PUBLICATION AND LETTER OF ACCEPTANCE/ ABSTRACTS/ CERTIFICATE

FOR ORAL/POSTER PRESENTATION

IN NATIONAL/INTERNATIONAL

CONFERENCES AND SEMINARS

GRAVIMETRIC CALCULATION OF THE EXPECTED RESIDUE OF COMPLEX 1

The expected residue of **Complex 1** is calculated based on the assumption that, the residue of the complex are copper oxide and potassium oxide, and the weight of the complex, 100 % equivalent to 100 g. The reaction is proceeded as below.

$$K_2[Cu_2(p\text{-OC}_6H_4COO)_2(CH_3(CH_2)_{14}COO)_2(p\text{-HOC}_6H_4COOH)_2].2H_2O$$

$$\downarrow \\ 2CuO + K_2O + volatiles$$

Formula weight of Complex 1 = $1300.6 \text{ g mol}^{-1}$

Formula weight of CuO = 79.6 g mol^{-1}

Formula weight of K_20 = 94.2 g mol⁻¹

Based on the above assumptions and equation,

1 mol of **Complex 1** \longrightarrow 2 mol CuO + 1 mol K₂O

1300.6 g \longrightarrow (2 x 79.6 g) + 94.2 g= 253.3 g

The expected percentage of residue $\,=\,253.3\,/\,1300.6\,x\,100\,\%$

= 19.5 %

CALCULATION OF EFFECTIVE MAGNETIC MOMENT, μ_{eff} OF COMPLEX 1

$$= g x MW$$

$$= 2.97 x 10^{-6} cm^{3}g^{-1} x 1300.6 gmol^{-1}$$

$$= 386.28 x 10^{-5} cm^{3}mol^{-1}$$

The molar susceptibility obtained has to be corrected for the inherent diamagnetic contribution from the ligands and metal ions using the table of Pascal's constants

 $= -36.38 \times 10^{-5}$

So,

Total

$$_{\rm M}^{\rm corr} = 386.28 - (-36.38) \times 10^{-5} \text{ cm}^3 \text{mol}^{-1}$$

$$= 422.66 \times 10^{-5} \text{ cm}^3 \text{mol}^{-1}$$
 $l_{\rm eff} = 2.824 \left({_{\rm M}^{\rm corr} \text{T- N}} \right)^{1/2}$

 $\,$ N $\,$ is the temperature-independent paramagnetism, 60 x $10^{\text{-}6}\,\text{c.g.s}$ e.m.u Hence,

$$\mu_{\text{eff}}$$
 = 2.824 [2.98 (422.66 – 12)x 10⁻⁵)]^{1/2} B.M.
= 3.12 B.M.

CALCULATION OF EXCHANGE INTEGRAL OF COMPLEX 1

Bleany and Bowers equation for two copper(II) centres:

$$_{\rm M} = \frac{2 \text{ Ng}^2}{3 \text{kT}} \left\{ 1 + \frac{1}{3} \exp(-2 \text{J/kT}) \right\}^{-1} + 2 \text{N}$$

where:

_m = Molar Magnetic susceptibility (cm³/mol)

T = Room temperature in Kelvin (298 K)

N = Temperature independent paramagnetism, 60 x 10⁻⁶ c.g.s e.m.u

g = lande factor, 2.2

= Bohr Magneton $(4.6686 \times 10^{-5} \text{ cm}^{-1} \text{ G}^{-1})$

= Boltzmann constant, 0.695 cm⁻¹ K⁻¹

N = Avogadro's number

$$\frac{M}{3kT} = \frac{2 Ng^2}{3kT}^2 \left\{ 1 + \frac{1}{3} \exp(-2J/kT) \right\}^{-1} + 0.12 \times 10^{-3}$$

After rearranging the above equation and by putting the necessary values for all constants,

$$-2J = \{ ln[\{1.2186 \times 10^{-2}/(_m - 0.12 \times 10^{-3})\} - 3] \} 207.11$$

Putting in the $_{M} = 4.2266 \text{ x } 10^{-3}$

$$-2J = -60 \text{ cm}^{-1}$$

Appendix 5

GRAVIMETRIC CALCULATION OF FORMULA MASS OF COMPLEX 2

The formula mass of **Complex 2** is calculated based on the assumption that, the residue of the complex is copper oxide, the weight of the complex, 100 % equivalent to 100 g and the reaction is proceeded as below.

 $[Cu_{2}(\textit{p-HOC}_{6}H_{4}COO)_{2}(CH_{3}(CH_{2})_{14}COO)_{2}(CH_{3}(CH_{2})_{14}COOH)(H_{2}O)].CH_{3}CH_{2}OH$

2CuO + volatiles

Amount of residue = 14.3 g

Formula weight of CuO = 79.6 g mol^{-1}

Mol of CuO = $14.3 \text{ g/}79.6 \text{ g mol}^{-1} = 0.18 \text{ mol}$

From the above equation, 2 mol of CuO equivalent to 1 mol of **Complex 2**. Thus, 0.18 mole of CuO equivalent to 0.09 mole of **Complex 2**.

