SYNTHESIS AND CHARACTERISATION OF THERMALLY STABLE

$K_a[Cu_2(p-OC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]$

AND

$[Cu_2(p-H_3NC_6H_4COO)_a(CH_3(CH_2)_nCOO)_{4-a}]X_a$

AND THEIR REACTIONS WITH SELECTED KETONES

ZAIMATUL ‘AZIAN KAMARAZAMAN

FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
SYNTHESIS AND CHARACTERISATION OF THERMALLY STABLE
$K_a[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})_a(\text{CH}_3(\text{CH}_2)_n\text{COO})_{4-a}]$
AND
$[\text{Cu}_2(p-\text{H}_3\text{NC}_6\text{H}_4\text{COO})_a(\text{CH}_3(\text{CH}_2)_n\text{COO})_{4-a}]X_a$
AND THEIR REACTIONS WITH SELECTED KETONES

ZAIMATUL 'AZIAN KAMARAZAMAN

DISСERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
KUALA LUMPUR

2012
ACKNOWLEDGEMENTS

Alhamdulillah, I praise and thank Allah SWT for His greatness and for giving me the strength and courage to complete this thesis.

First and foremost I offer my sincerest gratitude to my supervisor, Assoc. Prof. Dr. Norbani Abdullah, who has supported me throughout my thesis with her patience and expertise while allowing me the room to work on my own way. I attribute my Master degree to her encouragement and effort and without her this thesis would not have been completed. One simply could not wish for a better or friendlier supervisor.

Deepest gratitude are also due to Prof. Dr. Yatimah Alias, my second supervisor, and Assoc. Prof. Dr. Zunita Zakaria who encouraged and advised me to continue my Master degree even after 15 years ‘away’ from chemistry line.

In my daily work I have been blessed with a friendly and cheerful group of friends. Special thanks to all my group members for sharing the literature and invaluable assistance. Not forgetting to all staff in Chemistry Department, Faculty of Science, University of Malaya. Without their cooperation and kindness, this project could not have been completed.

My parents, Kamarazaman Hj. Hasan and Mahawiyah Khalid deserve special mention for their inseparable support and prayers. Words fail to express my appreciation to my husband, Mr. Amal Nathan whose dedication, love and confidence in me, has taken the load off my shoulder.

Finally, I would like to thank everybody who was important to the successful realization of this thesis, as well as expressing my apology that I could not mention personally one by one.
TABLE OF CONTENTS

ACKNOWLEDGEMENT .. ii
ABSTRACT ... iii
ABSTRAK .. vi
TABLE OF CONTENTS ... ix
LIST OF FIGURES ... xiii
LIST OF TABLES ... xxi
CHAPTER 1 INTRODUCTION 1
References ... 4

CHAPTER 2 THEORY AND LITERATURE REVIEW 7
2.1 Metallomesogen .. 7
2.2 Metal-Containing Ionic Liquids 13
2.3 Copper(II) Carboxylates 15
2.4 The C-C Bond Forming Reactions 16
2.5 Elemental Analyses 17
2.6 Fourier Transform Infrared Spectroscopy 18
2.7 UV-Visible Spectroscopy 19
2.8 Thermal Analysis ... 24
 2.8.1 Thermogravimetry 24
 2.8.2 Differential Scanning Calorimetry 25
2.9 Optical Polarizing Microscope 26
2.10 Magnetic Susceptibility 29
2.10 Cyclic Voltammetry 33
References ... 35
CHAPTER 3 EXPERIMENTAL

3.1 Method Development

3.1.1 K$_2$[Cu$_2$(p-OC$_6$H$_4$COO)$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_2$]

(a) One-pot synthesis
(b) Ligand-exchange reaction
(c) Carbonate-base-acid reaction

3.1.2 [Cu$_2$(p-H$_3$NC$_6$H$_4$COO)$_2$(CH$_3$(CH$_2$)$_{14}$COO)$_2$]X$_2$

(a) One-pot synthesis (X=Cl)
(b) Ligand-exchange reaction (X= CF$_3$SO$_3$)
(c) Carbonate-base-acid reaction (X= CH$_3$COO)

