STUDY OF S-BAND OPTICAL AMPLIFIERS AND ITS APPLICATIONS

MOHD ZAMANI ZULKIFLI

THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF PHYSICS
FACULTY OF SCIENCE
UNIVERSITY OF MALAYA
2012
UNIVERSITI MALAYA
ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: MOHD ZAMANI ZULKIFLI (I.C/Passport No: 821023-06-5439)
Registration/Matric No: SHC080074
Name of Degree: DOCTOR OF PHILOSOPHY
STUDY OF S-BAND OPTICAL AMPLIFIERS AND ITS APPLICATIONS

Field of Study: PHOTONICS

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for
permitted purposes and any excerpt or extract from, or reference to or reproduction of
any copyright work has been disclosed expressly and sufficiently and the title of the
Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making
of this work constitutes an infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of
Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that
any reproduction or use in any form or by any means whatsoever is prohibited without
the written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright
whether intentionally or otherwise, I may be subject to legal action or any other action
as may be determined by UM.

Candidate’s Signature
Date

Subscribed and solemnly declared before,

Witness’s Signature
Date
Name:
Designation:
Abstract

Currently, existing networks which utilizes Dense Wavelength Division Multiplexing (DWDM) have come to its limitation, with the increase of data traffic extending the operational bandwidth from the C- to the L-band. Although the L-band can sustain current demands, there is a pressing need to explore the S-band region for future needs. One of the important components for operation in the S-band region is the S-band optical amplifier, which requires in-depth investigation and is the scope and objective of this thesis. The work will undertake a nearly comprehensive evaluation of the different types of optical amplifiers such as Erbium Doped Fibers Amplifiers (EDFAs), Depressed-Cladding Erbium-Doped Fibers Amplifiers (DC-EDFAs), Semiconductor Optical Amplifier (SOAs) and Raman Amplifier (RAs). The methodology of this work is to investigate these amplifiers from the aspect of the gain and noise figure at different input signal wavelengths and powers. Further to this, the optical amplifier is configured into a fiber laser and various parameters such as the tuning range, output power and the Side Mode Supression Ratio (SMSR) will be investigated. Various methods are used to tune the wavelength of the fibre lasers, including the Arrayed Waveguide Gratings (AWGs) and Tunable Bandpass Filters (TBFs) as well as Tunable Fibre Bragg Gratings (TBFGs) for different gain media. Significantly important results were obtained from these investigations, including the generation of an SOA based fiber laser with an ultra-wide tuning range of more than 120 nm covering the S-, C- and L- bands.

This thesis also presents another application of the S-band amplifier, which is the multi-wavelength Brillouin fiber laser operating in the S-band region. This application is important for the development cost-effective transmission sources for the DWDM systems. The multi-wavelength fiber laser uses the Brillouin effect, which is a
non-linear optical effect, together with the EDFA, DC-EDFA, SOA and RA to generate a multi-wavelength output in the S-band region. The developed multi-wavelength Brillouin fiber laser has a number of substantial performance improvements over similar designs, including the number of the Stokes lines generated, flat output peak power and also channel spacing.

The studies undertaken and the results obtained in this work can provide important inputs into the design of S-band optical amplifiers for application in future S-band networks. Furthermore, the results obtained in this work are instrumental to the development of tunable S-band fiber laser sources and also multi-wavelength sources for the possibility of usage in DWDM systems.
Abstrak

Pelbagai kaedah digunakan untuk menala panjang gelombang laser gentian, termasuk yang menggunakan parutan Pandu gelombang (AWGs) dan Penapis laluan Boleh Laras (TBFs) serta parutan Bragg Gentian Optik Boleh Laras (TBFGs) untuk media gandaan yang berbeza. Signifikan keputusan penting telah diperolehi daripada penyiasatan, termasuk generasi laser gentian optik berasaskan SOA dengan rangkaian selulur ultrapenalaan lebih daripada 120 nm meliputi jalur- S, C dan L.

Tesis ini juga membentangkan satu lagi aplikasi penguat jalur-S iaitu Brillouin laser gentian optik dengan keluaran pelbagai panjang gelombang pada jalur S-. Aplikasi ini adalah penting bagi sumber pembangunan penghantaran dengan kos yang berkesan
untuk sistem DWDM. Laser gentian optik pelbagai panjang gelombang menggunakan kesan Brillouin, yang juga merupakan kesan optik bukan linear, bersama-sama dengan EDFA, DC-EDFA, SOA dan RA untuk menjana keluaran pelbagai panjang gelombang di rantau jalur-S. Pembangunan pelbagai panjang gelombang Brillouin laser fiber mempunyai bilangan peningkatan prestasi yang besar ke atas reka bentuk serupa, termasuk bilangan garisan Stokes yang terhasil, kuasa output puncak rata dan juga jarak saluran.

Kajian yang dijalankan dan keputusan yang diperolehi dalam kerja-kerja ini boleh memberikan input penting ke dalam reka bentuk penguat optik jalur-S untuk aplikasi dalam rangkaian masa depan jalur-S. Tambahan lagi, keputusan yang diperolehi dalam kerja-kerja ini adalah penting kepada pembangunan sumber jalur-S laser gentian optik boleh laras dan juga sumber pelbagai panjang gelombang bagi kemungkinan penggunaan dalam sistem DWDM.
Acknowledgements

Firstly, I would like to convey my most sincere appreciation to my supervisor, Professor Harith Ahmad for his priceless guidance, encouragement, knowledge and wisdom. Throughout the process, I have learnt not only about the research but also the values which are fundamental in achieving success in life. I would also like to express my gratitude to my co-supervisor, Prof. Dr. Sulaiman Wadi Harun, for keep giving his help, supports, advice and ideas during the completion of this study and finally in preparing this thesis.

A PhD work is very hard to be completed by our own effort without the supports from the other people who work towards the same objective. Therefore, I am very thankful to the members of my research group, including Amirah Abdul Latif, Siti Fatimah Norizan, Nor Ahya Hassan, Noor Azura Awang, Mohd. Hafizin Jemangin, and Farah Diana Muhammad for their beneficial point of views and technical supports given throughout the course of my study. With their kind and good assistance, the experiments are carried out successfully. They should be well recognized for their support which is very useful indeed.