As such,

Formula weight of the complex = 100 g/0.09 mol

= 1111.1 g mol⁻¹

GRAVIMETRIC CALCULATION OF FORMULA MASS OF COMPLEX 4

The amount of residue for **Complex 4** at temperatures above 550° C to 900° C is 18.0%. The formula mass is calculated based on the assumption that, the residue are K_2O and CuO; the weight of the complex, 100% equivalent to 100g and the reaction is proceeded as below.

Amount of residue = 18.0 g

Formula weight of CuO = 79.6 g/mol

Formula weight of $K_20 = 94.2 \text{ g/mol}$

Percentage of CuO = $(4 \times 79.6) / [(4 \times 79.6) + 94.2] \times 100\%$

= 77.2 %

Mass of CuO = (77.2/100) x 18.0 g

= 13.9 g

Mole CuO = $13.9 \text{ g/}79.6 \text{ g mol}^{-1}$

= 0.17 mol

From the above equation, 4 mol of CuO equivalent to 2 mol of **Complex 4**. Thus, 0.17 mol of CuO equivalent to 0.09 mol of **Complex 4**.

Hence,

Formula weight of the complex = 100/0.09

= 1111.1 g mol⁻¹

The crystal data and structure refinement of the peacock-blue crystal of $[Cu_2(CH_3(CH_2)_8COO)_4]$ are shown in **Table A.1** while selected bond lengths are shown in **Table A.2**.

Table A.1: Crystallographic and refinement details of [Cu₂(CH₃(CH₂)₈COO)₄] crystal

Empirical formula	$[Cu(C_{20}H_{38}O_4)]$	
Formula weight	406.04	
Temperature	100 K	
Wavelength	0.71073 Å	
Crystal system, space group	Triclinic, P-1	
Unit cell dimension	$a = 5.20450 (10) \text{ Å}$ $\alpha = 65.3320 (10)^{\circ}$	
	b = 14.3270 (3) Å = 86.85 (10)°	
	$c = 16.4384 (4) Å = 82.8710 (10)^{\circ}$	
Volume	1105.24 (4) A ³	
Z, Calculated density	2, 1.220 Mg/m ³	
Absorption coefficient	1.007 mm ⁻¹	
F(000)	438	
Crystal size	0.26 x 0.20 x 0.10 mm	
Theta range for data collection	1.36 to 28.4 °	
Limiting indices $(\pm h, \pm k, \pm l)$	-6/6, -19/19, -21/21	
Reflections collected / unique	11169 / 5497 [R _{int} = 0.0190]	
Absorption correction	Multi-scan	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5497 / 0 / 236	
Goodness-of-fit on F ²	1.153	
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0352, wR2 = 0.1064	
Δ max and Δ min	0.504 and -0.812 e Å ⁻³	

Table A.2 : Selected bond lengths $[\mathring{A}]$ of crystal

Cu1 – O12	1.9358(16)
Cu1 – O14	1.9430(16)
Cu1 – O2	1.9702(16)
Cu1 – O	2.0140(14)

The crystal data and structure refinement of the peacock-blue crystal of $[Cu_2(CH_3(CH_2)_6COO)_4]$ are shown in **Table A.3** while selected bond lengths are shown in **Table A.4**.

Table A.3: Crystallographic and refinement details of [Cu₂(CH₃(CH₂)₆COO)₄] crystal

Empirical formula	$[Cu(C_{16}H_{30}O_4)]$
Formula weight	349.94
Temperature	296 K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P-1
Unit cell dimension	$a = 5.14710 (10) \text{ Å}$ $\alpha = 97.451 (2)^{\circ}$
	$b = 12.0209 (3) \text{ Å} = 90.507 (2)^{\circ}$
	$c = 14.1881 (3) Å = 98.376 (2)^{\circ}$
Volume	862.71 (3) A ³
Z, Calculated density	2, 1.347 Mg/m ³
Absorption coefficient	1.278 mm ⁻¹
F(000)	374
Crystal size	0.20 x 0.08 x 0.05 mm
Theta range for data collection	1.44 to 27.49 °
Limiting indices $(\pm h, \pm k, \pm l)$	-6/6, -15/15, -18/18
Reflections collected / unique	7732 / 3948 [R _{int} = 0.0280]
Absorption correction	Multi-scan
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3948 / 0 / 192
Goodness-of-fit on F ²	1.142
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0360, wR2 = 0.1010
Δ _{max} and Δ _{min}	0.608 and -1.369 e Å ⁻³

Table A.4 Selected bond lengths [Å] of crystal

Cu1 – O1	1.9445(17)
Cu1 – O3	1.9460(17)
Cu1 – O2	1.963(2)
Cu1 – O4	2.009(2)