3.2 Copper(II) Mixed Carboxylates of Lower Symmetry

3.2.1 K[Cu$_2$(p-OC$_6$H$_4$COO)(CH$_3$(CH$_2$)$_{14}$COO)$_3$]

(a) One-pot synthesis
(b) Ligand-exchange reaction

3.2.2 One-pot synthesis of [Cu$_2$(p-H$_3$NC$_6$H$_4$COO)(CH$_3$(CH$_2$)$_{14}$COO)$_3$]Cl

3.3 Low Symmetry Copper(II) Mixed Carboxylates with Shorter Alkyl Chain Length

3.3.1 K[Cu$_2$(p-OC$_6$H$_4$COO)(CH$_3$(CH$_2$)$_{10}$COO)$_3$]

3.3.2 K[Cu$_2$(p-OC$_6$H$_4$COO)(CH$_3$(CH$_2$)$_8$COO)$_3$]

3.3.3 K[Cu$_2$(p-OC$_6$H$_4$COO)(CH$_3$(CH$_2$)$_6$COO)$_3$]

3.4 The C-C Bond-Forming Reaction

3.4.1 Complex 1

3.4.2 Complex 4

3.5 Instrumental Analyses

3.5.1 Elemental Analyses

3.5.2 Fourier Transform Infrared Spectroscopy
3.5.3 UV-Visible Spectroscopy

- Page 48

3.5.4 Thermogravimetric Analysis

- Page 48

3.5.5 Differential Scanning Calorimetry

- Page 48

3.5.6 Optical Polarizing Microscopy

- Page 49

3.5.7 Magnetic Susceptibility

- Page 49

3.5.8 Cyclic Voltammetry

- Page 50

3.5.9 Gas Chromatography-Mass Spectroscopy

- Page 50

CHAPTER 4 RESULTS AND DISCUSSIONS

4.1 Method Development

4.1.1 $K_2[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_2]$
- Page 53
 - (a) One-pot reaction
 - Page 53
 - (b) Ligand-exchange reaction
 - Page 63
 - (c) Carbonate-base-acid reaction
 - Page 74

4.1.2 $[\text{Cu}_2(p-\text{H}_3\text{NC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_2]X_2$
- Page 77
 - (a) One-pot synthesis
 - Page 77
 - (b) Ligand-exchange reaction
 - Page 84
 - (c) Carbonate-base-acid reaction
 - Page 85

4.2 Copper(II) Mixed Carboxylates of Lower Symmetry

4.2.1 $K[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_3]$
- Page 88
 - (a) One-pot synthesis
 - Page 88
 - (b) Ligand-exchange reaction
 - Page 93

4.2.2 One-pot synthesis $[\text{Cu}_2(p-\text{H}_3\text{NC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_3]\text{Cl}_2$
- Page 101
4.3 Low symmetry Copper(II) Mixed Carboxylates with shorter alkyl chain

4.3.1 \([\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{10}\text{COO})_3]\) 103

4.3.2 \([\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{8}\text{COO})_3]\) 110

4.3.3 \([\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{6}\text{COO})_3]\) 119

4.4 Conversion to ionic complex 127

4.4.1 \([\text{K}[\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{10}\text{COO})_3]\]) 127

4.4.2 \([\text{K}[\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{10}\text{COO})_3]\]) 132

4.4.3 \([\text{K}[\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{8}\text{COO})_3]\]) 136

4.4.4 \([\text{K}[\text{Cu}_2(p\text{-HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}_2)_{6}\text{COO})_3]\]) 138

4.5 The C-C Bond-Forming Reaction 140

4.5.1 Complex 1 141

4.5.2 Complex 4 145

References 147

CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 150

5.1 Conclusions 150

5.2 Suggestions for Future Works 152

APPENDICES
LIST OF FIGURES

Figure 2.1 Different molecular arrangement in (a) solid; (b) liquid crystal; and (c) liquid

Figure 2.2 The nematic phase: (left) an illustration of the orientation of the molecules, and (right) an optical micrograph of the characteristic Schlieren texture

Figure 2.3 A molecular arrangement of: (a) S_A phase; and (b) S_C phase

Figure 2.4 An illustration of smectic A phase (left), and the optical texture of the phase viewed under a polarizing microscope (right)

Figure 2.5 An illustration of smectic C phase (left) and the optical texture of the phase viewed under a polarizing microscope (right)

Figure 2.6 Examples of calamitic metallomesogens

Figure 2.7 Molecular structure of the first series of discotic liquid crystals discovered: benzene-hexa-n-alkanoate derivatives ($R = C_4H_9$ to C_9H_{19})

Figure 2.8 An illustration of a molecular arrangement of N_D phase

Figure 2.9 (a) The general structure of Col phases; (b) a representation of Col$_r$; and (c) a representation of Col$_h$