My appreciation also extends to my family, especially to my parents and my wife for their understanding and patience in the years of my PhD study.
List of ISI Publications

1. H. Ahmad, **M. Z. Zulkifli**, N. A. Hassan, and S. W. Harun, S-band Multi-Wavelength Ring Brillouin/Raman Fiber Laser with 20 GHz Channels Spacing, Accepted in Applied Optics 2012

12 H.Ahmad, A.A Latif, S.F Norizan, M.Z Zulkifli, S.W Harun, “Flat and compact switchable dual wavelength output at 1060 nm from ytterbium doped fiber laser with an AWG as a wavelength selector”

32 H. Ahmad, M.Z Zulkifli, A.A Latif, K. Thambiratnam, S.W Harun, “Bidirectional S-band continuous wave operation in a depressed-

H. Ahmad, M.Z Zulkifli, A.A Latif, K. Thambiratnam, S.W. Harun
Dual wavelength fibre laser with tunable channel spacing using an SOA and dual AWGs, Journal Of Modern Optics Volume 56, Issue: 16, pp1768-1773, 2009

H.Ahmad, H.C Ooi, A.H Sulaiman,K Thambiratnam, M.Z Zulkifli

List of Conferences

Plenary Speaker

Oral and Poster Presentations

1 H. Ahmad, M. Z. Zulkifli, K. Thambiratnam, M. Yasin and S.W. Harun “Non-Contact Micro And Sub-Mirco Thickness Measurement Using Fiber Optic Displacement Sensor”, 8th International Symposium on Modern Optics and Its Applications, 4-7 July 2011, Institut Teknologi Bandung, Bandung, Indonesia

4 M Z Zulkifli and H Ahmad, “Switchable Fiber laser”, Topical Meeting On Laser and Optoelecronic, 7-10 February 2009, The
Andaman Langkawi, Malaysia

5 M. Z. Zulkifli, “Flat output and Switchable Fiber laser Using AWG and Broadband FBG, International meeting on Frontiers of Physic 2009, 12-16 Januari, Awana Genting Highland, Malaysia

List of Awards

1 **Best Phd Candidate With Highest Cumulative ISI Impact Factor,**
University of Malaya Excellence Award 2011, 12 December 2011, Universiti of Malaya, Kuala Lumpur, Malaysia

2 **Full Sponsorship by UNESCO and ICTP,** Winter College on Optic and Imaging Science, 24 January- 11 Fabuary 2011, ICTP, Trieste, Italy

3 **Bronze Medal,** Ready-To Market, (Physical Science and Engineering), “Low Cost Tunable Laser Diode”, 1-3 April 2010 Innovation and Creativity Expo 2010 Universiti Malaya

4 **Gold Medal,** “Novel O-band Tunable Fiber Laser Using an Array Waveguide Grating”, 1-3 April 2010 Innovation and Creativity Expo 2010, Universiti Malaya

5 **Gold Medal,** Ready-To Market, (Physical Science and Engineering) “Erbium Doped Fiber Amplifier Experiment Kits”, 1-3 April 2010 Innovation and Creativity Expo 2010 Universiti Malaya

6 **Gold Medal,** “An All-Optical Frequency Up/Down Converter Utilizing Stimulated Brillouin and Raman Scattering in Truewave
Reach Fiber and Dispersion Compensating Fiber for Radio Over Fiber Application”, 1-3 April 2010 Innovation and Creativity Expo 2010 Universiti Malaya

Contents

Original Literary Work Declaration ...i
Abstract ..ii
Abstrak ..iv
Acknowledgements ..vi
List of Publications ...vii
List of Conferences ...xiii
List of Awards ..xiv
Contents ..xvi
List of Figures ..xxiii
List of Tables ..xxxvi
Acronyms ...xxxvii
Nomenclature ..xl

1. Introduction

1.1 Fiber Optic Based Communication Technology ..1
1.2 Wavelength Division Multiplexing (WDM) ...1
1.3 Dense WDM System ...3
1.4 Optical Amplifier an a Key Component in WDM System4
1.5 Bandwidth Demand in Optical Communication System5
1.6 S-band Optical Amplifier ..6
1.7 Light Source in WDM ..8
1.8 S-band Light Source in DWDM ..9
1.9 Thesis Objective ..12
1.10 Thesis Arrangement ...13
References ..15

xvi
2. **Theory and Literature of S-band Optical Amplifier and Its Applications**

2.1 Introduction..20

2.2 Erbium Doped Fiber Amplifier (EDFAs)..20

 2.2.1 Atomic Rate Equation...21

 2.2.2 Amplified Spontaneous Emission (ASE) ..23

 2.2.3 Erbium Doped Fiber Amplifier in S-band Region ..24

2.3 Depressed Cladding Erbium Doped Fiber..26

 2.3.1 Characteristics of Depressed Cladding Fiber ..29

 2.3.1.1 Cutoff Characteristics of Depressed Cladding Fiber ..29

 2.3.1.2 Microbending Loss in Depressed Cladding Fiber ..30

2.4 Characteristics of Erbium Doped Fiber Amplifier..32

 2.4.1 Gain of Erbium Doped Fiber Amplifier ..32

 2.4.2 Small Signal and Saturation Gain of Erbium Doped Fiber ...33

 2.4.3 Gain Bandwidth ..34

 2.4.4 Amplified Spontaneous Emission and Noise Figure ..34

2.5 S-band Raman Amplifier ..36

 2.5.1 Principle of Raman Amplifier ..36

 2.5.2 Noise Figure of Raman Amplifier ..38

2.6 S-band Semiconductor Optical Amplifier ..39

 2.6.1 Principle of SOA ...40

 2.6.2 Small Signal Gain ..42

 2.6.3 Saturation Current, Saturation Power and Bandwidth ...45

 2.6.4 Noise Figure and Amplified Spontaneous Emission (ASE) ..47

 2.6.5 Polarization Sensitivity ..48

2.7 Application of S-band Optical Amplifiers ...49

 2.7.1 S-band Fiber Laser ..49
2.7.1.1 Wavelength Tunable Operation of Fiber Laser ..50
2.7.1.2 Output Power of Fiber laser ..51
2.7.1.3 Side Mode Suppression Ratio ...51
2.7.2 S-band Multi-wavelength Brillouin/Fiber Laser ..52
 2.7.2.1 Non-linear Effect in Single Mode Fiber ...52
 2.7.2.2 Principles of Stimulated Brillouin Scattering ...53
 2.7.2.3 Brillouin Frequency Shift ...54
 2.7.2.4 Brillouin Gain Coefficient ...56
 2.7.2.5 Brillouin Threshold ...57
 2.7.2.6 Hybrid Brillouin/Erbium Doped Fiber Laser58
2.8 Summary ..61
References ...63

