.

Semua kompleks adalah magnetik pada suhu bilik. Kecuali **Kompleks 1** yang menunjukkan saling tindakan feromagnet yang lemah ($\mu_{eff} = 3.12 \text{ B.M.}$; $2J = 60 \text{ cm}^{-1}$), kompleks-kompleks yang lain mempunyai kemagnetan ($\mu_{eff} = 1.87 \text{ B.M.} - 2.62 \text{ B.M.}$) yang lebih rendah berbanding nilai spin sahaja untuk dua elektron tak berpasangan ($\mu_{eff} = 2.83 \text{ B.M.}$), dengan saling tindakan antiferomagnet pelbagai kekuatan ($2J = -78 \text{ cm}^{-1}$ hingga -346 cm⁻¹). Kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi

mempunyai saling tindakan antiferomagnet yang lebih kuat. Bagaimanapun, perbezaan dalam panjang rantai tidak mempunyai kesan yang ketara pada saling tindakan magnet.

Semua kompleks adalah aktif redoks dan menunjukkan tindak balas elektrokimia kuasi-berbalik bertertib. Keupayaan penurunan awal adalah dalam julat 0.07 – 0.30 V.

Kedua-dua **Kompleks 1** dan **Kompleks 4** 'memangkinkan' tindak balas pembentukan ikatan karbon-karbon yang melibatkan 3,3-dimetil-2-butanon. **Kompleks 4** merupakan 'mangkin' yang lebih baik kerana hasil tindak balas adalah lebih tulen dan dalam amaun yang lebih tinggi.

Penemuan penyelidikan ini telah diterbitkan dalam satu (1) jurnal ISI dan dibentang secara lisan atau poster dalam tiga (3) seminar kebangsaan dan empat (4) seminar antarabangsa (**Appendik 1**).