Figure 2.10 Examples of disc-like metallomesogens: (a) four-chain β-diketonates where $R = C_n$ and $R' = C_m$; $n = 7$, $m = 13$; $n = m = 10$, $n = m = 12$; and (b) eight-chain β-diketonates

Figure 2.11 Lantern or paddle-wheel structure of $[Cu_2(CH_3COO)_4(H_2O)_2]$

Figure 2.12 Lantern or paddle wheel structure of the dicopper(II) tetraalkanoate, stacking in the two possible ways for the formation of the columnar phase: (a) tilted to the columnar axis for the tetragonal phase; and (b) parallel to the columnar axis for the hexagonal phase

Figure 2.13 Applications of ionic liquids
Figure 2.14 Examples of cations of ionic liquids

Figure 2.15 An example of metal-containing ionic liquids [12]

Figure 2.16 General structure of polynuclear copper(II) carboxylates: I, stepped without additional ligands; II, ligands bridging two Cu; III, ligands bridging Cu and O

Figure 2.17 The enol (top) and enolate (bottom) mechanisms of aldol condensation of carbonyl compounds

Figure 2.18 Coordination of carboxylate ligand: (I) monodentate, (II) chelating, (III) bridging bidentate (a) syn-syn, (b) syn-anti, and (c) anti-anti

Figure 2.19 The colour wheel

Figure 2.20 Shapes (angular dependence functions) of the d orbitals

Figure 2.21 Splitting of d orbitals for common stereochemistries

Figure 2.22 Crystal-field splitting of d orbitals for complexes of various geometry

Figure 2.23 TG and DTA curves of [Cu$_2$(C$_6$H$_5$COO)$_4$(C$_2$H$_5$OH)$_2$]

Figure 2.24 An example of a DSC curve

Figure 2.25 OPM of liquid crystals phase structures (a) N droplets; (b) nematic LC; (c) cholesteric LC; (d) smectic A LC; (e) hexagonal columnar liquid crystalline and (f) spherulite texture of crystalline phase of a LC

Figure 2.26 A schematic view of the columnar mesophase of fatty acid copper(II) complexes. Each column is made of stacked dicopper tetracarboxylate units

Figure 2.27 OPM of (a) copper(II) butanoate, showing tetragonal domains at 184.1°C; (b) typical columnar developable domains for copper(II) butanoate at 164.7°C; (c) copper(II) pentanoate, showing hexagonal homeotropic domains at 98.9°C; (d) developable domains at 118.9°C for copper(II) pentanoate; (e) copper(II) hexanoate, showing hexagonal
homeotropic domains at 135°C; and (f) developable domains for copper(II) hexanoate at 152°C

Figure 2.28 Random orientation of magnetic moments in paramagnetic materials

Figure 2.29 Parallel alignment of magnetic moment in ferromagnetic materials

Figure 2.30 Alignment of magnetic moment in antiferromagnetic materials

Figure 2.31 Alignment of magnetic moment in ferrimagnetic materials

Figure 2.32 Cyclic voltammogram of a reversible process

Figure 4.1 Proposed structure of Complex 1 (K⁺ ions and H₂O solvate molecules are not shown)

Figure 4.2 FTIR spectrum of Complex 1

Figure 4.3 FTIR spectrum of CH₃(CH₂)₁₄COOH

Figure 4.4 FTIR spectrum of p-HOC₆H₄COOH

Figure 4.5 UV-vis spectrum of Complex 1 (solid)

Figure 4.6 Resonance structure of Complex 1 (only a partial structure is shown)

Figure 4.7 UV-vis spectrum of Complex 1 (solution)

Figure 4.8 Thermogram of Complex 1

Figure 4.9 DSC curve of Complex 1

Figure 4.10 OPM of Complex 1 at: (a) 25°C; (b) 206°C

Figure 4.11 Cyclic voltamogram of Complex 1

Figure 4.12 Proposed structural formula of [Cu₂(p-HOC₆H₄COO)₄] (H₂O solvate molecules are not shown)

Figure 4.13 FTIR spectrum of [Cu₂(HOC₆H₄COO)₄].8H₂O

Figure 4.14 UV-vis spectrum of [Cu₂(p-HOC₆H₄COO)₄].8H₂O (solution)

Figure 4.15 Proposed structural formula of [Cu₂(CH₃(CH₂)₁₄COO)₄]

Figure 4.16 FTIR spectrum of [Cu₂(CH₃(CH₂)₁₄COO)₄]