3. Characteristics of S-band Optical Amplifiers

3.1 Introduction ..69
3.2 S-band Operation in a Standard 3m of Erbium Doped Fiber71
 3.2.1 Simulation of S-band Standard Silica Erbium Doped Fiber Amplifier72
 3.2.2 Experiment of S-band Standard Silica Erbium Doped Fiber Amplifier ...80
 3.2.2.1 Small-Signal and Saturation Gain ...80
 3.2.2.2 Gain Bandwidth ..82
 3.2.2.3 Amplified Spontaneous Emissions and Noise Figure
 Characteristic in S-band ..85
3.3 S-band Depressed Cladding Erbium Doped Fiber Amplifier90
 3.3.1 Depressed Cladding Erbium Doped Fiber ...90
 3.3.2 Tunable Fundamental Mode Cutoff DC-EDF by Spooling
3.3.3 Small-signal and Saturation Gain of Depressed Cladding Erbium Doped Fiber Amplifier ... 96
3.3.4 Gain Bandwidth of Depressed Cladding Erbium Doped Fiber Amplifier ... 99
3.3.5 Noise Figure of Depressed Cladding Erbium Doped Fiber Amplifier ... 101
3.3.6 Flat Bandwidth S-band Depressed Cladding Erbium Doped Fiber Amplifier ... 104
3.3.6 Low Noise Figure of S-band Amplifier with Cascading Depressed Cladding Erbium Doped Fiber and Erbium Doped Fiber Amplifier ... 109
3.4 S-band Raman Amplifier ... 114
 3.4.1 Type of Raman Amplifier ... 114
 3.4.1.1 Distribute Raman Amplifier ... 115
 3.4.1.2 Discrete Raman Amplifier ... 115
 3.4.1.3 Hybrid Raman Amplifier ... 116
 3.4.2 Characteristics of S-band Discrete Raman Amplifier .. 117
 3.4.2.1 Pump Efficiency of S-band Discrete Raman Amplifier ... 118
 3.4.2.2 Small-Signal and Saturation of Discrete Raman Amplifier .. 119
 3.4.2.3 Gain Bandwidth of S-band Discrete Raman Amplifier .. 120
 3.4.2.4 Noise Figure in Discrete Raman Amplifier .. 122
3.5 Semiconductor Optical Amplifier .. 124
 3.5.1 Amplified Spontaneous Emissions of Semiconductor Optical Amplifier .. 126
 3.5.2 Gain Bandwidth of Semiconductor Optical Amplifier .. 127
4. **S-band Fiber Laser**

4.1 Introduction ...156

4.2 Cavity Configurations of S-band Fiber Laser ...158

4.3 S-band Fiber Laser in Silica Erbium Doped Fiber ...158

4.3.1 Cavity Design ..158

4.3.2 Tunability of S-band Silica EDFL ..163

4.3.3 Design of the S-band Tunable Fiber Bragg Grating ..163

4.3.4 Wavelength Tuning Range ..166

4.3.5 Output Power and Signal Mode Suppression Noise Ratio ..167

4.3.6 Single Longitudinal Mode ..169

4.3.7 Linewidth ...172

4.4 Depressed Cladding Erbium Doped Fiber Laser ..174
4.4.1 Output Power Efficiency ... 176
4.4.2 Tunable and Switchable S-band Depressed Cladding Doped Fiber Laser ... 179
 4.4.2.1 Array Waveguide Grating .. 179
4.5 S-band Raman Fiber Laser .. 184
4.6 S-band Semiconductor Optical Amplifier based Fiber Laser 188
 4.6.1 Wide Band Ring Cavity SOA Fiber Laser 189
 4.6.1.1 Array Waveguide Characteristics 189
4.7 Summary .. 199
References .. 204

5. S-band Multi-wavelength Fiber Laser

5.1 Introduction .. 211
5.2 Generation of S-band Brillouin Fiber Laser .. 213
 5.2.1 Effect of Length and Effective Area for Stimulated Brillouin Scattering ... 213
 5.2.2 Stimulated Brillouin Scattering over Brillouin Pump Power 216
 5.2.3 Stimulated Brillouin Scattering in Dispersion Compensating Fiber ... 218
5.3 Cavity Design of S-band Brillouin Fiber Laser 222
5.4 S-band Hybrid Brillouin with Gain Medium .. 224
5.5 S-band Multi-wavelength Brillouin/ Depressed Cladding Erbium Doped Fiber Lasers ... 225
5.6 S-band Multi-wavelength Brillouin/ Raman Fiber Laser 230
 5.6.1 Effect of the Brillouin Pump Power in Multi-wavelength S-band Brillouin/Raman Fiber laser in a Linear Cavity Configuration ... 234
5.6.2 Output Characteristics at Different Brillouin Pump Direction and Coupling Ratio ... 236
5.6.3 Effect of Multiple Brillouin Pump to the Characteristic of S-band Multi-wavelength Brillouin/ Raman Fiber Laser .. 243
5.6.4 20 GHz Spacing of S-band Multi-wavelength Brillouin/ Raman Fiber Laser ... 246
5.7 S-band Multi-wavelength Brillouin/ Semiconductor Optical Amplifier Fiber Laser .. 255
5.7.1 Tuning Range Characteristics of Multi-wavelength Brillouin/ SOA Fiber Laser .. 257
5.8 S-band Multi-wavelength Brillouin-Multi-Hybrid Gain Medium Fiber Laser .. 262
5.8.1 S-band Multi-wavelength Brillouin/Depressed Cladding Erbium Doped –Raman Pump in Linear Cavity 262
5.8.2 S-band Multi-Wavelength Brillouin/Semiconductor Optical Amplifier -Depressed Cladding Erbium Doped 269
5.9 Summary ... 274
References .. 279

