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ABSTRACT 

  

This work gives an insight on the fabrication and characterization of two 
distinctly different hydrogenated carbon nitride CNx:H structured films showing either 
polymeric, p-CNx:H or nanostructured, ns-CNx:H film growth. These structures were 
obtained using radio frequency (rf) plasma enhanced chemical vapour deposition 
employing a parallel-plate electrode configuration, under the same deposition 
parameters except for the change in the electrode distance. It was this simple change in 
the distance which induced the structural transformation from p-CNx:H films obtained 
at distance of six to three cm, to the ns-CNx:H films produced at two to one cm. Each 
type of film showed its own unique characteristics. For the p-CNx:H films deposited at 
an electrode distance of 5 cm, their PL spectra showed two main peaks assumed to be 
attributed to the presence of sp2 clusters and nitrogen bonding in the films. Further 
studies showed that the optimized rf power and nitrogen-to-methane N2:CH4 gas-flow-
rate ratio to obtain p-CNx:H films with the highest PL intensities were 80 W and 0.70, 
respectively. There appeared to be no direct correlation between the PL properties and 
optical energy gap. However, the PL characteristics were dependent on the N content in 
the films. From extensive bonding studies carried out on these films, it was found that N 
is incorporated most significantly through nitrile, isonitrile and sp2-CN bonding 
configurations. Also, these films were thermally stable when annealed in nitrogen up to 
temperatures of 500 °C, though the PL intensities start to decline even from 200 °C. The 
recombination centers which produced these high PL intensities were attributed to the 
CHn, CN and the isolated and/or fused aromatic rings bonded to nitrile (−C≡N) which 
may contribute significantly as recombination centers.  

While the studies of p-CNx:H films were focused on their PL characteristics, a 
more fundamental approach was taken in the study of ns-CNx:H. These novel ns-CNx:H 
films were obtained at low deposition temperatures without the use of metal-catalyst or 
template, and could be grown directly on the bare silicon and quartz substrates. The 
focus of the study of these ns-CNx:H films was on the formation of vertically aligned 
CNx:H nanorods and their growth mechanism. The optimized parameters for the 
formation these nanorods were determined to be at Prf of 80 W and N2:CH4 ratio of 
0.70. This coincided with the maximum N content and preferential bonding of isonitrile 
bonded to fused or isolated aromatic rings in the films. These nanorods were made up of 
C nanographitic sp2 clusters embedded in a carbon-nitrogen amorphous matrix which 
surrounded, encapsulated and held them together. The growth mechanism of these 
vertically aligned nanorods was proposed.  

In the optimization studies of both materials, one fascinating conclusion was 
uncovered. The optimized deposition parameters for both exceptional characteristics of 
these structured films were the same. It is the simply the difference in electrode distance 
at these optimal Prf and N2:CH4 ratio, which induces the formation of these two 
significantly different structured films. 
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ABSTRAK 

 

Kerja penyelidikan ini memberi pemahaman yang mendalam terhadap fabrikasi 
dan pencirian dua jenis karbon nitrida berhidrogen (CNx:H) yang jelas berbeza dari segi 
struktur filemnya samaada filem polimerik (p-CNx:H) atau berstruktur nano (ns-CNx:H). 
Struktur-struktur ini telah diperolehi dengan menggunakan kaedah pemendapan 
frekuensi radio wap kimia secara peningkatan plasma dengan konfigurasi kepingan 
elektrod selari, dimana parameter pemendapan yang digunakan adalah sama kecuali 
beza jarak diantara elektrod. Perubahan jarak ini dengan mudahnya mendorong 
transfomasi struktur filem dari p-CNx:H yang diperolehi pada jarak enam hingga tiga 
cm kepada filem ns-CNx:H yang dihasilkan pada jarak dua hingga satu cm. Kedua-dua 
jenis filem menunjukkan ciri-ciri unik yang tersendiri. Bagi filem p-CNx:H yang 
dimendapkan pada jarak elektrod lima cm, spectra PL menunjukkan dua puncak utama 
yang dipercayai berkait rapat dengan kehadiran kelompok-kelompok sp2 dan ikatan 
nitrogen dalam filem-filem tersebut. Kajian lanjut menunjukkan kuasa rf (Krf) dan kadar 
nisbah campuran aliran gas nitrogen terhadap gas metana (N2:CH4) yang optima bagi 
menghasilkan filem p-CNx:H dengan PL yang berkeamatan paling tinggi masing-
masing adalah 80W dan 0.70. Didapati tiada hubungan terus diantara sifat PL dan 
jurang tenaga optikal. Walaubagaimanapun, sifat PL bergantung kepada kandungan N 
dalam filem-filem tersebut. Melalui kajian ikatan kimia yang terperinci, didapati 
penggabungan N yang sangat penting berlaku melalui konfigurasi ikatan nitrile, 
isonitrile dan sp2-C=N. Didapati juga, filem-filem ini stabil sehingga suhu 500 ºC 
walaupun keamatan PLnya menurun seawal suhu 200 ºC. Pusat penggabungan semula 
yang menghasilkan keamatan PL yang tinggi dikaitkan dengan kehadiran CHn, C=N 
dan nitrile (-C≡N) yang terikat kepada lingkaran aromatik yang terpencil dan/atau 
terpadu yang mungkin merupakan penyumbang terpenting sebagai pusat-pusat 
penggabungan semula. 

Berbeza dengan kajian terhadap filem p-CNx:H yang tertumpu kepada sifat-sifat 
PL, pendekatan yang lebih asas telah diambil dalam kajian terhadap ns-CNx:H. Filem-
filem ns-CNx:H yang belum pernah dikaji ini telah di perolehi pada suhu pemendapan 
yang rendah tanpa menggunakan pemangkin logam atau templit dan boleh dimendap 
secara terus di atas substrak silikon dan kuarza yang terdedah. Kajian terhadap filem-
filem ns-CNx:H ini adalah tertumpu kepada pembentukan filem rod-nano CNx:H yang 
tegak menjajar serta mekanisma pertumbuhannya. Parameter optima bagi menghasilkan 
rod-nano ini adalah Krf bernilai 80 W dan nisbah N2:CH4 bernilai 0.70. Ini sejajar 
dengan kandungan maksima N dan kecenderungan ikatan isonitrile yang terikat kepada 
lingkaran aromatic yang terpencil dan/atau terpadu didalam filem tersebut. Rod nano ini 
terdiri daripada kelompok C sp2 nano-grafitik yang terbenam didalam matrik amorfus 
karbon-nitrogen yang mengelilingi, mengkapsul dan mengikat kelompok-kelompok ini 
bersama. Mekanisma pertumbuhan rod-nano yang tegak menjajar ini dicadangkan. 
 Dalam kajian pengoptimaan kedua-dua bahan ini, satu kesimpulan yang menarik 
didedahkan. Parameter pemendapan optima bagi ciri-ciri unik kedua-dua struktur filem 
ini adalah sama. Perbezaan jarak antara elektrod pada nilai-nilai optimum Prf dan nisbah 
N2:CH4 tersebut yang mendorong pemendapan filem yand jelas perbezaan strukturnya. 
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