Figure 4.17 UV-vis spectrum of [Cu₂(CH₃(CH₂)₁₄COO)₄] (solution)
Figure 4.18 Proposed structural formula of Complex 2 (CH$_3$CH$_2$OH solvate is not shown)

Figure 4.19 FTIR spectrum of Complex 2

Figure 4.20 UV-vis spectrum of Complex 2 (solution)

Figure 4.21 Thermogram of Complex 2

Figure 4.22 OPM micrographs of Complex 2 on heating: (a) 25°C; (b) 140°C; (c) 180°C; and (d) 84°C

Figure 4.23 DSC curve of Complex 2

Figure 4.24 Cyclic voltamogram of Complex 2

Figure 4.25 The FTIR spectrum of the product isolated from the carbonate-base-acid reaction

Figure 4.26 The UV-Vis spectrum of the product isolated from the carbonate-base-acid reaction

Figure 4.27 Proposed structure of Complex 3 (H$_2$O solvate molecules are not shown)

Figure 4.28 FTIR spectrum of Complex 3

Figure 4.29 FTIR spectrum of p-H$_2$NC$_6$H$_4$COOH

Figure 4.30 UV-vis spectrum of Complex 3 (solid)

Figure 4.31 UV-visible spectrum of Complex 3 (solution)

Figure 4.32 Thermogram of Complex 3

Figure 4.33 DSC curve of Complex 3

Figure 4.34 Cyclic voltammogram of Complex 3

Figure 4.35 The FTIR spectrum of the product isolated from the ligand-exchange reaction

Figure 4.36 The UV-vis spectrum of the product isolated from the ligand-exchange reaction
Figure 4.37 The FTIR spectrum of the product isolated from the carbonate-base-acid reaction

Figure 4.38 The UV-Vis spectrum of the product isolated from the carbonate-base-acid reaction

Figure 4.39 Proposed structure of Complex 4 (K⁺ ion is not shown)

Figure 4.40 FTIR spectrum of Complex 4

Figure 4.41 UV-vis spectrum of Complex 4 (solid)

Figure 4.42 UV-vis spectrum of Complex 4 (solution)

Figure 4.43 TGA of Complex 4

Figure 4.44 DSC of Complex 4

Figure 4.45 Cyclic voltammogram of Complex 4

Figure 4.46 Proposed structure of Complex 5

Figure 4.47 FTIR spectrum of Complex 5

Figure 4.48 UV-vis spectrum of Complex 5 (solid)

Figure 4.49 UV-vis spectrum of Complex 5 (solution)

Figure 4.50 Thermogram of Complex 5

Figure 4.51 OPM of Complex 5 on heating: (a) 147°C; (b) 161°C; (a) 208°C; and (d) 217°C

Figure 4.52 OPM of Complex 5 on cooling from the isotropic liquid phase: (a) 195°C; (b) 98°C

Figure 4.53 DSC curve of Complex 5

Figure 4.54 Cyclic voltammogram of Complex 5

Figure 4.55 The FTIR spectrum

Figure 4.56 The UV-vis spectrum (solution)

Figure 4.57 FTIR spectrum of [Cu₂(CH₃(CH₂)₁₀COO)₄]

Figure 4.58 UV-visible spectrum of [Cu₂(CH₃(CH₂)₁₀COO)₄] (solid)
Figure 4.59 FTIR spectrum of **Complex 6**

Figure 4.60 UV-vis spectrum of **Complex 6** (solid)

Figure 4.61 UV-vis spectrum of **Complex 6** (solution)

Figure 4.62 Thermogram of **Complex 6**

Figure 4.63 Optical structure of **Complex 6** on heating at (a) 107°C; and (b) 152°C.

Figure 4.64 Optical structure of **Complex 6** on cooling at (a) 161°C; and (b) 78°C

Figure 4.65 DSC curve of **Complex 6**

Figure 4.66 Cyclic Voltammogram of **Complex 6**

Figure 4.67 FTIR spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_8$COO)$_4$]

Figure 4.68 UV-visible spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_8$COO)$_4$] (solid)

Figure 4.69 An ORTEP presentation of [Cu$_2$(CH$_3$(CH$_2$)$_8$COO)$_4$]

Figure 4.70 The packing pattern of the peacock-blue crystal of [Cu$_2$(CH$_3$(CH$_2$)$_8$COO)$_4$

Figure 4.71 FTIR of peacock-blue crystals

Figure 4.72 FTIR spectrum of **Complex 7**

Figure 4.73 UV-vis spectrum of **Complex 7** (solid)