6. Conclusions and Future Work

6.1 Conclusion .. 284
6.2 Future Works ... 294

Appendices

Appendix A: Selected Papers Related to this Work

Appendix B: Selected Papers Based on the Developed Technique from this Thesis
List of Figures

1 Introduction

1.1 Brillouin wavelength generated in the S-band region. 11
1.2 Research methodologies for the thesis. 14

2 Theory and Literature of S-band Optical Amplifier and Its Applications

2.1 Erbium Atomic Levels. 22
2.2 Depressed cladding fibre cross-sectional view. 28
2.3 W-Profile of single mode fiber. 28
2.4 Matched Cladding and Depressed Cladding Refractive Index profile where $\Delta = n_1-n_2$ and $\Delta' = n_2-n_0$. 30
2.5 (a) The effective refractive index profile, in the plane of curvature of a bent fiber (b) shows how an actual profile would be distorted by a bend. 32
2.6 Raman gain spectrum with Raman pump at 1500 nm in fused silica. Inset shows an energy level diagram representative of the Raman 37
2.7 The different of the FP-SOA and TW-SOA. 40
2.8 Energy level of SOA. 41
2.9 Types of cavities of the fiber laser (a) Ring Cavity (b) Linear Cavity. 50
2.10 Stimulated Brillouin Scattering Effect. 54
3 Characteristics of S-band Optical Amplifiers

3.1 The pumping configuration of Erbium doped fiber amplifier (a) forward pumping (b) backward pumping (c) bi-directional pumping.

3.2 Representative gain spectra of erbium-doped silica fiber at various inversion levels.

3.3 The screen shot of simulation configuration of GainMaster Software by Fibercore Ltd.

3.4 The inversion rates against the length of EDF.

3.5 The gain performance for different EDF length against pump power of forward pumping setup with an input power of -30dBm. (Simulated Result).

3.6 The gain performance for different EDF length against pump power of forward pumping setup with an input power of 0dBm. (Simulated Result).

3.7 The gain performance for different EDF length against pump power of backward pumping setup with input power -30dBm.

3.8 The gain performance for different EDF length against pump power of backward pumping setup with input power 0dBm. (Simulated Result).

3.9 The gain comparison of 3m EDF for forward pumping and backward pumping setup with input signal -30dBm and 0dBm.

3.10 The comparison of gain between simulation and experimental result.
3.11 The gain performance for different input power. 82
3.12 The gain performance with different input signal wavelength with input power -30dBm. 83
3.13 The ASE spectrum of EDF with pumping power 90mW 84
3.14 The gain performance with different input signal wavelength with input power 0dBm 85
3.15 The NF of forward pumping and backward pumping setup as a function of 980 nm pump power at signal wavelength and power of 1500 nm and -30dBm respectively. 86
3.16 The NF characteristics with different input power at 1500 nm signal wavelength. 88
3.17 The NF with different signal wavelengths at input power of -30 dBm (lower input signal). 89
3.18 The NF with different signal wavelengths at input power of 0 dBm. (Saturated input signal). 89
3.19 W-Profile of fiber. 91
3.20 Experimental Setup for Spooling Effect on the Tunable Fundamental Mode Cutoff of a DC-EDF. 92
3.21 Amplified Spontaneous Emission (ASE) of DC-EDFAs with different spooling diameters. 94
3.22 The effective refractive index profile in the straight fiber. 94
3.23 The effective refractive index profile in the plane of curvature of the bent fiber. 95
3.24 The gain of DC-EDFA with different input power at signal wavelength 1500nm. 97
3.25 The output power performance with different input power. 98
3.26 The gain and with different input wavelength and -30dBm input power. 99
3.27 Gain with different input wavelengths and 0dBm input power. 100
3.28 The NF performance with different input signal power at wavelength 1500 nm. 102
3.29 The NF performance with different input signal wavelength at input power -30dBm. 103
3.30 NF performance against different input signal wavelength at input power of 0 dBm. 104
3.31 Experimental Setup of the Proposed S-band DC-EDFA with a TMZF. 105
3.32 Gain and Noise Figure measurement at different input wavelength at input power of -30dBm (a) gain without TMZF (b) gain with TMZF (c) noise figure for both cases. 106
3.33 Loss measurement at different wavelength of TMZF and gain difference without and with TMZF. 107
3.34 Multiple channels test on the amplification behaviour of the S-band DC-EDF Optical Amplifier. 108
3.35 The experimental setup of (a) conventional DC-EDFA (b) hybrid S-band optical amplifier. 110
3.36 The gain and NF performance of Hybrid S-band EDFA with different pump power of pre-amplifier. 111
3.37 The performance of gain and NF between hybrid S-band EDFA and conventional S-band EDFA with different pump power at 1500 nm center wavelength. 112
3.38 The gain and NF with different input wavelength at input power -30 dBm.

3.39 Gain and NF performance with different input wavelength in the high input signal (0 dBm).

3.40 The Distribute Raman Amplifier configuration in optical network system.

3.41 The configuration setup of a Discrete Raman Amplifier.

3.42 The Hybrid Raman Amplifier setup.

3.43 The experimental setup of S-band Discrete Raman Amplifier.

3.44 The gain of S-band Discrete Raman Amplifier with different Raman Pump Power at signal wavelength 1500 nm and input signal power -30 dBm and 0 dBm.

3.45 The gain of S-band Discrete Raman Amplifier with different input signal power and signal wavelength 1500 nm.

3.46 The gain of S-band Discrete Raman Amplifier at different input signal wavelengths with input signal of -30 dBm and 0 dBm.

