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ABSTRACT 

 

Microfiber devices have great potential in numerous applications as they offer a 

number of unique characteristics and optical properties. In this thesis, the background 

theory and fabrication techniques of microfiber devices are introduced. A high precision 

computer-controlled rig based on flame brushing technique was assembled in the laboratory. 

It is capable of producing tapered fibers with a maximum length of ~230 mm and a 

minimum waist diameter of ~ 400 nm. Two methods to provide long term protection to the 

tapered fibers and microfiber devices are demonstrated. The first method is to embed the 

microfiber device in a low-index resin while the second method involves encasing the long 

tapered fiber in an acrylic casing to provide the tapered fiber a clean and dry ambient. 

Microfiber devices such as Microfiber Loop Resonators, Microfiber Knot 

Resonators and Microfiber Mach-Zehnder Interferometer were produced. Application of 

Microfiber Loop Resonator as optical filter in multiwavelength laser was investigated. The 

lasing quality can be enhanced by manipulating the state of polarization to improve the 

resonance extinction ratio of the Microfiber Loop Resonator. Microfiber resonators also 

exhibit unique thermal characteristics. As a temperature sensor, investigation indicates that 

the extinction ratio and resonance wavelength varies by 0.043 dB/
o
C and 50.6 pm/°C 

respectively with the temperature change. In addition, a compact current sensor based on a 

copper wire wrapped around a Microfiber Knot Resonator has been devised. The resonance 

wavelength varies when electric current flows through the copper wire. The wavelength 

shift is due to thermally induced optical phase shifts, a result of heat produced by the flow 

of current. A tuning slope of 51.3 pm/A
2
 has been achieved with the single-wire 

configuration. 
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ABSTRAK 

 

Peranti microfiber mempunyai potensi besar dalam pelbagai aplikasi kerana ia mempunyai 

beberapa ciri-ciri unik dan sifat optik. Dalam tesis ini, latar belakang teori dan teknik 

fabrikasi peranti microfiber diperkenalkan. Kemudian ciri-ciri dan aplikasi yang disiasat 

secara terperinci. Mesin pembuatan gentian optik tirus kawalan komputer berdasarkan 

teknik berusan api telah dibinakan di dalam makmal. Ia mampu menghasilkan gentian tirus 

dengan panjang maksimum sebanyak ~230 mm dan gentian tirus paling halus yang pernah 

dihasilkan mempunyai diameter sehalus ~400 nm. Dua kaedah perlindungan jangka 

panjang untuk gentian optik tirus dan peranti microfiber akan ditunjukkan. Kaedah pertama 

adalah untuk menanamkan peranti microfiber dalam damar UV yang mempunyai indeks 

biasan rendah manakala kaedah kedua menyimpankan gentian optik tirus dalam kotak 

acrylic yang panjang dan dibalutkan dengan pembalut plastik supaya gentian optik tirus 

dilindungi dalam persekitaran yang bersih dan kering. 

 Pembuatan tiga jenis microfiber peranti iaitu resonator gelung microfiber, resonator 

simpulan microfiber dan  interferometer Mach-Zehnder microfiber akan ditunjukkan. 

Dalam aplikasi resonator gelung microfiber digunakan sebagai penapis optik dalam laser 

multiwavelength, akan ditunjukkan. Kualiti laser boleh dipertingkatkan dengan 

memanipulasi polarisasi dan meningkatkan nisbah resonans kepupusan resonator gelung 

microfiber. Resonator microfiber mempunyai ciri-ciri suhu yang unik. Sebagai sensor suhu, 

penyelidikan menunjukkan bahawa nisbah resonans pupus dan panjang gelombang 

resonans berubah dengan suhu dengan sensitiviti sebanyak 0.043 dB/°C dan 50.6 pm/°C 

masing-masing. Di samping itu, sensor padat arus elektrik berdasarkan dawai tembaga yang 

dililit dalam resonator simpul microfiber telah direkakan. Panjang gelombang resonans 
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berubah apabila aliran arus elektrik melalui dawai tembaga. Perubahan panjang gelombang 

adalah disebabkan oleh perubahan fasa optik kerana penambahan haba yang dihasilkan oleh 

aliran arus elektrik. Kecerunan penalaan sebanyak 51.3 pm/A
2
 telah dicapai dengan 

konfigurasi dawai-tunggal. 
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ACRONYMS 

 

Some jargons used in this thesis are listed as follow: 

MLR Microfiber Loop Resonator  

MKR Microfiber Knot Resonator  

MCR Microfiber Coil Resonator  

MMZI Microfiber Mach-Zehnder Interferometer 

SMF Single Mode Fiber 

EDF Erbium-doped Fiber 

EDFA Erbium-doped Fiber Amplifier 

HOM Higher Order Mode 

LP Linearly Polarized 

SOA Semiconductor Optical Amplifier 

WDM Wavelength Division Multiplexing 

ASE Amplified Spontaneous Emission 

OSA Optical Spectrum Analyzer 

PC Polarization Controller 

RI Refractive Index 

RIU Refractive Index Unit 

FSR Free Spectral Range 

RER Resonance Extinction Ratio 

HF  Hydrofluoride Acid 

GVD Group Velocity Dispersion  

FUT Fiber under Test 
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FWHM  Full Wave At Half Maximum 

PBS  Polarizing Beam-Splitter 

FWM Four-wave Mixing 

TOC Thermal-Optic Coefficient 

TEC Thermal Expansion Coefficient 

SOP State Of Polarization 

NPR  Nonlinear Polarization Rotation 

HNLF  Highly Nonlinear Fiber  
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