Figure 4.74 UV-vis spectrum of **Complex 7** (solution)

Figure 4.75 Thermogram of **Complex 7**

Figure 4.76 Optical structure of **Complex 6** on heating at (a) 110°C; and (b) 145°C

Figure 4.77 Optical structure of **Complex 7** on cooling at: (a) 70°C; (b) 51°C and (c) 31°C

Figure 4.78 DSC curve of **Complex 7**

Figure 4.79 Plot of melting temperature vs. n for [Cu$_2$(pHOC$_6$H$_4$COO)$(CH_3(CH_2)_n$COO)$_3$]

Figure 4.80 Cyclic voltammogram of **Complex 7**

Figure 4.81 FTIR spectrum of [Cu$_2$(CH$_3$(CH$_2$)$_8$COO)$_4$]
Figure 4.82 UV-visible spectrum of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4]\) in solution

Figure 4.83 An ORTEP presentation of the peacock-blue crystal of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4]\)

Figure 4.84 The crystal packing of the peacock-blue crystal of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4]\)

Figure 4.85 FTIR spectrum of single crystal of \([\text{Cu}_2(\text{CH}_3(\text{CH}_2)_6\text{COO})_4]\)

Figure 4.86 FTIR spectrum of Complex 8

Figure 4.87 UV-vis spectrum of Complex 8 (solution)

Figure 4.88 Thermogram of Complex 8

Figure 4.89 OPM of Complex 8 on heating: (a) 27°C; (b) 50°C and (c) 101°C

Figure 4.90 OPM of Complex 8 on cooling: (a) 148°C; (b) 145°C; (c) 80°C; and (d) 32°C

Figure 4.91 DSC curve of Complex 8

Figure 4.92 Cyclic voltammogram of Complex 8

Figure 4.93 FTIR spectrum of Complex 9

Figure 4.94 UV-vis spectrum of Complex 9 (solution)

Figure 4.95 Proposed structure of Complex 9; solvated C$_2$H$_5$OH molecules are not shown

Figure 4.96 Thermogram of Complex 9

Figure 4.97 Optical structure of Complex 9 on heating at (a) 30°C; (b) 162°C; and (c) 175°C

Figure 4.98 Optical structures of Complex 9 on cooling at (a) 105°C; and (b) 96°C; (c) 25°C and (d) 24°C

Figure 4.99 DSC curve of Complex 9

Figure 4.100 FTIR spectrum of Complex 10

Figure 4.101 UV-vis spectrum of Complex 10
Figure 4.102 Proposed structure of Complex 10 (K\(^+\) is not shown)

Figure 4.103 Thermogram of Complex 10 (K\(^+\) is not shown)

Figure 4.104 DSC curve of Complex 10

Figure 4.105 FTIR spectrum of Complex 11 (n = 8)

Figure 4.106 UV-vis spectrum of Complex 11 (n = 8)

Figure 4.107 Thermogram of Complex 11 (n = 8)

Figure 4.108 DSC curve of Complex 11 (n = 8)

Figure 4.109 FTIR spectrum of Complex 12

Figure 4.110 UV-vis spectrum of Complex 12

Figure 4.111 Thermogram of Complex 12

Figure 4.112 DSC curve of Complex 12

Figure 4.113 Chromatogram of dark brown liquid (A1)

Figure 4.114 Chromatogram of yellow liquid (A2)

Figure 4.115 Mass spectrum of molecules at \(R_t\) (min): (a) 4.1, (b) 4.4, (c) 5.8, (d) 6.7, and (e) 6.9

Figure 4.116 Structural formulas of the molecules eluated at \(R_t\) (a) 4.1 min and (b) 6.7 min

Figure 4.117 Structural formulas of the molecules eluated at \(R_t\) (a) 4.4 min, and (b) 6.9 min

Figure 4.118 Chromatogram of dark brown liquid (B1)

Figure 4.119 Chromatogram of yellow liquid (B2)