3.47 The comparison of gain by using same wavelength of Raman pump and different wavelength of Raman pump.

3.48 The performance of NF of Raman Amplifier with different Raman Pump and input power at 1500 nm input wavelength.

3.49 The performance of NF of Raman Amplifier with different input signal power at wavelength of 1500 nm.

3.50 The performance of NF of Raman Amplifier with different input signal wavelength at input power of 0 dBm and -30 dBm.

3.51 Experimental setup of an SOA as S-band amplifier.
3.52 Amplified Spontaneous Emission (ASE) of injection current variations.

3.53 Gain performances for different input wavelengths with fixed input power (a) -30dBm (b) 0dBm.

3.54 Gain with input power variations for three different wavelengths.

3.55 The NF performance of SOA at different input wavelengths with the input power of -30dBm.

3.56 The NF performance of SOA with different input wavelength at input power level of 0dBm.

3.57 The NF performance at different input signal power level with different signal wavelength such as 1500 nm, 1550 nm and 1580 nm.

3.58 The PDG effect at different input signal wavelengths and input signal power level at -30 dBm and 0 dBm.

3.59 The PDG of signal wavelength 1500nm, 1550nm and 1580nm against the input signal power.

3.60 Experimental Setup of High Gain S-band SOA in (a) the Double Pass Configuration and (b) the conventional configuration.

3.61 ASE Spectra at S-band comparison between single pass setup and double pass setup at a 460 mA injection current.

3.62 Gain and NF Performance with Different Input Wavelengths at Input power -30 dBm.

3.63 Gain and NF Performance against Different Input Powers at a Wavelength of 1500 nm.

3.64 The maximum and minimum gain obtained by changing the polarization controller and also the PDG at different input powers.
4 S-band Fiber Laser

4.1 The setup of fiber ring laser by using TBF as a selective gain medium.

4.2 The output spectrums of S-band EDFL by using TBF which is tuned randomly.

4.3 The experimental setup of S-band Erbium doped fiber laser using fiber Bragg grating.

4.4 The output spectrum of the S-band EDFL using FBG with wide span.

4.5 The output spectrum of the S-band EDFL using FBG with 2 nm span.

4.6 Schematic of (a) lateral beam bending technique with compression mode (dashed-line) and tensile mode (dotted-line) and (b) hybrid material with FBG mounted on top of the Perspex.

4.7 Calculated values of wavelength shift against bending radius for the hybrid material such as Perspex and Spring Steel plates with the FBG placed on top of them.

4.8 The tunable S-band multi-wavelength fiber laser spectrum by using tunable FBG.

4.9 The output power of the tunable multi-wavelength S-band silica EDFL.

4.10 The SMSR of tunable S-band using silica EDF.

4.11 The experimental setup of S-band single longitudinal mode operation.

4.12 The laser spectrum of SLM operation.

4.13 RF spectrum of output laser (a) without SA (b) with one SA at location 1 (c) with 2 SAs.
4.14 The delayed self-heterodyne technique for line width measurement. 173
4.15 RF spectrum of delayed self-heterodyne signal. 174
4.16 The experimental setup of ring cavity DC-EDFL (a) clockwise direction (b) anticlockwise direction. 175
4.17 The output spectrum of the ring cavity DC-EDFL. 176
4.18 The output power efficiency of (a) clockwise direction and (b) anticlockwise direction with different pump power and coupler reflectivity. 177
4.19 The performance of output power clockwise and anticlockwise direction with 3dB output coupler 178
4.20 The comparison of 3dB spectrawidth by using 0.02 nm resolution OSA 178
4.21 The experimental setup for tunable S-band DC-EDFL fiber laser using AWG 180
4.22 The tuning range spectrum of (a) clockwise (b) anticlockwise direction. 182
4.23 The output power of clockwise and anticlockwise direction for the entire channel 183
4.24 The SMSR of clockwise and anticlockwise direction for the entire channel 183
4.25 The experimental setup of S-band Raman fiber laser 185
4.26 The tuning range of the S-band Raman fiber laser 186
4.27 The output power and SMSR of the S-band Raman fiber laser with different tuning wavelength 187
4.28 The output power with different Raman pump power at wavelength 188
1515 nm

4.29 The experimental setup of wide band SOAFL 191

4.30 Spectrum of the output wavelength from channel 1 before it is split 192 into three different bands by the S/C+L and C/L splitter

4.31 Widest tuning range for (a) S-band (b) C-band (c) L-band 194

4.32 Narrowest tuning ranges for (a) S-band (b) C-band and (c) L-band 196

4.33 Peak powers and SMSR for all channels of the entire bands, (a) S-band, (b) C-band and (c) L-band 198

4.34 Spectrum of Output lasers for S-,C- and L-bands with 120 nm 199 bandwidth

5 S-band Multi-wavelength Fiber Laser

5.1 The setup to investigate SBS in the fiber. 214

5.2 The Brillouin Stoke with different lengths of SMF 215

5.3 Measured Brillouin Stokes power at different BP wavelength with BP 216 output power of 12dBm.

5.4 The output spectrum of Brillouin Stokes of 50km SMF with different 217 BP power at BP wavelength 1500 nm.

5.5 The Stokes power in the linear unit (mW) to determine the threshold 217 of the Brillouin Stokes.

5.6 The comparison of Brilouin Spectrum between DCF and 50km SMF. 218

5.7 The Brillouin spectrum from DCF at BP wavelength 1500 nm and at 219 different BP powers.

5.8 The Stokes and anti-Stokes power of the DCF at BP wavelength 1500 220
nm and different BP power in dBm.

5.9 The Stokes and anti-Stokes power of the DCF at BP wavelength 1500 nm and different BP power in mW.

5.10 The comparison of the Stokes power between DCF and 50 km SMF.

5.11 The ring cavity setup of Brillouin Fiber Laser.

5.12 The linear cavity of a Brillouin Fiber Laser.

5.14 The operating range of the MW-BDCEDFL obtained with different BP wavelengths

5.15 Tuning range of the Stokes generated at different BP wavelengths, (a) 1485 nm (b) 1495 nm and (c) 1505 nm

5.16 The multi-wavelength Brillouin spectrum with different 980 nm pump power of DC-EDF at BP power and wavelength are about 12 dBm and 1498.07 nm respectively

5.17 The MW-BDCEDFL spectrum with different BP powers with BP wavelength at 1498.09 nm and pump power of 325 mW.

5.18 The experimental setup of MWBRFL.

5.19 The number of Stokes with different BP wavelength and coupling ratio at position A.

5.20 The number of Stokes at different BP wavelengths and also with coupling ratio at position B.

5.21 The output spectrum at the different BP powers.

5.22 Number of Stokes generation with different BP power at BP wavelength 1515 nm.
5.23 Experimental setup for S-band Multi-wavelength Brillouin Raman fiber laser with different BP location.