Figure 4.120 Mass spectrum of the product at \(R_t = 9.1\) min
LIST OF TABLES

Table 4.1 FTIR data and assignment for Complex 1
Table 4.2 The χ values for Complex 1 used for the calculation of μ_{eff}
Table 4.3 FTIR data and assignment for [Cu$_2$(p-HOC$_6$H$_4$COO)$_4$]•8H$_2$O
Table 4.4 DSC data and assignment for Complex 2
Table 4.5 The χ values for Complex 2 used for the calculation of μ_{eff}
Table 4.6 The μ_{eff} values (per Cu(II)) of Complex 2 and its starting materials
Table 4.7 FTIR data and assignment for Complex 3
Table 4.8 DSC data and assignment for Complex 3
Table 4.9 The χ values for Complex 3 used for the calculation of μ_{eff}
Table 4.10 DSC data and assignment for Complex 4
Table 4.11 DSC data and assignment for Complex 4
Table 4.12 DSC data and assignment for Complex 5
Table 4.13 DSC data and assignment for Complex 5
Table 4.14 DSC data and assignment for Complex 6
Table 4.15 DSC data and assignment for Complex 6
Table 4.16 DSC data and assignment for Complex 7
Table 4.17 The χ values used to calculate μ_{eff} for Complex 7
Table 4.18 DSC data and assignment for Complex 8
Table 4.19 DSC data and assignment for Complex 9
Table 4.20 GC data of main components in A1 and A2
Table 4.21 GC data of main components in B1 and B2
Table 5.1 The structural formula of the complexes
This research focussed on the development of the synthetic methods and characterisation (structural, thermal, magnetic and redox properties) of two types of ionic copper(II) mixed-carboxylates: (a) $\text{K}_a[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})_a(\text{CH}_3(\text{CH}_2)_n\text{COO})_{4-a}]$, and (b) $[\text{Cu}_2(p-\text{H}_3\text{NC}_6\text{H}_4\text{COO})_a(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_{4-a}]X_a$, where $a = 1, 2; n = 14, 10, 8,$ and $6; X = \text{Cl}, \text{CH}_3\text{COO}$ and CF_3SO_3. These complexes were designed to be thermally stable and magnetic metallomesogens and/or metal-containing ionic liquids.

The synthetic methods used to prepare these complexes were one-pot reaction, ligand-exchange reaction, and acid-carbonate-base reaction. A total of twelve (12) complexes were successfully prepared and fully characterised (Table 1).

Table 1 The structural formulas of the complexes

<table>
<thead>
<tr>
<th>Complex</th>
<th>Structural formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{K}_2[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2(p-\text{HOC}_6\text{H}_4\text{COOH})_2].2\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>2</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COOH})(\text{H}_2\text{O})].\text{CH}_3\text{CH}_2\text{OH}$</td>
</tr>
<tr>
<td>3</td>
<td>$[\text{Cu}_2(p-\text{H}_3\text{NC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2].2\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>4</td>
<td>$\text{K}[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){14}\text{COO})]_3$</td>
</tr>
<tr>
<td>5</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){14}\text{COO})_3(\text{CH}_3\text{CH}_2\text{OH})_2]$</td>
</tr>
<tr>
<td>6</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){10}\text{COO})_3].\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>7</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){10}\text{COO})_3].\text{CH}_3\text{CH}_2\text{OH}$</td>
</tr>
<tr>
<td>8</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){10}\text{COO})_3(\text{CH}_3(\text{CH}2){10}\text{COOH}) (\text{CH}_3\text{CH}_2\text{OH})].\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>9</td>
<td>$[\text{Cu}_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2(\text{OH})_2(\text{H}_2\text{O})_4].2\text{C}_2\text{H}_5\text{OH}$</td>
</tr>
<tr>
<td>10</td>
<td>$\text{K}_2[\text{Cu}_2(\text{CH}_3(\text{CH}2){10}\text{COO})_2(\text{OH})_4]$</td>
</tr>
<tr>
<td>11</td>
<td>$\text{K}_2[\text{Cu}_2(\text{CH}_3(\text{CH}2){8}\text{COO})_2(\text{OH})_4]$</td>
</tr>
<tr>
<td>12</td>
<td>$\text{K}_2[\text{Cu}_2(\text{CH}_3(\text{CH}2){6}\text{COO})_2(\text{OH})_4]$</td>
</tr>
</tbody>
</table>
The structural formulas of these complexes were deduced from elemental analyses, FTIR and UV-vis spectroscopies. The thermal properties were determined by TGA and DSC, while the mesomorphic properties were determined by OPM. The magnetic properties were determined by Gouy method using a magnetic susceptibility balance, and the redox properties by cyclic voltammetry. Additionally, GCMS was used to analyze the products formed from the carbon-carbon bond-forming reaction of methyl carbonyl (3,3-dimethyl-2-butanone).

The structure of most of the complexes were dimeric paddle-wheel with either square planar or square pyramidal geometry at copper(II) centres.

Complex 1 had the highest thermal stability ($T_{\text{dec}} = 424^\circ\text{C}$) compared to the other complexes ($T_{\text{dec}} = 200^\circ\text{C} – 250^\circ\text{C}$). Additionally, the complexes with a higher ratio of the alkylcarboxylate ligands (aromatic: aliphatic = 1:3) were more thermally stable; the stability increases with increasing alkyl chain length. However, the opposite trend was noted for the melting temperatures: complexes with a higher ratio of the alkylcarboxylate ligands had a lower melting point.

Six of the complexes (**Complex 2, Complexes 5 - 9**) exhibited metallomesogenic properties. However, the type of mesophase cannot be deduced with certainty from OPM.

All complexes were magnetic at room-temperature. Except for **Complex 1** which showed a weak ferromagnetic interaction ($\mu_{\text{eff}} = 3.12 \ \text{B.M.}; \ 2J = 60 \ \text{cm}^{-1}$), the other complexes had magnetism ($\mu_{\text{eff}} = 1.87 \ \text{B.M.} - 2.62 \ \text{B.M.}$) which were lower than the spin-only value for two unpaired electrons ($\mu_{\text{eff}} = 2.83 \ \text{B.M.}$), with variable strength of antiferromagnetic interaction ($2J = -78 \ \text{cm}^{-1}$ to -346 cm$^{-1}$). The complexes with a higher ratio of the alkylcarboxylate ligands have a stronger antiferromagnetic interaction. However, the difference in the chain length did not have much effect on the magnetic interaction.
All of the complexes were redox-active and showed step-wise quasi-reversible electrochemical reaction. The initial reduction potentials were in the range of 0.07-0.30 V.

Both **Complex 1** and **Complex 4** ‘catalysed’ the carbon-carbon bond-forming reaction of 3,3-dimethyl-2-butanone. **Complex 4** seemed to be a better ‘catalyst’ as the products formed were in higher purity and amount.

The findings of this research were published in one (1) ISI journal and presented either orally or as poster at three (3) national and four (4) international conferences and seminars (**Appendix 1**).
Penyelidikan ini berfokuskan pembangunan kaedah sintetik dan pencirian (struktur, dan sifat terma, magnet dan redoks) dua jenis kuprum(II) karboksilat bercampur ionik: (a) $\text{K}_a[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})_a(\text{CH}_3(\text{CH}_2)_n\text{COO})_{4-a}]$, dan (b) $[\text{Cu}_2(p-\text{H}_3\text{NC}_6\text{H}_4\text{COO})_a(\text{CH}_3(\text{CH}_2)_{14}\text{COO})_{4-a}]X_a$, dengan $a = 1, 2$; $n = 14, 10, 8$ dan 6; $X = \text{Cl}, \text{CH}_3\text{COO}$ dan CF_3SO_3. Kompleks-kompleks ini direkabentuk untuk menjadi metallomesogen dan/atau cecair ionik yang stabil secara terma dan magnetik.

Kaedah sintesis yang digunakan untuk menyediakan kompleks-kompleks tersebut adalah tindak balas satu pot, tindak balas penukaran ligan, dan tindak balas asid-karbonat-bes. Sejumlah dua belas (12) kompleks berjaya disediakan dan dicirikan sepenuhnya (Jadual 1).