5.24 Spectrum of Brillouin Raman fiber laser with coupling ratio for C1; (a) 50/50, (b) 70/30 and (c) 95/5.

5.25 Enlarge scale on anti-Stokes of S-band Brillouin Raman fiber laser at coupling ratio of C1, 70/30.

5.26 Number of flat Stokes at different wavelength.

5.27 S-band Brillouin Raman fiber laser at different Raman pump power.

5.28 The experimental setup for studying the effect of inserting two BP of S-band Multi-wavelength Brillouin/Raman fiber laser in linear cavity.

5.29 The output spectrum by using only one BP with wavelength 1517.03 nm.

5.30 The spectrum of the two BP with wavelength is 1517.03 nm and 1518.53 nm with the Raman Pump is off.

5.31 The output spectrum of S-band Multi-wavelength Brillouin/Raman fiber laser by injected 2 BP in the linear cavity.

5.32 Experimental setup of 20 GHz S-band multi-wavelength Raman fiber laser.

5.33 Raman gain spectrum of the DCF when pumped at 1425 nm with a combined power of 371 mW.

5.34 Super-Imposed Traces of Output 1 (BP and Even Stokes) and Output 4 (Odd Stokes).

5.35 Output 1 with varying Raman pump power and fixed BP power.

5.36 The dependence of Stokes output power at different BP power, fixing the Raman Pump (RP) at 371mW.
5.37 Tuning range of the Stokes generated at different BP wavelengths, starting from 1490 to 1530 nm and (b) expanded trace at BP of 1490 nm, 1495 nm, 1525 nm and 1530 nm (Clockwise from top left)

5.38 The experimental setup of Multi-wavelength Brillouin/SOA fiber laser in linear cavity

5.39 Lasing comb generated with 1510 nm BP (S-band) at 10.6 dBm

5.40 Lasing comb generated with 1550 nm BP (C-band) at 10.6 dBm

5.41 Lasing comb generated with 1580 nm BP (L-band) at 10.6 dBm

5.42 Total Stokes wavelengths observed within 1480 nm and 1610 nm at BP power of 10.6 dBm. The inset is the ASE spectrum of the ultra-wide band SOA with an injection current of 390 mA

5.43 Spectrum of the proposed MBLF at 10 minute intervals over a testing period of 70 minutes for the (a) S-band, (b) C-band and (c) L-band region

5.44 Experimental setup for the proposed S-band Multi-wavelength Brillouin / Depressed Cladding Erbium Doped Fiber with hybrid of Raman pump.

5.45 MW-BDCEDFL with Raman Pump spectrum with different coupling ratios

5.46 Tuning range of linear cavity S-band MBEFL

5.47 The maximum number of Stokes wavelengths is observed at a BP wavelength of 1499 nm

5.48 Stokes wavelengths generated with different RP powers at a constant BP wavelength of 1499 nm

5.49 Stokes wavelengths observed at different RP powers
5.50 Output of the S-band BEFL over 1 hour of operation (at 10 minute intervals)

5.51 The experimental setup of S-band Multi-wavelength Brillouin and SOA/DC-EDFA fiber laser

5.52 The comparison of the output spectrum with different linear gain medium

5.53 The number of Brillouin Stokes with different BP wavelength

5.54 The Brillouin spectrum evolution with different pump powers and at different driver currents of DC-EDFA and SOA

5.55 The evolution Brillouin spectrum of the S-band multi-wavelength Brillouin/ Hybrid SOA and DC-EDFA with different SOA driven current and DC-EDFA pumped
List of Tables

2 Theory and Literature of S-band Optical Amplifier and Its Applications

- 2.1 The effective area of different fiber types. 38

3 Characteristics of S-band Optical Amplifiers

- 3.1 The parameter of Metrogain EDF we use in this experiment (length of 3m) 74
- 3.2 Comparison of S-band Optical Amplifier 150

4 S-band Fiber Laser

- 4.1 The characteristics comparison for different type of S-band fiber laser 203

5 S-band Multi-wavelength Fiber Laser

- 5.1 Comparison performance of S-band Multi-wavelength Brillouin/ S-band Amplifier in linear cavity fiber laser 278

6 Discussion, Conclusion and Future Works

- 6.1 Comparison of S-band Optical Amplifier 286
- 6.2 Comparison for different type of S-band fiber laser 289
- 6.3 Comparison performance of S-band Multi-wavelength Brillouin/S-band Amplifier in linear cavity fiber laser 292
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASE</td>
<td>Amplified Spontaneous Emission</td>
</tr>
<tr>
<td>AWG</td>
<td>Arrayed Waveguide Grating</td>
</tr>
<tr>
<td>BEFL</td>
<td>Brillouin Erbium Fiber Laser</td>
</tr>
<tr>
<td>BDFL</td>
<td>Brillouin Doped Fiber Laser</td>
</tr>
<tr>
<td>Bi-EDFA</td>
<td>Bismuth/Erbium Doped Fiber Amplifier</td>
</tr>
<tr>
<td>BP</td>
<td>Brillouin Pump</td>
</tr>
<tr>
<td>CIR</td>
<td>Circulator</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction Band</td>
</tr>
<tr>
<td>C-band</td>
<td>Conventional Band</td>
</tr>
<tr>
<td>CWDM</td>
<td>Coarse WDM</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCF</td>
<td>Dispersion Compensating Fiber</td>
</tr>
<tr>
<td>DC-EDF</td>
<td>Depressed Cladding-Erbium Doped Fiber</td>
</tr>
<tr>
<td>DC-EDFA</td>
<td>Depressed Cladding-Erbium Doped Fiber Amplifier</td>
</tr>
<tr>
<td>DC-EDFL</td>
<td>Depressed Cladding Erbium Doped Fiber Laser</td>
</tr>
<tr>
<td>DFB</td>
<td>Distributed Feedback</td>
</tr>
<tr>
<td>DRA</td>
<td>Distribute Raman Amplifier</td>
</tr>
<tr>
<td>DRS</td>
<td>Double Rayleigh Scattering</td>
</tr>
<tr>
<td>DWDM</td>
<td>Dense WDM</td>
</tr>
<tr>
<td>EDF</td>
<td>Erbium Doped Fiber</td>
</tr>
<tr>
<td>EDFA</td>
<td>Erbium Doped Fiber Amplifier</td>
</tr>
<tr>
<td>EDFL</td>
<td>Erbium Doped Fiber Laser</td>
</tr>
<tr>
<td>FBG</td>
<td>Fiber Bragg Grating</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full-Width Half-Maximum</td>
</tr>
<tr>
<td>FWM</td>
<td>Four Wave Mixing</td>
</tr>
<tr>
<td>FP-SOA</td>
<td>Fabry-Perot SOA</td>
</tr>
<tr>
<td>GFF</td>
<td>Gain Flattening Filter</td>
</tr>
<tr>
<td>HiBi-FLM</td>
<td>High Birefringence Fiber Loop Mirror</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HRA</td>
<td>Hybrid Raman Amplifier</td>
</tr>
<tr>
<td>ISO</td>
<td>Isolator</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>L-band</td>
<td>Long-Band</td>
</tr>
<tr>
<td>LD</td>
<td>Laser Diode</td>
</tr>
<tr>
<td>MCVD</td>
<td>Modified Chemical Vapor Deposition</td>
</tr>
<tr>
<td>MWBDCEDFL</td>
<td>Multi-wavelength Brillouin/Depressed Cladding Erbium Doped Fiber Laser</td>
</tr>
<tr>
<td>MWBEFL</td>
<td>Multi-wavelength Brillouin/Erbium Doped Fiber Laser</td>
</tr>
<tr>
<td>MWBRFL</td>
<td>Multi-wavelength Brillouin/Raman Fiber Laser</td>
</tr>
<tr>
<td>MWBSO AFL</td>
<td>Multi-wavelength Brillouin/SOA Fiber Laser</td>
</tr>
<tr>
<td>MWFL</td>
<td>Multi-Wavelength Fiber Lasers</td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
</tr>
<tr>
<td>OC</td>
<td>Optical Circulator</td>
</tr>
<tr>
<td>OCS</td>
<td>Optical Channel Selector</td>
</tr>
<tr>
<td>OPM</td>
<td>Optical Power Meter</td>
</tr>
<tr>
<td>OSA</td>
<td>Optical Spectrum Analyzer</td>
</tr>
<tr>
<td>OTDM</td>
<td>Optical Time Domain Division Multiplexing</td>
</tr>
<tr>
<td>PC</td>
<td>Polarization Controller</td>
</tr>
<tr>
<td>PCF</td>
<td>Photonic Crystal Fibers (PCFs),</td>
</tr>
<tr>
<td>PDG</td>
<td>Polarization Dependence Gain</td>
</tr>
<tr>
<td>PLC</td>
<td>Planar Lightwave Circuit</td>
</tr>
<tr>
<td>PMF</td>
<td>Polarization Maintaining Fiber</td>
</tr>
<tr>
<td>RA</td>
<td>Raman Amplifier</td>
</tr>
<tr>
<td>RP</td>
<td>Raman Pump</td>
</tr>
<tr>
<td>RFL</td>
<td>Raman Fiber Laser</td>
</tr>
<tr>
<td>RFSA</td>
<td>Radio Frequency Spectrum Analyzer</td>
</tr>
<tr>
<td>S-band</td>
<td>Short Band</td>
</tr>
<tr>
<td>SA</td>
<td>Saturable Absorber</td>
</tr>
<tr>
<td>SBS</td>
<td>Stimulated Brillouin Scattering</td>
</tr>
<tr>
<td>SRS</td>
<td>Stimulated Raman Scattering</td>
</tr>
<tr>
<td>SLMs</td>
<td>Sagnac Loop Mirrors</td>
</tr>
<tr>
<td>SLM</td>
<td>Single Longitudinal Mode</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SMF</td>
<td>Single Mode Fiber</td>
</tr>
<tr>
<td>SMSR</td>
<td>Sidemode Suppression Ratio</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SOA</td>
<td>Semiconductor Optical Amplifier</td>
</tr>
<tr>
<td>SOAFL</td>
<td>Semiconductor Optical Amplifier Fiber Laser</td>
</tr>
<tr>
<td>SPM</td>
<td>Self-Phase Modulation</td>
</tr>
<tr>
<td>TE</td>
<td>Transverse Electric</td>
</tr>
<tr>
<td>TBF</td>
<td>Tunable Bandpass Filter</td>
</tr>
<tr>
<td>TLS</td>
<td>Tunable Laser Source</td>
</tr>
<tr>
<td>TMZF</td>
<td>Tunable Mach-Zehnder Filter</td>
</tr>
<tr>
<td>TFBG</td>
<td>Tunable Fiber Bragg Grating</td>
</tr>
<tr>
<td>TM</td>
<td>Transverse Magnetic</td>
</tr>
<tr>
<td>TFBG</td>
<td>Tunable Fiber Bragg Grating</td>
</tr>
<tr>
<td>TDM</td>
<td>Time Division Multiplexing</td>
</tr>
<tr>
<td>TW-SOA</td>
<td>Traveling Wave Semiconductor Optical Amplifier</td>
</tr>
<tr>
<td>VB</td>
<td>Valance Band</td>
</tr>
<tr>
<td>WSC</td>
<td>Wavelength Selective Coupler</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>XPM</td>
<td>Cross-Phase Modulation</td>
</tr>
</tbody>
</table>
Nomenclature