<table>
<thead>
<tr>
<th>Kompleks</th>
<th>Formula Struktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\text{K}_2[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2(p-\text{HOC}_6\text{H}_4\text{COOH})_2].2\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>2</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COOH})(\text{H}_2\text{O})].\text{CH}_3\text{CH}_2\text{OH}$</td>
</tr>
<tr>
<td>3</td>
<td>$[\text{Cu}_2(p-\text{H}_2\text{NC}_6\text{H}_4\text{COO})_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2].2\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>4</td>
<td>$\text{K}[\text{Cu}_2(p-\text{OC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){14}\text{COO})_3]$</td>
</tr>
<tr>
<td>5</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){14}\text{COO})_2(\text{CH}_3\text{CH}_2\text{OH})_2]$</td>
</tr>
<tr>
<td>6</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){10}\text{COO})_3].\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>7</td>
<td>$[\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){8}\text{COO})_3].\text{CH}_3\text{CH}_2\text{OH}$</td>
</tr>
<tr>
<td>8</td>
<td>$\text{Cu}_2(p-\text{HOC}_6\text{H}_4\text{COO})(\text{CH}_3(\text{CH}2){6}\text{COO})(\text{CH}_3(\text{CH}2){6}\text{COOH})].\text{H}_2\text{O}$</td>
</tr>
<tr>
<td>9</td>
<td>$[\text{Cu}_2(\text{CH}_3(\text{CH}2){14}\text{COO})_2(\text{OH})_2(\text{H}_2\text{O})_4].2\text{C}_2\text{H}_5\text{OH}$</td>
</tr>
<tr>
<td>10</td>
<td>$\text{K}_2[\text{Cu}_2(\text{CH}_3(\text{CH}2){10}\text{COO})_2(\text{OH})_4]$</td>
</tr>
<tr>
<td>11</td>
<td>$\text{K}_2[\text{Cu}_2(\text{CH}_3(\text{CH}2){8}\text{COO})_2(\text{OH})_4]$</td>
</tr>
<tr>
<td>12</td>
<td>$\text{K}_2[\text{Cu}_2(\text{CH}_3(\text{CH}2){6}\text{COO})_2(\text{OH})_4]$</td>
</tr>
</tbody>
</table>
Formula struktur kompleks dideduksikan daripada analisis unsur, spektroskopi FTIR dan UV-vis. Sifat terma ditentukan melalui TGA dan DSC, manakala sifat mesomorfik ditentukan melalui OPM. Sifat magnet ditentukan melalui kaedah Gouy dengan menggunakan neraca kerentanan magnet, dan sifat redoks melalui voltametri siklik. Seterusnya, GCMS digunakan untuk menganalisis hasil yang terbentuk daripada tindak balas pembentukan ikatan karbon-karbon yang melibatkan metilkarbonil (3,3-dimetil-2-butanon).

Struktur kebanyakan kompleks di atas adalah dimerik ‘paddle-wheel’ dengan sama ada geometri empat sisi sama sesatah atau piramid pada pusat kuprum(II).

Kompleks 1 mempunyai kestabilan terma yang paling tinggi (T_{urai} = 424^\circ C) berbanding kompleks-kompleks yang lain (T_{urai} = 200^\circ C - 250^\circ C). Selanjutnya, kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi (aromatik: alifatik = 1:3) adalah lebih stabil secara terma; kestabilan meningkat dengan penambahan dalam panjang rantai alkil. Bagaimanapun, tren berlawanan diperhatikan bagi suhu lebur: kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi mempunyai takat lebur yang lebih rendah.

Enam daripada kompleks tersebut (**Kompleks 2, Komplek 5 - 9**) menunjukkan sifat metalomesogenik. Bagaimanapun, jenis mesofasa tidak dapat dideduksikan dengan jelas daripada OPM.

Semua kompleks adalah magnetik pada suhu bilik. Kecuali **Kompleks 1** yang menunjukkan saling tindakan feromagnet yang lemah (\(\mu_{\text{eff}} = 3.12\) B.M.; \(2J = 60\) cm\(^{-1}\)), kompleks-kompleks yang lain mempunyai kemagnetan (\(\mu_{\text{eff}} = 1.87\) B.M. - 2.62 B.M.) yang lebih rendah berbanding nilai spin sahaja untuk dua elektron tak berpasangan (\(\mu_{\text{eff}} = 2.83\) B.M.), dengan saling tindakan antiferomagnet pelbagai kekuatan (\(2J = -78\) cm\(^{-1}\) hingga -346 cm\(^{-1}\)). Kompleks dengan nisbah ligan alkilkarboksilat yang lebih tinggi
mempunyai saling tindakan antiferomagnet yang lebih kuat. Bagaimanapun, perbezaan dalam panjang rantai tidak mempunyai kesan yang ketara pada saling tindakan magnet.

Semua kompleks adalah aktif redoks dan menunjukkan tindak balas elektrokimia kuasi-berbalik bertertib. Keupayaan penurunan awal adalah dalam julat 0.07 – 0.30 V.

Kedua-dua **Kompleks 1** dan **Kompleks 4** ‘memangkinkan’ tindak balas pembentukan ikatan karbon-karbon yang melibatkan 3,3-dimetil-2-butanon. **Kompleks 4** merupakan ‘mangkin’ yang lebih baik kerana hasil tindak balas adalah lebih tulen dan dalam amaun yang lebih tinggi.

Penemuan penyelidikan ini telah diterbitkan dalam satu (1) jurnal ISI dan dibentang secara lisan atau poster dalam tiga (3) seminar kebangsaan dan empat (4) seminar antarabangsa (**Appendik 1**).