\(A \)
Fiber core area

\(A_{\text{eff}} \)
Effective core area

\(A_{\text{mf}} \)
Mode field diameter

\(\beta \)
Modal propagation constants

\(f \)
Optical frequency

\(f_0 \)
Center frequency

\(r \)
Core radius

\(R \)
Radius of curvature

\(c \)
Speed of light

\(E_p \)
Young’s modulus of the Perspex

\(E_{p}^{s} \)
Young’s modulus of the spring steel

\(\epsilon \)
Strain

\(h \)
Planck’s constant

\(P_{s,\text{out}} \)
Output signal power

\(P_{s,\text{in}} \)
Input signal power

\(P_{\text{ASE}} \)
ASE noise power

\(G \)
Gain

\(G_0 \)
Small signal gain

\(G_{\text{max}} \)
Maximum value of small-signal gain

\(G_{\text{TE}} \)
TE mode gain

\(G_{\text{TM}} \)
TM mode gain

\(g_R \)
Raman gain coefficient

\(g_B \)
Brillouin gain coefficient

\(g_{th} \)
Gain Threshold

\(I_{\text{sat}} \)
Saturation intensity

\(I_s(0) \)
Incident pump intensity at fiber position \(z=0 \)

\(n \)
Index of refraction/ refractive index

\(\varnothing \)
Azimuthal coordinates of a cylindrical

\(L_{\text{coh}} \)
Coherent length
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_{int}</td>
<td>Pump interaction length</td>
</tr>
<tr>
<td>η_{EB}</td>
<td>Cross efficiency of Brillouin/Erbium</td>
</tr>
<tr>
<td>η_B</td>
<td>Brillouin Efficiency</td>
</tr>
<tr>
<td>η_E</td>
<td>Erbium Efficiency</td>
</tr>
<tr>
<td>η_p</td>
<td>Ratio of emission to absorption cross section at pump</td>
</tr>
<tr>
<td>η_s</td>
<td>Ratio of emission to absorption cross section at signal</td>
</tr>
<tr>
<td>P</td>
<td>Polarization</td>
</tr>
<tr>
<td>P_{out}</td>
<td>Output power</td>
</tr>
<tr>
<td>P_{sat}</td>
<td>Saturation power</td>
</tr>
<tr>
<td>P_{th}</td>
<td>Brillouin threshold</td>
</tr>
<tr>
<td>ρ_0</td>
<td>Peak dopant density</td>
</tr>
<tr>
<td>ρ_e</td>
<td>photo-elastic coefficient of silica fiber</td>
</tr>
<tr>
<td>p_{12}</td>
<td>Longitudinal elasto-optic coefficient,</td>
</tr>
<tr>
<td>ε_o</td>
<td>Vacuum permittivity</td>
</tr>
<tr>
<td>SNR_{in}</td>
<td>Signal-to-noise ratio input</td>
</tr>
<tr>
<td>SNR_{out}</td>
<td>Signal-to-noise ratio output</td>
</tr>
<tr>
<td>σ_e</td>
<td>Total emission cross section</td>
</tr>
<tr>
<td>σ_a</td>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>t_p</td>
<td>Thickness of the Perspex</td>
</tr>
<tr>
<td>t_s</td>
<td>Thickness of the Spring Steel</td>
</tr>
<tr>
<td>τ_{sp}</td>
<td>Spontaneous life time of the ion in the metastable state</td>
</tr>
<tr>
<td>V_a</td>
<td>Velocity of Acoustic wave</td>
</tr>
<tr>
<td>v_B</td>
<td>Frequency shift</td>
</tr>
<tr>
<td>v</td>
<td>Frequency of the light</td>
</tr>
<tr>
<td>N_T</td>
<td>Total dopant concentration</td>
</tr>
<tr>
<td>R</td>
<td>Radiative transitions</td>
</tr>
<tr>
<td>N</td>
<td>State of population</td>
</tr>
<tr>
<td>NR</td>
<td>Non-radiate transitions</td>
</tr>
<tr>
<td>N_{eff}</td>
<td>Effective refractive indices in the waveguide array</td>
</tr>
<tr>
<td>N_f</td>
<td>Effective refractive indices in the free propagation region</td>
</tr>
<tr>
<td>W_{12}</td>
<td>Stimulated emission coefficients of the signal</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>W_{2l}</td>
<td>Stimulated emission coefficients of the pump</td>
</tr>
<tr>
<td>N</td>
<td>Population density</td>
</tr>
<tr>
<td>λ_c</td>
<td>Cut-off wavelength</td>
</tr>
<tr>
<td>λ_0</td>
<td>Zero dispersion wavelength</td>
</tr>
<tr>
<td>λ_B</td>
<td>Bragg wavelength</td>
</tr>
<tr>
<td>n_{sp}^\pm</td>
<td>Spontaneous emission factor</td>
</tr>
<tr>
<td>n_{eq}^\pm</td>
<td>Equivalent input noise</td>
</tr>
<tr>
<td>Δ</td>
<td>Index difference</td>
</tr>
<tr>
<td>Δv</td>
<td>Bandwidth of optical amplifier</td>
</tr>
<tr>
<td>Δv_e</td>
<td>Emission bandwidth of the ASE spectrum</td>
</tr>
<tr>
<td>Δv_{sp}</td>
<td>Bandwidth of the noise</td>
</tr>
<tr>
<td>$\Delta \lambda_B$</td>
<td>Brillouin wavelength shift</td>
</tr>
<tr>
<td>Δv_B</td>
<td>Full width at half maximum of Brillouin</td>
</tr>
<tr>
<td>Γ</td>
<td>Confinement factor</td>
</tr>
<tr>
<td>α_s</td>
<td>Absorption coefficients at signal</td>
</tr>
<tr>
<td>α_p</td>
<td>Absorption coefficients at pump</td>
</tr>
<tr>
<td>ω_a</td>
<td>Frequency of scattered wave</td>
</tr>
<tr>
<td>ω_s</td>
<td>Frequency of acoustic wave</td>
</tr>
<tr>
<td>ω_o</td>
<td>Modal spot size</td>
</tr>
</tbody>
</table>